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Abstract

In this paper, we present generalizations of the Jacobian matrix and the Hessian matrix
to continuous maps and continuously differentiable functions respectively. We then es-
tablish second-order optimality conditions for mathematical programming problems with
continuously differentiable functions. The results also sharpen the corresponding results
for problems involving C''-functions.

1. Introduction

This work was motivated both by the need of sharper second-order optimality
conditions for non-smooth mathematical programming problems and by the recent
work ([8, 9]) on second-order non-smooth analysis of approximate Jacobian matrices
which extends basic calculus of locally Lipschitz vector-valued maps to continuous
maps and unifies and strengthens various results of second-order calculus. In this
paper we examine mathematical programming problems involving continuously dif-
ferentiable functions. Mathematical programming problems involving continuously
differentiable functions which are not necessarily C11-functions, that is, continuously
differentiable functions with locally Lipschitz gradients, arise in applications, par-
ticularly, in reformulating certain variational inequality problems with continuously
differentiable maps as equivalent optimization problems. We present necessary and
sufficient optimality conditions for such mathematical programming problems. The
optimality conditions, which are expressed in terms of approximate Hessian matrices,
extend and sharpen the corresponding results for mathematical programming problems
with C11-functions [5].
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404 V. Jeyakumar and X. Wang [2]

A new notion of an approximate Hessian is defined as the closed and bounded set
of matrices which is an approximate Jacobian of the vector-valued gradient mapping.
For a scalar-valued mapping, the approximate Jacobian means there exists a compact
set which generates both an upper convex and a lower concave approximation to the
mapping at a point (see [15, 8]). It is a key property that is shared by most of the
generalized sub-differentials in non-smooth analysis. Our approach also extends the
idea of generalized Hessian matrix introduced and studied for C11-functions in [5].

The outline of the paper is as follows. In Section 2 we introduce the notions of
approximate Jacobian and Hessian matrices and develop calculus rules such as the
sum formula, the mean-value condition and generalized Taylor's expansions which
will then be used to establish optimality conditions. We also provide examples to
show the significance of such matrices in particular in the locally Lipschitz case.
In Section 3 we present necessary optimality conditions for nonlinear programming
problems with equality and inequality constraints, where the functions are assumed
to be C1. The optimality conditions are compared with the corresponding results for
problems involving C11 functions. A numerical example is given to show that the
results provide sharper conditions for such Cu-problems. In Section 5 we establish
second-order sufficient optimality conditions.

This paper is dedicated to Professors Bruce Craven and Bert Mond on the occasion
of their retirement.

2, Approximate Jacobian & Hessian matrices

We assume throughout the paper that F is a function mapping K" into Km, that
is, F : R" -+ Rm and that F has components, ( / , , . . . , / m ) . For each v e Km the
composite function, (vF) : K" -> OS, is defined by

m

(vF)(x) = {v
1 = 1

The lower Dini directional derivative and the upper Dini directional derivative of v F
at x in the direction u e R" are defined by

(vF) (x, u) := hminf
no

(vFy(x, u) := limsup

no t

tu)-(vF)(x)
t

We denote by L(W, W") the space of all n x m matrices. The convex hull and the
closed convex hull of a set A in a topological vector space are denoted by co(A) and
~co(A) respectively.
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[3] Optimality conditions for NLP problems with C1 -data 405

DEFINITION 2.1. The map F : R" - • Km admits an approximate Jacobian 3* F(x)
at x € R" if d*F(x) c L(0Sn, Km) is closed and bounded and for each v e Rm,

(vF)+(x,u)< max (Mv,u) V« e IT. (2.1)
Me3*F()

A matrix Mofd*F(x)is called an approximate Jacobian matrix of F at x. Note
that condition (2.1) is equivalent to the condition

(vF)-(x,u)> min (Mu,«) VMeR" (2.2)
Med'F(x)

and is a strengthened version of the initial definition of an approximate Jacobian, given
in Jeyakumar and Luc [8], where the approximate Jacobian was assumed to be merely
closed, not necessarily bounded, and the inequality (2.1) was given in terms of the
lower Dini directional derivative (vF)~(x,.) of vF at x. The connections between
the approximate Jacobian and the co-derivatives ([6, 7, 11, 12, 13, 14]) are discussed
in [8].

Clearly, if F : K" -> Rm is continuously differentiable at x, then any compact
subset £2 of L(R", Km) containing the Jacobian VF(x)T is an approximate Jacobian
of F at x. Here we write VF(x) for the usual m x n Jacobian matrix of partial
derivatives.

Suppose that F : W -> Ofcm is locally Lipschitz at x. Then the Clarke generalized
Jacobian dcF(x) is an approximate Jacobian of F atx. Indeed, for each v 6 R"1,

d°(vF)(x) = 8cF(x)v. (2.3)

Consequently, for each ueK",

(vF)+(x, u) < (uF)°(x, u) = max (£, «> = max (Mv, u),
?63°(uF)(x) MedcFU)

where

= co{ lim VF(xn)
T : *„ € £2, *„ -> JC},{

n-»oo

£2 is the set of points in OS" where F is differentiable and the Clarke directional
derivative of vF is given by

(vF) (x, u) = limsup
t

no

For the locally Lipschitz map F : OS" ->• DSm, the set

:= {lim VF(xn)
T :xn eft, xn-+ x]
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is also an approximate Jacobian of F at x. The set dBF(x) is known as the B-
subdifferential of F at x, which plays a significant role in the development of non-
smooth Newton methods. Let us look at a numerical example of a locally Lipschitz
map where the Clarke generalized Jacobian strictly contains the convex hull of an
approximate Jacobian.

EXAMPLE 2.1. Consider the function F : K2 -> K2

F(x,y) = (\x\-\y\,\y\-\x\).

Then it can be verified that

"H(-. ".')•(-' -01
is an approximate Jacobian of F at 0. On the other hand, the Clarke generalized
Jacobian is dcF(0) = co(dBF(0)), where

" , 1 - ' ) • ( : ! ! ) • ( ! : ! ) ! •

Observe that

i co(d*F(0).

Let us present some basic calculus for approximate Jacobians that will be useful
later in applications to optimization problems.

PROPOSITION 2.1. Let F : K" -» W" and let 0 # « e R. If d*F(x) is an
approximate Jacobian of F at x € R" fAen a3*F(A:) is an approximate Jacobian of
aF at x.

PROOF. The proof follows by standard arguments and so is omitted.

The following proposition shows that a simple sum formula holds for our approximate
Jacobians. However, the general notion of an approximate Jacobian, given in [8],
requires a regularity hypothesis.

PROPOSITION 2.2. Let F{ : R
n -> W" for i = 1, 2. Suppose that for each i = 1,2,

d*Fi(x) is an approximate Jacobian of F, atx. Then the set d*Ft(x) + d*F2(x) is an
approximate Jacobian of F := Ft + F2atx.
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PROOF. Let v e Km, « e R" be arbitrary. The sub-additivity of upper limits shows
that

, . , , + , , .. {v, Fdx + tu) - F^x)) , ,. (i;, F2(x + tu) - F2(x)}
(vF) (x, u) < hmsup h hmsup .

40 t 40 t
Since d*F\{x) and d*F2(x) are approximate Jacobians of Ft and F2 at *, it follows
that

(vF)+(x,u)< max (Mv,u}+ max {Nv, u) = ((Mo + N0)v, u),

for some Mo e 3*F,(;c) and No € d*F2(x). Hence,

(vF)+(x,u)< max (Pv,u)
Ped'F,(x)+3'F2(x)

and so the conclusion follows.

In the following proposition we show how an approximate Jacobian of F can be
constructed from the approximate Jacobians of its components. Recall that when
m = 1, d*F(x) consists o f n x 1 matrices (that is, column vectors).

PROPOSITION 2.3. Let F(x) = (fi(x),f2(x), ... ,fm{x)). Let d*fi(x) be the ap-
proximate Jacobian of f, at x. Then the set

d*F(x) := 37,(;t) x 372(x) x ... x d'fmW

is an approximate Jacobian ofFatx. Here the latter set denotes the set of all matrices
whose i'h column belongs to d*fj(x)for each i.

PROOF. Since for each /, d*fi(x) is compact, 3*F(JC) is clearly a closed and bounded
subset of L(R", Rm). Let u e R" and let v e Km. Then

(UF)+(JC, u) = lim sup

^ / lim sup

So,

(vF)+(x, u) <J2 max̂  {M,v,, u) = ^(Mfu,, u) = (^Mfv,, u) = (M°v, u),
i=i ' ' i=i i=i

where M? e d*ft{x) and M° = (Mf, M2°,... , M°). Hence,

(vF)+(x, u) < (M°v, u) < max (Mv, u)
MeB'F(x)

and so 3*F(x) is an approximate Jacobian of F at x.
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The following mean-value theorem holds for continuous maps as a special case of
the corresponding result in [8] since the approximate Jacobians here are closed and
bounded sets.

THEOREM 2.1. ([8]) Let a,b e W and let F : R" -*• Rm be continuous. Assume
that for each x € [a, b], d*F(x) is an approximate Jacobian of F at x. Then

F(b) - F{a) e co(d*F([a, b])(b - a)). (2.4)

Note that the right-hand side in (2.4) is the convex hull of all points of the form
M(b — a) where M € 3*F(£) for some £ € [a,b]. The following example illustrates
that the previous theorem provides a sharper mean-value condition even for a locally
Lipschitz map than the corresponding result of Clarke [2].

EXAMPLE 2.2. Let F : R2 ->• R2 be defined by

F(x,y) = {\x\-\y\,\y\-\x\).

Let a = (— 1, —1) and b = (1, 1). Then the mean value condition (2.4) is verified by

Moreover, condition (2.4) yields the mean value condition in the sense of Clarke (see
[4]), since co(3*F(0)) C 3cF(0).

It is also worth noting that it easily follows from Mean-Value Theorem 2.1 that if an
approximate Jacobian of a continuous map F is bounded in a neighbourhood of a then
F is locally Lipschitz at a (see [8] for further details).

Let us now introduce the notion of approximate Hessian for continuously differ-
entiable (C'-)functions. Note that the derivative of/ which is denoted by V/ is a
continuous map from R" to R"; however, it is not necessarily locally Lipschitz.

DEFINITION 2.2. The function / admits an approximate Hessian 3 2 / (x) at x if
this set is an approximate Jacobian to V/ at x.

Note that d2f(x) = 3*V/ (x) and the matrix M € 32/0O is an approximate
Hessian matrix of/ at x. Clearly, if/ is twice differentiable at x, then V2/ (x) is a
symmetric approximate Hessian matrix of/ at x.

Recall that if / : R" —> R is CM, then the generalized Hessian in the sense of
Hiriart-Urruty et al. [5] is given by

3«/0O = co{M : M = lira V2f(xn), xn e A, xn -> x],
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where A is the set of points in K" where/ is twice differentiable. Clearly, d2
Hf (x) is

a nonempty convex compact set of symmetric matrices. The second-order directional
derivative of/ at x in the directions (u, v) e (R" x K" is defined by

f°°(x;u, v) = hmsup

Since for each (u, u) e K" x R",

(vVf)+(x,u) <f°°(x;u, v)= max {Mu,v)= max {Mv,u},
Ma2fW MalfM

d2
Hf (x) is an approximate Hessian of/ at x. For a related notion of approximate

Hessian, see [10].
The following generalized Taylor's expansion holds for C1 -functions as a special

case of the corresponding result in [8]. For completeness we here provide a strength-
ened form of the proof given in [8] (see also [1]).

THEOREM 2.2. Letf : K" -» 0& be continuously Gateaux differentiable on W; let
x, y e W. Suppose that for each z &[x, y], 9*/ (z) is an approximate Hessian off
at z. Then there exists £ € (x, y) such that

PROOF. Letft(») =f(y + t(x-y)) + t(Vf (y + t{x -y)),y-x) + \at2-f{y),
where a = -2(f (x) - f (y) + <V/(*), y - x)). Then *(0) = 0,h(l) = f (x)-
f 00 + (W (•*). y ~ >̂ + \a = 0 and ^ is continuous. So /i attains its extremum
at some y e (0, 1). Suppose that y is a minimum point of h. Now by necessary
conditions, we have for each v e K, h+(y; v) > 0. Let

Then by direct calculations

h+(y; 1) = -g(y) + g(y) + yg+(y; 1) + ay
- V / ( ? ) .

,y -x),X—0+ >̂ -

where t, = y + y(* — y) e (JC, y). Since fc+(y; 1) > 0,

. f , V / ( £ + A - 0 t y ) ) V / ( Q
a > hminf( ,x — y).

i 0 + A
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Now, from (2.1) we see that

a > min (M(x — y), x — y).

Similarly, by calculating h+(y; — 1) we obtain that

a< max {M(x — y),x — y).

Hence, it follows that

min (M(y — x), y — x) < a < max (M(y — x), y — x),

and so,

aeco(d2J^)(y-x)Ay-x)).

Thus

/ GO - / (x) - (V/ (x), y-x) = ^e -co{d2j (t;)(y - x), (y - x)). (2.5)

The case where y is a maximum point of h also yields the same condition (2.5). The
details are left to the reader.

3. Second-order necessary optimality conditions

Consider the nonlinear programming problem

(F) Minimize / (*)

subject to x e K", gi(x) < 0, i = 1,2, ...,p\ hj(x) = 0, j = 1, 2 , . . . , q,

where f, gi, i = 1,2, ... ,p and hs, j — 1, 2 , . . . , q are C'-functions on W. The
Lagrangian function is given by

P 9

L(x, k,n) =f (x) + ̂  kjgi(x) + ̂  nj hj (x).

If a is a local minimum of (P) then there exist A.J > 0, k* > 0 and k*gt(a) = 0, for
i = 1, 2 , . . . , p, /A* € IR9 such that

p i

k*0Vf (a) + Y^ *-*Vgi(a) + Yl fu,*Vhj (a) = 0.
i=i ; = i
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This Fritz-John condition yields the following Kuhn-Tucker conditions under a first-
order constraint qualification (see [3]):

k* > 0, k*gi(a) = 0, for i = 1, 2 , . . . , p , /* € 01*, VZ.(o, k*, n*) = 0.

Here k0 = 1. Let C = {* e R" I £,(*) < 0, i = 1, 2 , . . . , p , fy(jc) = 0, j =
1,2,... , q] be the feasible set and let

C(k) = {xeC\ J

The cone of feasible directions to a subset 5 of IR" at x e 5 is given by

) = {ue IT | 38 > 0 , V 0 < a < 5 , j ( + a i < e 5 )

THEOREM 3.1. Assume that the problem (P) attains a local minimum at a. Sup-
pose that for each k € K+ anrf ^ e K', L(., A., /x) admits an approximate Hessian
dlL(a, k, /A) a/ a. If a first- order constraint qualification holds at a then there exist
k* > 0, k*gi(a) = 0,/or i = 1, 2 p, /x* 6 K9, VL(a, A.*, /x*) = 0 and

(VH e F ( C ( r ) , a)) (3M e 3,2L(a, X*, /**)) (MM, M) > 0. (3.1)

PROOF. From the Karush-Kuhn-Tucker conditions we get

, „ . , + ,, . , . , , ,. (uVLKa + tu, k*, fi*) - (iiVL)(a, x\ /z*)
(«VL)+((a, A. , /x ), u) = hmsup

t

(u, VL(a + tu, k*, n*)) - (u, VL(a, A.*, tf)
= hm sup

no t
,. {u,

= hm sup4 0 t

Let M e F(C(k*), a). Then there exists S > 0 such that for all 0 < a < S, a + au e
C(A.*). Then for 0 < f < S,

L(a + -u, k*, /x*) = / (a + - M ) > / (a) = L(a, A*, /**).

It then follows from the standard Mean-Value Theorem that there exists an integer
N > 0 and 0 < tk < | for each k > N, such that

(u, VL(a + tku, r , M*)> > 0, Vt > N.
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So,

,. {u,VL(a + tu, k*,ix*))
hm sup > 0.

U0 t

Since 3»Z-(a, A.*, fx*) is an approximate Hessian of L(., A.*, fx*) at a, we have for any
u e F(C(A.*), a)

max (Nu, u) > (uVL)+((a, A.*, ix*), u)

(u,
= hm sup

It then follows from the fact that dlL(a, A.*, /x*) is closed and bounded that there exists
M € d2L(a, k*, /x*) such that

(Mu, u) = max {Nu, u) > 0.
/ V 3 2 Z ( X * 4 )

COROLLARY 3.1. Assume that the problem (P) attains a local minimum at a. Sup-
pose that d2j (a), dlgiia), for i = 1,2,... ,p and d2hj (a), for j = 1, 2 , . . . , q are
approximate Hessians off, gi and hj at a respectively. If a first- order constraint qual-
ification holds at a then there exist k* > 0 such that k*gi(a) = 0,for i = 1, 2 , . . . , p,
ix* 6 W such that VL(a,k*,ix*) = 0 and for each u e F(C(k*),a)) there exist
Mo € dlf (a), Mi € dlgiia) and Mj € dfy (a) such that

((Mo + J2 kiMi + J2 fxj Mj )u, u} > 0.

PROOF. From Propositions 2.1 and 2.2, we know that the set

d2
tL(a, r , n*) = d2j (a) + £ k*d2

tgi(a) + £»*d2
thj(a)

is an approximate Hessian of L(x, k*, fx*) at a. Thus by Theorem 3.1 we can find a
matrix M € 3,2L(a, A.*, fx*) such that for any u € F(C(A.*), a)

(Mu, u) > 0.

p i

Since M = Mo + ^ X*M' + Yl ^J^J fo r s o m e M° € 9*^ ̂ ' Mi e dli'(a)' ' =

i=i j=\

1, 2, . . . , p and Mj e d^qj (a), j = 1 , 2 , . . . , q, we then have

((Mo + J2 KMi + J2^MJ^U' "> > 0- V« e F(C(k*), a).
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A stronger necessary optimality condition than (3.1) can be obtained in terms of
the Bouligand tangent cone [5] under an additional hypothesis on the approximate
Hessians. Recall that the Bouligand tangent cone to the set 5 at x is given by

B(S, x) = {u 6 K" | 3sk lO,uk-+u,x+ skuk e 5} .

DEFINITION 3.1. Let 5 c K", le t / : OS" -+ K be C1 and let a e 5. We say that the
approximate Hessian set-valued map dlf : x = > dlf (x) is regular at a with respect
to 5 if for each u € S

limsup (A'u1, u') < max (AM, U). (3.2)

r'-i.UO

Condition (3.2) means that for each u e S and for each sequence un -*• u, tn \ 0,
An € d2j {a + tnun) and

limsup(AnHn, un) < max (Au,«).
A 3 2 / ( )

It is easy to see from the definition that if the map dlf is locally bounded at a then

limsup {A'u', u)

is finite. We now see that upper semi-continuity of the map 3 , / at a guarantees
regularity at a. Note first that a set-valued mapping G : K" -> L(K", W") is locally
boundedatx if there exist a neighbourhood Uofx and a positive a such that ||A|| < a,
for each A 6 G(U). The map G is said to be upper semi-continuous at * if for each
open set V containing G(x), there is a neighbourhood U of x such that G(f/) C V.
It then follows from the definitions that if the map dlf is upper semi-continuous at x
then it is locally bounded at x since dlf (x) is bounded.

LEMMA 3.1. Letf be a C1 -function, let dlf (x) be an approximate Hessian of f for
eachx e OS" and let a € 5 C K". If the set-valued map dlf is upper semi-continuous
at a, then dlf is regular at a with respect to S.

PROOF. Let u e 5 and let the sequences «„ ->« , tn I 0 and An e dlf (a + tnun).
Since dlf is locally bounded

/ := limsup {A'u', u')
/-.. no

is finite. Suppose that

max {Au, u) = {Aou, u),
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where Ao e dlf (a). Define € = I - {Aou, u) > 0. Then there exists a subsequence,
again denoted by {Anun, un) such that

(Aou, « ) = / — lim (Anun, un).
*oo

Since dlf is upper semi-continuous at a, we can find a subsequence Akn e d%f (a +
tknukj such that Akn —• A 6 3*/ (a) as n -> oo. Hence

( A O M , M) < lim(/\nMn,Mn>
n-+oo

= (Au, u) < (Aou, u),

which is a contradiction and so

/ < max (AM, U).
Aedlf(a)

Clearly if/ is twice continuously differentiable then 3*/ (.) = {V2/ (.)} is regular
at x with respect to each subset 5 of K". If/ is C11 then dlf := d2

Hf is regular
at each point. In other words, condition (3.2) is satisfied for a C'-'-function by
dlf = d2

Hf. The following example shows that an approximate Hessian set-valued
map of a C11-function, which is not upper semi-continuous, satisfies the regularity
condition (3.2).

EXAMPLE 3.1. Let/ i :

h(x) =

be an odd function which is defined for x > 0 by

~ -̂  I .

2x - ±, ;t e [55^, 2s],n = 1,2,... ;

Define/ :

0,

Rby

= o.

Jo

Then / is a C11 -function since V/(;ti, x2) = (
function. An approximate Hessian set-valued map

0̂ 0\ /2 0\J
K0 l j ' ^ 0 i j j '

ri), ;c2) is a locally Lipschitz
f is given by

J C , = ± ^ , n = l , 2 , . . . ;

^! = 0 ;

otherwise.
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It is easy to verify that 9*/ is regular at (0,0) and locally bounded at (0,0). However,
it is not upper semi-continuous at (0,0) since

It is also worth noting that

3«/((0,0)) = { ( Jj ° ) | « € [ - l , 2]J

and that co(d2j ((0,0)) c d%f ((0,0)).

THEOREM 3.2. Assume that the problem (P) attains a local minimum at a. Let the
Kuhn-Tucker conditions be satisfied at a by k* and \x*. Suppose that for each x € K",
d2L(x, k, ix) is an approximate Hessian of L(., A.*, fj,*) at x. If the set-valued map
d2L(-, A.*, (i*) is locally bounded at a and regular at a with respect to B(C(k*), a)
then

(VM 6 B(C(k*), a)) (3M € 3,2L(a, A.*, /**)) (Mu, u) > 0. (3.3)

PROOF. Let u € B(C(k*), a). Then there exist sequences tk I 0 and «t -> «as
A: —> oo such that, for every k, a + tkuk € C(k*). So

tkuk,k*,n*) =f(a + tkuk).

Now it follows from the generalized Taylor's expansion (Theorem 2.2) that

Lift + tkuk, k*, n') < L(a, k*, ii*) + tk{VL(a, k*, /t*), uk) + -±(Nkuk, uk),

where Nk e 9^L(a + tkuk, A.*, fj.*) and 0 < tk < tk. Noting that a is a local minimum
of (P), we get

L(a,X*,n*)=f{a),
VL(a,k*,/x*) = 0,

f(a + tkuk) >f(ft),

for sufficiently large k. Thus for sufficiently large k, (Nkuk, uk) > 0. Since the set-
valued map dlf is locally bounded at a, the sequence Nk is bounded. Hence this
sequence has a subsequence, again denoted by Nk which converges to a matrix Af. As
it —>• oo, the sequence a + tkuk —*• a. Then it follows that

(Nu,u)= lim(Nkuk,uk)>0.
k-*oo
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Hence

limsup (A'u, «') > {Nu, u) > 0,
A'eal/bi+iu')

«' — «. HO

and so by the regularity assumption we get that maxA682/(a)(/4M, u) > 0.

COROLLARY 3.2. Assume that the problem (P) attains a local minimum at a. Sup-
pose that the Kuhn-Tucker conditions are satisfied at a by k* and /x*. IfL (., k*, yx*) ad-
mits an approximate Hessian 3^ L (a, A., fx)ata and if the set-valued map 3 * L (•, A.*, (i*)
is upper semi-continuous at a then

(VII € B(C{k*), a)) (3M € d2
tL(a, k*, /x*)) (Mu, u) > 0. (3.4)

PROOF. The conclusion follows from Theorem 3.2 and Lemma 3.1.

COROLLARY 3.3. Assume that the functions f, g, and hj.for each i, j in problem
(P) are C11 and that the problem (P) attains a local minimum at a. If a first-
order constraint qualification holds at a then there exist k* > 0, k*gt(a) = 0, for
i = 1,2, ..,p, ft* 6 IR«, VL(a, k*, n*) = 0and

(VII 6 B(C(k*), a)) (3Af € d2
HL(a, k\ /x*)) {Mu, u) > 0. (3.5)

PROOF. Choose 3^L(a, k*, n*) as the approximate Hessian of L(-, A.*, /x*) at a.
The result then follows from Theorem 3.2 since the map d2

HL(-, A.*, fi*) is upper
semi-continuous at a.

The following example shows that Theorem 3.2 provides sharper optimality con-
ditions than the conditions of Corollary 3.3 (see [5]).

EXAMPLE 3.2. Consider the problem

subject to*! > 0, x2 > 0,
/

X

h(t)dt + —
2

where/ (,xi,x2) = f^l{ h(t)dt + ?f, g,(xux2) = xx, g2(xux2) = x2 and h is given as
in Example 3.1. Then/ is a C1 ' function. The point (0, 0) is a minimum point of the
problem. The Kuhn-Tucker conditions are satisfied at (0, 0) by A.* = {k\, A.p = (0, 0)
and condition (3.3) is verified by the matrix

) d*L((0> 0 ) - r } = d*f ( ( 0 - 0 ) ) c d"

for each ( « , , u2) e B(C(k*), ( 0 , 0 ) ) = {(*, , x2) e E 2 U , > 0 , ^ > 0 } .
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It is known that under a second-order constraint qualification (see [3]) the necessary
optimality conditions in Theorem 3.2 and Corollary 3.2 can be expressed in terms of
the gradients of the functions g, and h-t. A second-order constraint qualification such
as the linear independence condition that the vectors

Vgl{fl), i € I(a), Vhj(a), j = 1, 2 , . . . , q

ait linear independent guarantees that u e B(C(k*), a) if and only if (Vg,(a), u) = 0
for i such that k* > 0, (Vg,(a), u) < 0 for i such that A.* = 0 and g,(a) = 0 and
{Vhj (a), u) = 0 for j = 1, 2 , . . . , q. Here / (a) = [i : g,(a) = 0).

4. Second-order sufficient conditions

In this section, we present sufficient optimality conditions in terms of approximate
Hessian for a feasible point to be a local minimum of (P).
Let J = {i € I (a) : A., > 0} and let Bn = {y € R" : ||y|| = 1}. Define

Y = [y € Bn : y T V g i ( a ) = 0 , i e / , y T V h j ( a ) = 0 , j = 1 , 2 , . . . , q )

and for e > 0 and S > 0 define

Z(e,5) = {M € Bn : \\u-y\\ <e, for some y e Y,
and a + &(u)u € C, for some 0 < 8(u) < 8}.

THEOREM 4.1. Let a be a feasible point for (P). Suppose that the Kuhn-Tucker
conditions are satisfied at a by k* and /x*. Assume that for each x in a neighbourhood
of a, d^L{x, A.*, ix*) is an approximate Hessian of L(., A,*, n*) at a. If there exist
€ > 0 and 8 > 0 such that for each u e Z(e, 8) and for each 0 < a < 1,

VM € dlL(a + au,k*,n*) (Mu,u)>0

then a is a local minimum of(P).

PROOF. If a is not a local minimum, then there exists {xk} such that** is feasible
for (P), xk -> a as k -*• +00, and / (xk) < f (a) for each k.

Let** = a+8kuk, where ||wt|| = 1, 8k > 0, <$* -> 0asfc-> +00. Since ||u*|| = 1,
the sequence [uk] has a convergence subsequence. Without loss of generality, we
assume that uk -*• y as k -»• +00, with ||>>|| = 1.

By the Mean-Value Theorem, we have

0 > / (**) - / (a) = <5*«[V/ (a + !»««*«*), 0 < i;« < 1,

0 > gi(xk) - gi(a) = 8ku
T

kVgi(a + r)ik8kuk), 0<r)ik<\, Vi € I (a),

0 = hj (xk) - hj (a) = St«t
rV/i, (a + ^-t«4iit), 0 < £Jk < I, Vj =1,... ,q.
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Dividing the above inequalities and the equality by Sk and taking limits as k ->• +oo,
we obtain

yTVf(a) < 0, yTVgi(a) < 0, Vi € I (a), yTVhj(a) = 0, Wj.

Suppose that >>rVg,(a) < 0, for at least one / e J. Then we get

0 > yrV/(a) = - J2k*yTS7SiW -Y,lx]yTVhj(a) > 0.

This is a contradiction. Thus >> rVg,(a) = 0, for all i € J, or J = (p. Then y e Y.
Since the Kuhn-Tucker conditions are satisfied at a by A.*, //.*, we have

A.*>0, k*gi(a)=0, i = l , . . . , p, (4.1)

VL(fl, k*, n*) = V/ (a)

It follows from the inequality / (a) > / (x*), (4.1), (4.2) and the Taylor's expansion
for L(x, A.*, /A*) at a (Theorem 2.2) that

16/(a) ) =

J2 Kg*") + E
16/(a) ;=1

(a)

r min (MkSkuk, Skuk)
2 Mk€codlHa+ek&kut, X'.fi')

-S2
k m i n {Mkuk, uk)

2 M d l U 6 i k ' ' )

= f{a)+l-82
k(M°kuk,uk)

for some M° € 3#
2L(a + 0k8kuk, A.*, /x*) and 0 < 0k < 1.

Hence for any &

0 > (M°uk, uk).
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By construction, \\uk\\ = 1, uk -> y 6 Y, Sk -> 0 as k -> +oo, 0 < 0*<5* < 1 when
k is large and a + Skuk is feasible for every k. Hence for k large, uk e Z(e, 5) and by
assumption

(M°kuk, uk) > 0.

This is a contradiction to (*). Thus a is a local minimum of (P).

THEOREM 4.2. Let a be a feasible point for (P). Suppose that the Kuhn-Tucker
conditions are satisfied at a by k* and /x*. Assume that for each x in a neighbourhood
of a, d}L(x, A.*, fi*) is an approximate Hessian of L(., A.*, //*) at a. If there exist
e > 0 and S > 0 such that for each u e Z(e, S) and for each 0 < a < 1,

VM edlL(a + au,k*,n*) (M«, «) > 0

then a is a strict local minimum of(P).

PROOF. The proof is only a slight modification of that of Theorem 4.1 and so is
omitted.

In this section we have shown how the descriptions of second-order sufficient con-
ditions in terms of generalized Hessian matrices can be improved and sharpened using
approximate Hessian matrices. In [16], second-order sufficient conditions for C11

problems were given in terms of a generalized second-order directional derivatives.
However, this directional derivative does not appear to have a matrix representation of
the form (2.1) which allowed us to directly compare the corresponding results in [5].
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