A \boldsymbol{C}^{∞} Denjoy counterexample

GLEN RICHARD HALL
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

(Received 18 May 1981)

Abstract

In this paper we construct an example of a homeomorphism of the circle onto itself which is C^{∞}, has no periodic points and no dense orbits. Moreover, the homeomorphism will have no more than two points of zero derivative. We alter this example to form a C^{∞} map of an interval to itself which has homtervals.

Introduction

Let \mathbb{T} denote the smooth manifold \mathbb{R} / \mathbb{Z}, the circle with unit circumference and, for any $\rho \in \mathbb{R}$, let $r_{\rho}: \mathbb{T} \rightarrow \mathbb{T}$ be the map given by

$$
r_{\rho}(\theta+\mathbb{Z})=(\theta+\rho)+\mathbb{Z}
$$

A theorem of Denjoy [2] says that if $f: \mathbb{T} \rightarrow \mathbb{T}$ is a C^{1} diffeomorphism, f has irrational rotation number ρ and the derivative of f has bounded variation, then f is conjugate to r_{ρ}, i.e. there exists a homeomorphism $h: \mathbb{T} \rightarrow \mathbb{T}$ such $f \circ h=h \circ r_{\rho}$. In fact, Denjoy showed that if f satisfies the hypotheses above then f has a dense orbit and it follows easily from this that f is conjugate to r_{ρ}. Poincare showed that a homeomorphism $f: \mathbb{T} \rightarrow \mathbb{T}$ has a periodic orbit if and only if it has a rational rotation number. With the theorem of Denjoy this implies that every C^{1} diffeomorphism $f: \mathbb{T} \rightarrow \mathbb{J}$ whose derivative has bounded variation either has a periodic orbit or every orbit is dense, depending on whether the rotation number is rational or irrational respectively. Denjoy [2] (see [3], [5]) constructed examples of C^{1} diffeomorphisms $f: \mathbb{T} \rightarrow \mathbb{T}$ with arbitrary irrational rotation number which have no dense orbits. Katok (see [4]) has constructed homeomorphisms $f: \mathbb{T} \rightarrow \mathbb{T}$ with arbitrary irrational rotation number which have no dense orbits and which are C^{∞} diffeomorphisms away from one point of \mathbb{T}.

In this paper we show that there exist homeomorphisms $f: \mathbb{J} \rightarrow \mathbb{T}$ with arbitrary irrational rotation number which are C^{∞} on all of \mathbb{T} and which have no dense orbits. Moreover, the derivative of f will be zero at no more than two points of \mathbb{T}. Following the method of Coven \& Nitecki [1], we show that such a map of \mathbb{T} may be modified to form a C^{∞} map of an interval to itself which has homtervals, partially answering a question of Nitecki [6].

This problem was suggested to the author by Richard McGehee for whose assistance throughout the author is most grateful. Also I wish to thank Michel

Herman and the referee for correcting an error in lemma 7 and for suggestions simplifying the presentation of this paper.

Notations and definitions

Let λ denote Haar measure on $\mathbb{T}=\mathbb{R} / \mathbb{Z}$. For any $\rho \in \mathbb{R}$ the map $r_{\rho}: \mathbb{T} \rightarrow \mathbb{I}$ defined by

$$
r_{\rho}(\theta+\mathbb{Z})=(\theta+\rho)+\mathbb{Z}
$$

will be called rigid rotation by ρ. Let $\eta: \mathbb{R} \rightarrow \mathbb{Z}$ be the natural covering map

$$
\eta(\theta)=\theta+\mathbb{Z}
$$

Then any continuous map $f: \mathbb{T} \rightarrow \mathbb{T}$ has a unique lift $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $F(0) \in[0,1)$ and

$$
\eta \circ F=f \circ \eta
$$

We shall always denote maps on \mathbb{T} with small Latin letters and the corresponding lift with the corresponding capital letter. Given $f: \mathbb{T} \rightarrow \mathbb{T}$, the lift $F: \mathbb{R} \rightarrow \mathbb{R}$ will have the same continuity and differentiability properties as f. The nth iterate of a map $f: \mathbb{T} \rightarrow \mathbb{T}$ or $F: \mathbb{R} \rightarrow \mathbb{R}$ will be denoted by f^{n} or F^{n} respectively, i.e.

$$
f^{n}=f \circ f^{n-1} \quad \text { and } \quad F^{n}=F \circ F^{n-1}
$$

Definition. For $F: \mathbb{R} \rightarrow \mathbb{R}$ a j-times differentiable map we define

$$
\|F\|_{C^{i}}=\sup _{\substack{x \in \mathbb{R} \\ 1 \leq i \leq j}}\left|\frac{d^{i} F}{d x^{i}}(x)\right|+\sup _{x \in \mathbb{R}}|F(x)| .
$$

Definition. For $f: \mathbb{T} \rightarrow \mathbb{T}$ continuous, we say that f is degree one if for all $x \in \mathbb{R}$, $F(x+1)=F(x)+1$.
Definition. A map $f: \mathbb{T} \rightarrow \mathbb{T}$ will be called non-decreasing if, for all $x, y \in \mathbb{R}$,

$$
x \leq y \quad \text { implies } \quad F(x) \leq F(y)
$$

Some lemmas

The following lemmas will be needed.
Lemma 1. If $f: \mathbb{T} \rightarrow \mathbb{T}$ is a continuous, non-decreasing, degree one map then

$$
\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{n}
$$

exists for every $x \in \mathbb{R}$ and is independent of x.
Remark. This limit is called the rotation number of f and will be denoted rot (f). Recall that we require that F satisfy $F(0) \in[0,1)$. If we were to drop this condition on the lift of f then only the fractional part of the rotation number would be independent of the choice of the lift.

Lemma 2. If $f_{n}: \mathbb{T} \rightarrow \mathbb{T}$ are continuous, non-decreasing, degree one maps for $n=$ $0,1,2, \ldots$ and if $f_{n} \rightarrow f_{0}$ uniformly then

$$
\operatorname{rot}\left(f_{n}\right) \rightarrow \operatorname{rot}\left(f_{0}\right)
$$

Lemma 3. If $f, g: \mathbb{T} \rightarrow \mathbb{T}$ are continuous, non-decreasing, degree one maps and if there exists $\varepsilon>0$ such that for all $x \in \mathbb{R}$

$$
G(x) \geq F(x)+\varepsilon
$$

then $\operatorname{rot}(\mathrm{g}) \geq \operatorname{rot}(f)$. Moreover, if rot (f) or $\operatorname{rot}(g)$ is irrational then $\operatorname{rot}(g)>\operatorname{rot}(f)$. The proofs of these three lemmas are only slight modifications of results for homeomorphisms of \mathbb{T} which may be found in [3] (II 2.3, II 2.7 and III 4.1.1 respectively).

Main theorem

We can now state the main result of this paper.
Theorem 1. For any irrational $\rho \in[0,1)$ there exists a homeomorphism $f: \mathbb{T} \rightarrow \mathbb{T}$ such that $\operatorname{rot}(f)=\rho, f$ is C^{∞} and f has no dense orbits.

More specifically, we prove the following theorem which clearly implies theorem 1.
Theorem 2. For any irrational $\rho \in[0,1)$ there exists a homeomorphism $f: \mathbb{T} \rightarrow \mathbb{T}$ such that $\operatorname{rot}(f)=\rho, f$ is C^{∞}, f has no dense orbits and $F: \mathbb{R} \rightarrow \mathbb{R}$ has at most two points of zero derivative in $[0,1)$.

We shall proceed by proving four easy but technical lemmas.
Lemma 4. If $: \mathbb{T} \rightarrow \mathbb{T}$ is a continuous, non-decreasing, degree one map with irrational rotation number $\rho \in[0,1)$ then the following are equivalent:
(i) f has no dense orbits;
(ii) there exists a non-empty interval $I \subset \mathbb{T}$ and $\theta \in \mathbb{U}$ such that $f^{n}(\theta) \notin I$ for all $n>0$;
(iii) there exists an interval $I \subset \mathbb{T}$ such that $\lambda(I)>0$ and $\lambda\left(f^{n}(I)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. As we noted in the introduction, f will be conjugate to rigid rotation by its irrational rotation number ρ if and only if f has a dense orbit. Hence f has one dense orbit if and only if all its orbits are dense. So (i) \leftrightarrow (iii) is clear.

One can easily show that there exists a continuous, non-decreasing map $h: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
h \circ f=r_{\rho} \circ h,
$$

i.e. f is semi-conjugate to rigid rotation by ρ (see [3], II 7.1). Then h is injective if and only if f has dense orbits, while if h is not injective then there is a non-trivial interval $I \subset \mathbb{T}$ such that $h(I)$ is a singleton. It follows easily that $\left\{f^{n}(I)\right\}_{n \geqslant 0}$ is a disjoint family of intervals. Hence we have (i) \leftrightarrow (iii) and the proof of the lemma is complete.

Lemma 5. Suppose $f: \mathbb{T} \rightarrow \mathbb{T}$ is a C^{∞}, non-decreasing, degree one map with irrational rotation number $\rho \in[0,1)$. Suppose there exist $c, d \in \mathbb{R}$ such that $\frac{1}{2} \leq c \leq d \leq \frac{3}{4}$ and $d F(x) / d x=0$ if and only if $\eta(x) \in \eta([c, d])$. Then for an arbitrary positive integer n and $\varepsilon>0$ with $\frac{1}{8}(d-c)>\varepsilon$, for any $\delta>0$ there exists a C^{∞}, non-decreasing, degree one map $g: \mathbb{T} \rightarrow \mathbb{T}$ depending on n, δ and ε which satisfies:
(i) $\|G-F\|_{C^{n}}<\delta$;
(ii) $|d G(x) / d x-d F(x) / d x|<\delta d F(x) / d x$ for all x such that

$$
\eta(x) \notin \eta\left(\left(c-\frac{1}{4}(d-c), d+\frac{1}{4}(d-c)\right)\right) ;
$$

(iii) $\operatorname{rot}(g)=\rho$;
(iv) $d G(x) / d x=0$ if and only if

$$
\eta(x) \in \eta\left(\left[c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right]\right) \cup \eta\left(\left[c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right]\right)
$$

Proof. To define a map $g: \mathbb{T} \rightarrow \mathbb{J}$ we shall first define a map $\tilde{G}:[0,1) \rightarrow \mathbb{R}$ such that

$$
\tilde{G} \geq 0 \quad \text { and } \quad \int_{0}^{1} \tilde{G}(x) d x=1
$$

Next we extend \tilde{G} to a periodic map $\tilde{G}: \mathbb{R} \rightarrow \mathbb{R}$ with period one. For any $a \in \mathbb{R}$, if we define

$$
G_{a}(x)=\int_{0}^{x} \tilde{G}(y) d y+a,
$$

then G_{a} is the lift of a unique non-decreasing, degree one map $g_{a}: \mathbb{T} \rightarrow \mathbb{T}$. Moreover, if $\tilde{G}: \mathbb{R} \rightarrow \mathbb{R}$ is C^{∞} then so is g_{a}.

Fix a positive integer n and real numbers $\varepsilon, \delta>0$. Without loss of generality we may assume $\delta<\frac{1}{2}$. Since

$$
\frac{d F}{d x}(x)>0 \quad \text { for all } x \in\left[\frac{1}{16}, \frac{3}{16}\right]
$$

there exists $\zeta>0$ such that

$$
\frac{d F}{d x}(x)>\zeta \quad \text { for all } x \in\left[\frac{1}{16}, \frac{3}{16}\right]
$$

Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{∞} bump function with support in $\left[-\frac{1}{2} \varepsilon, \frac{1}{2} \varepsilon\right]$ such that $\|\phi\|_{C^{n}}<\frac{1}{4} \delta$, $\phi(x)>0$ for all $x \in\left(-\frac{1}{2} \varepsilon, \frac{1}{2} \varepsilon\right)$ and $\phi(x)<\delta \zeta$ for all $x \in \mathbb{R}$. Let

$$
\dot{G}(x)=\frac{d F}{d x}(x)+\phi\left(x-\left(c+\frac{1}{2}(d-c)\right)\right)-\phi\left(x-\frac{1}{8}\right)
$$

for all $x \in[0,1)$. Note that $\dot{G} \geq 0$ and

$$
\begin{aligned}
\int_{0}^{1} G(x) d x & =\int_{0}^{1} \frac{d F}{d x}(x) d x+\int_{0}^{1} \phi\left(x-\left(c+\frac{1}{2}(d-c)\right)\right) d x-\int_{0}^{1} \phi\left(x-\frac{1}{8}\right) d x \\
& =1
\end{aligned}
$$

Moreover, since $\phi\left(x-\left(c+\frac{1}{2}(d-c)\right)\right.$) and $\phi\left(x-\frac{1}{8}\right)$ are both zero in neighbourhoods of zero and one it follows that, if we extend \tilde{G} to a periodic map $\tilde{G}: \mathbb{R} \rightarrow \mathbb{R}$ with period one, then this map is C^{∞} on \mathbb{R}. For each $a \in \mathbb{R}$ define

$$
G_{a}(x)=\int_{0}^{x} \tilde{G}(y) d y+F(0)+a .
$$

For each $a \in \mathbb{R}, G_{a}$ is the lift of a unique C^{∞}, non-decreasing, degree one map $g_{a}: \mathbb{T} \rightarrow \mathbb{T}$. By lemma 2 we may fix a^{\prime} such that the map $g=g_{a^{\prime}}$ has rotation number ρ. Noting that

$$
\left|\int_{0}^{x} \tilde{G}(y) d y+F(0)-F(x)\right|<2 \int_{-\varepsilon}^{\varepsilon} \phi(x) d x<\frac{1}{2} \delta,
$$

we see by lemma 3 that $\left|a^{\prime}\right|<\frac{1}{2} \delta$. Hence it is clear that g satisfies (i), (iii) and (iv). Finally, since

$$
\sup _{x \in[0,1 / 4)}\left|\dot{G}(x)-\frac{d F}{d x}(x)\right| \leq \sup _{x \in[-\varepsilon, \varepsilon]}(\phi(x)) \leq \zeta \delta
$$

we see that (ii) is also satisfied by g and the proof of the lemma is complete.
Lemma 6. Suppose $g: \mathbb{T} \rightarrow \mathbb{T}$ is a C^{∞}, non-decreasing, degree one map with irrational rotation number $\rho \in[0,1)$. Suppose that for some $c, d, \varepsilon \in \mathbb{R}$ with $\frac{1}{2} \leq c \leq d \leq \frac{3}{4}$ and $\frac{1}{8}(d-c) \geq \varepsilon>0$ we have $d G(x) / d x=0$ if and only if

$$
\eta(x) \in \eta\left(\left[c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right]\right) \cup \eta\left(\left[c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right]\right)
$$

and suppose there exists a positive integer r such that

$$
g^{r}(\eta(d)) \in \eta\left(\left(c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right)\right)
$$

Then for arbitrary $n \in \mathbb{Z}^{+}$and $\delta>0$ there exists a C^{∞}, non-decreasing, degree one map $h: \mathbb{T} \rightarrow \mathbb{T}$ depending on n, δ and ε which satisfies
(i) $\|H-G\|_{C^{n}}<\delta$;
(ii) $|d H(x) / d x-d G(x) / d x|<\delta d G(x) / d x$ for all $x \in \mathbb{R}$ such that

$$
\eta(x) \notin \eta\left(\left(c-\frac{1}{4}(d-c), d+\frac{1}{4}(d-c)\right)\right) ;
$$

(iii) $\operatorname{rot}(h)=\rho$;
(iv) $d H(x) / d x=0$ if and only if

$$
\eta(x) \in \eta\left(\left[c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right]\right) ;
$$

(v) $h^{r}\left(\eta\left(\left[c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right]\right)\right) \subset \eta\left(\left(c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right)\right)$.

Proof. We define $h: \mathbb{T} \rightarrow \mathbb{T}$ by the same procedure as in the proof of lemma 5, i.e. we define the derivative of its lift on [0,1). Fix a positive integer n and a real number $\delta>0$. Without loss of generality we may assume $\delta<\frac{1}{2}$. Let $\zeta>0$ be such that

$$
\frac{d G}{d x}(x)>\zeta \quad \text { for all } x \in\left[0, \frac{1}{4}\right] .
$$

Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{∞} bump function with support in $\left[c+\frac{1}{2}(d-c), d+\frac{1}{2} \varepsilon\right]$ such that

$$
\|\psi\|_{C^{n}}<\frac{1}{4} \delta, \quad \psi(x)>0 \quad \text { for all } x \in\left(c+\frac{1}{2}(d-c), d+\frac{1}{2} \varepsilon\right)
$$

and

$$
\psi(x)<\delta \zeta \quad \text { for all } x \in \mathbb{R} .
$$

Then for each $\alpha, 0<\alpha<1$, define for all $x \in[0,1)$

$$
\tilde{H}_{\alpha}(x)=\frac{d G}{d x}(x)+\alpha \psi(x)-\alpha \psi\left(x-\left(c+\frac{1}{2}(d-c)\right)\right) .
$$

Since $\tilde{H}_{\alpha}>0, \int_{0}^{1} \tilde{H}_{\alpha}(x) d x=1$ and both $\psi(x)$ and $\psi\left(x-\left(c+\frac{1}{2}(d-c)\right)\right)$ are C^{∞} flat at zero and one we may proceed as in the proof of lemma 5 . First extend \tilde{H}_{α} to a C^{∞} periodic map $\tilde{H}_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ with period one. Then for each $\alpha, 0<\alpha<1$, we know by lemma 2 that there exists $\Delta(\alpha) \in \mathbb{R}$ such that the map $h_{\alpha}: \mathbb{T} \rightarrow \mathbb{T}$ whose lift is given by

$$
H_{\alpha}(x)=\int_{0}^{x} \tilde{H}_{\alpha}(y) d y+G(0)+\Delta(\alpha)
$$

has rotation number ρ. As in lemma $5, h_{\alpha}$ will satisfy (i)-(iv) for each $\alpha, 0<\alpha<1$. Moreover, since

$$
g^{\prime}(\eta(d))=g^{r}\left(\eta\left(\left[c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right]\right)\right)
$$

is a single point and $h^{r} \rightarrow g^{r}$ as $\alpha \rightarrow 0$ we may choose $\alpha^{\prime}, 0<\alpha^{\prime}<1$, so small that

$$
h_{\alpha^{\prime}}^{r}\left(\eta\left(\left[c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right]\right)\right) \subset \eta\left(\left(c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right)\right) .
$$

Hence $h_{\alpha^{\prime}}$ is the required map and the proof of the lemma is complete.
Remark. If in lemma 6 we replace the condition

$$
g^{r}(\eta(d)) \in \eta\left(\left(c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right)\right)
$$

with

$$
\left.g^{r}(\eta(c)) \in \eta\left(c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right)\right)
$$

and the conclusions (iv) and (v) with
(iv') $d H(x) / d x=0$ if and only if $\eta(x) \in \eta\left(\left[c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right]\right)$,
$\left(\mathrm{v}^{\prime}\right) h^{r}\left(\boldsymbol{\eta}\left(\left[c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right]\right)\right) \subset \boldsymbol{\eta}\left(\left(c+\frac{1}{2}(\boldsymbol{d}-c)+\frac{1}{2} \varepsilon, d\right)\right)$,
then we obtain another lemma which we will call lemma 6^{\prime}. The proof of lemma 6^{\prime} is, of course, almost the same as the proof of lemma 6.
Lemma 7. Suppose $g: \mathbb{T} \rightarrow \mathbb{T}$ is a C^{∞}, non-decreasing, degree one map with irrational rotation number $\rho \in[0,1)$. Suppose for some $c, d, \varepsilon \in \mathbb{R}$ with $\frac{1}{2} \leq c \leq d \leq \frac{3}{4}$ and $\frac{1}{8}(d-c)>\varepsilon>0$ we have that $d G(x) / d x=0$ if and only if

$$
\eta(x) \in \eta\left(\left[c, c+\frac{1}{2}(d-c)-\frac{1}{2} \varepsilon\right]\right) \cup \eta\left(\left[c+\frac{1}{2}(d-c)+\frac{1}{2} \varepsilon, d\right]\right) .
$$

Finally, suppose that for all integers $i>0$,

$$
g^{i}(\eta(d)) \notin \eta((c, d)) .
$$

Then there exists a homeomorphism $h: \mathbb{T} \rightarrow \mathbb{T}$ which is C^{∞}, has rotation number ρ and for all $i>0$,

$$
h^{i}(\eta(d)) \notin \eta((c, d))
$$

Moreover, $d H / d x=0$ if and only if $\boldsymbol{\eta}(x)=\boldsymbol{\eta}(c)$ or $\eta(x)=\eta(d)$.
Proof. Let $\alpha=G(d)-G(c)$. Define

$$
\begin{gathered}
H_{1}:[c, d] \rightarrow[G(c), G(d)] \\
H_{1}(x)=G(c)+\frac{\alpha \int_{c}^{x} \exp \left(-1 /(y-c)^{2}-1 /(y-d)^{2}\right) d y}{\int_{c}^{d} \exp \left(-1 /(y-c)^{2}-1 /(y-d)^{2}\right) d y}
\end{gathered}
$$

for all $x \in(c, d)$ and

$$
H_{1}(c)=G(c) \quad \text { and } \quad H_{1}(d)=G(d)
$$

Then

$$
\frac{d^{n} H_{1}}{d x^{n}}(c)=0=\frac{d^{n} G}{d x^{n}}(c), \quad \frac{d^{n} H_{1}}{d x^{n}}(d)=0=\frac{d^{n} G}{d x^{n}}(d) \quad \text { for all } n>0
$$

and

$$
\frac{d H_{1}}{d x}(x)>0 \quad \text { for all } x \in(c, d)
$$

Define $H: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H(x)= \begin{cases}G(x) & \text { if } \eta(x) \notin \eta((c, d)), \\ H_{1}(x-[x])+[x] & \text { if } \eta(x) \in \eta((c, d)),\end{cases}
$$

where [\cdot] denotes the greatest integer function. Then $H: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{∞} map with $d H(x) / d x \geq 0$ for all $x \in \mathbb{R}$ and $d H(x) / d x=0$ if and only if $\eta(x)=\eta(c)$ or $\eta(x)=$ $\eta(d)$. Also,

$$
H(x+1)=H(x)+1
$$

for all $x \in \mathbb{R}$, so H is the lift of a unique homeomorphism $h: \mathbb{T} \rightarrow \mathbb{T}$ which is C^{∞} Since G and H differ only at points $x \in \mathbb{R}$ such that $\eta(x) \in \eta((c, d))$ and since

$$
g^{i}(\eta(d)) \notin \eta((c, d)) \quad \text { for all } i>0
$$

we see that

$$
G^{i}(d)=H^{i}(d)
$$

and hence

$$
g^{i}(\eta(d))=h^{i}(\eta(d)) \quad \text { for all } i>0
$$

Hence

$$
\operatorname{rot}(h)=\operatorname{rot}(g)=\rho
$$

and

$$
h^{i}(\eta(d)) \notin \eta((c, d)) \quad \text { for all } i>0 .
$$

So h is the required map and the proof of the lemma is complete.
Remark. Again we note that if in lemma 7 we replace the condition

$$
g^{i}(\eta(d)) \notin \eta((c, d))
$$

with

$$
g^{i}(\eta(c)) \notin \eta((c, d)) \quad \text { for all } i>0
$$

and the conclusion

$$
h^{i}(\eta(d)) \notin \boldsymbol{\eta}((c, d))
$$

with

$$
\left.h^{i}(\eta(c)) \notin \eta(c, d)\right) \quad \text { for all } i>0
$$

then we obtain another lemma whose proof is essentially the same as the proof above. We shall call this version lemma 7^{\prime}.

Proof of theorem 2. Fix an irrational $\rho \in[0,1)$ to serve as rotation number. Let $f_{1,0}: \mathbb{I} \rightarrow \mathbb{J}$ be a C^{∞}, non-decreasing, degree one map such that

$$
F_{1,0}(0)=0 \quad \text { and } \quad \frac{d F_{1,0}}{d x}(x)=0
$$

if and only if $\eta(x) \in \boldsymbol{\eta}\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right)$. Then for each $\Delta \in[0,1)$ let $f_{1, \Delta}: \mathbb{T} \rightarrow \mathbb{T}$ be the unique map whose lift is $F_{1,0}(x)+\Delta$. Lemma 2 implies that there exists a $\Delta^{\prime} \in[0,1)$ such that

$$
\operatorname{rot}\left(f_{1, \Delta^{\prime}}\right)=\rho
$$

Let $f_{1}=f_{1, \Delta^{\prime}}$ and let

$$
a=F_{1}^{-1}\left(\frac{5}{8}+\frac{1}{64}\right), \quad b=F_{1}^{-1}\left(\frac{3}{4}-\frac{1}{64}\right) .
$$

Suppose we have constructed maps

$$
f_{1}, \cdots, f_{n}: \mathbb{T} \rightarrow \mathbb{T},
$$

sequences

$$
\frac{1}{2}=c_{1}=c_{2}<c_{3}=c_{4}<\cdots c_{n}, \quad \frac{3}{4}=d_{1}>d_{2}=d_{3}>d_{4}=\cdots d_{n}
$$

and integers

$$
1=m_{1}<m_{2}<m_{3}<\cdots<m_{n}
$$

such that for $i=1,2, \ldots, n$ the following conditions are satisfied:
(1) f_{i} is C^{∞}, non-decreasing and degree one;
(2) $\operatorname{rot}\left(f_{i}\right)=\rho$;
(3) $d F_{i}(x) / d x=0$ if and only if $\eta(x) \in \eta\left(\left[c_{i}, d_{i}\right]\right)$;
(4) $0<d_{i}-c_{i} \leq 1 / 2^{i+1}$;
(5) $\left\|F_{i}-F_{i+1}\right\|_{C^{i}}<1 / 2^{i+1}$;
(6) $\left|d F_{i}(x) / d x-d F_{i+1}(x) / d x\right|<\left(1 / 2^{i+1}\right) d F_{i}(x) / d x$, whenever

$$
\eta(x) \notin \eta\left(\left(c_{i}-\frac{1}{4}\left(d_{i}-c_{i}\right), d_{i}+\frac{1}{4}\left(d_{i}-c_{i}\right)\right)\right) ;
$$

(7) $0<\lambda\left(f_{i}^{j}(\eta([a, b]))\right)<1 / 2^{k-1}$, whenever $m_{k-1} \leq j<m_{k}$ for $k=1,2, \ldots, i$;
(8) $f_{i}^{j}(\eta([a, b])) \cap \eta\left(\left[c_{i}, d_{i}\right]\right)=\varnothing$, whenever $0 \leq j<m_{i}$ and

$$
f_{i}^{m_{i}}(\eta([a, b])) \subset \begin{cases}\eta\left(\left(c_{i}+\frac{1}{2}\left(d_{i}-c_{i}\right), d_{i}\right)\right) & \text { if } i \text { is odd } \\ \eta\left(\left(c_{i}, c_{i}+\frac{1}{2}\left(d_{i}-c_{i}\right)\right)\right) & \text { if } i \text { is even. }\end{cases}
$$

We shall attempt to perturb the map f_{n} to form $f_{n+1}: \mathbb{T} \rightarrow \mathbb{T}$ so that (1)-(8) above are satisfied for $i=1,2, \ldots, n+1$. First, we shall assume that n is odd; the construction for n even is very similar and will be mentioned later.

Fix $\varepsilon>0$ so that

$$
f_{n}^{m_{n}}(\eta([a, b])) \subset \eta\left(\left(c_{n}+\frac{1}{2}\left(d_{n}-c_{n}\right)+\frac{1}{2} \varepsilon, d_{n}-\frac{1}{2} \varepsilon\right)\right) .
$$

By lemma 5 , for each $\delta>0$ there exists a C^{∞}, non-decreasing, degree one map $g_{\delta}: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\begin{gathered}
\left\|G_{\delta}-F_{n}\right\|_{C^{n}}<\delta / 2^{n+2} \\
\left|\frac{d G_{\delta}}{d x}(x)-\frac{d F_{n}}{d x}(x)\right|<\frac{1}{2^{n+4}} \frac{d F_{n}}{d x}(x)
\end{gathered}
$$

whenever $\eta(x) \notin \eta\left(\left(c_{n}-\frac{1}{4}\left(d_{n}-c_{n}\right), d_{n}+\frac{1}{4}\left(d_{n}-c_{n}\right)\right)\right)$,

$$
\operatorname{rot}\left(g_{\delta}\right)=\rho
$$

and

$$
\frac{d G_{\delta}}{d x}(x)=0
$$

if and only if

$$
\eta(x) \in \eta\left(\left[c_{n}, c_{n}+\frac{1}{2}\left(d_{n}-c_{n}\right)-\frac{1}{2} \varepsilon\right]\right) \cup \eta\left(\left[c_{n}+\frac{1}{2}\left(d_{n}-c_{n}\right)+\frac{1}{2} \varepsilon, d_{n}\right]\right) .
$$

Since $G_{\delta}^{i} \rightarrow F_{n}^{i}$ as $\delta \rightarrow 0$ uniformly for $i=1,2, \ldots, m_{n}$ we may fix $\delta^{\prime}, 1>\delta^{\prime}>0$, so small that for $g=g_{\delta^{\prime}}$

$$
\lambda\left(g^{i}(\eta([a, b]))\right)<1 / 2^{k-1} \quad \text { for } m_{k-1} \leq j<m_{k}, k=1,2, \ldots, n
$$

and

$$
g^{i}(\eta([a, b])) \cap \eta\left(\left[c_{n}, d_{n}\right]\right)=\varnothing \quad \text { for } 0 \leq j<m_{n} .
$$

Now we must consider the following two cases:
Case A. There exists $r>0$ such that $g^{r}\left(\eta\left(d_{n}\right)\right) \in \eta\left(\left(c_{n}, d_{n}\right)\right)$,
Case B. For all $r>0, g^{r}\left(\eta\left(d_{n}\right)\right) \notin \eta\left(\left(c_{n}, d_{n}\right)\right)$.
If g satisfies case A, then we shall be able to perturb it to form a suitable map f_{n+1}. If g satisfies case B then we shall be able to alter g to form the map required to complete the proof of the theorem.
Case A. We may assume that r is the smallest positive integer such that

$$
g^{r}\left(\eta\left(d_{n}\right)\right) \in \eta\left(\left(c_{n}, d_{n}\right)\right)
$$

Noting that

$$
f_{n}^{i}\left(\eta\left(d_{n}\right)\right) \notin \eta\left(\left[c_{n}, d_{n}\right]\right) \quad \text { for all } i>0
$$

and

$$
g_{\delta}^{i} \rightarrow f_{n}^{i} \quad \text { as } \delta \rightarrow 0
$$

uniformly for $0<i<r$, we may assume that

$$
g^{r}\left(\eta\left(d_{n}\right)\right) \in \eta\left(\left(c_{n}, c_{n}+\frac{1}{2}\left\{\frac{1}{2}\left(d_{n}-c_{n}\right)-\frac{1}{2} \varepsilon\right\}\right)\right)
$$

by taking δ^{\prime} in the definition of g above smaller if necessary.
By lemma 6 there exists for each $\sigma>0$ a C^{∞}, non-decreasing, degree one map $h_{\sigma}: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\begin{gathered}
\left\|H_{\sigma}-G\right\|_{C^{n+1}}<\sigma / 2^{n+2} \\
\operatorname{rot}\left(h_{\sigma}\right)=\rho \\
\left|\frac{d H_{\sigma}}{d x}(x)-\frac{d G}{d x}(x)\right|<\frac{1}{2^{n+4}} \frac{d G}{d x}(x) \text { for all } x \in \mathbb{R}
\end{gathered}
$$

such that

$$
\begin{gathered}
\eta(x) \in \eta\left(\left(c_{n}-\frac{1}{4}\left(d_{n}-c_{n}\right), d_{n}+\frac{1}{4}\left(d_{n}-c_{n}\right)\right)\right), \\
\frac{d H_{\sigma}}{d x}(x)=0 \quad \text { if and only if } \eta(x) \in \eta\left(\left(c_{n}, c_{n}+\frac{1}{2}\left(d_{n}-c_{n}\right)-\frac{1}{2} \varepsilon\right)\right)
\end{gathered}
$$

and

$$
h_{\sigma}^{r}\left(\eta\left(\left[c_{n}+\frac{1}{2}\left(d_{n}-c_{n}\right)+\frac{1}{2} \varepsilon\right]\right)\right) \subset \eta\left(\left(c_{n}, c_{n}+\frac{1}{4}\left(d_{n}-c_{n}\right)-\frac{1}{4} \varepsilon\right)\right)
$$

Since $h_{\sigma}^{i} \rightarrow g^{i}$ as $\sigma \rightarrow 0$ uniformly for $i=1,2, \ldots, m_{n}+r$ and since $g^{i}(\eta([a, b]))$ is a single point for $i>m_{n}$, we may fix $\sigma^{\prime}, 0<\sigma^{\prime}<1$, so small that if $h=h_{\sigma^{\prime}}$ then

$$
h^{i}(\eta([a, b])) \cap \eta\left(\left[c_{n}, c_{n}+\frac{1}{2}\left(d_{n}-c_{n}\right)-\frac{1}{2} \varepsilon\right]\right)=\varnothing \quad \text { for } 0 \leq i<m_{n}+r
$$

and

$$
\lambda\left(h^{i}(\eta([a, b]))\right)<1 / 2^{k-1}
$$

whenever $m_{k-1} \leq j<m_{k}$ for $k=1,2, \ldots, n$,

$$
\lambda\left(h^{j}(\eta([a, b]))\right)<1 / 2^{n}
$$

whenever $m_{n} \leq j<m_{n}+r$.
We define

$$
f_{n+1}=h, \quad c_{n+1}=c_{n}, \quad d_{n+1}=c_{n}+\frac{1}{2}\left(d_{n}-c_{n}\right)-\frac{1}{2} \varepsilon, \quad \text { and } \quad m_{n+1}=m_{n}+r
$$

With these choices, $f_{1}, f_{2}, \ldots, f_{n+1}$ satisfy (1)-(8) above.
Case B. By lemma 7 there exists a homeomorphism $h: \mathbb{T} \rightarrow \mathbb{T}$ which is C^{∞}, has rotation number ρ and which satisfies

$$
h^{i}\left(\eta\left(d_{n}\right)\right) \notin \eta\left(\left(c_{n}, d_{n}\right)\right) \quad \text { for all } i>0
$$

and

$$
\frac{d H}{d x}(x)=0 \quad \text { if and only if } \eta(x)=\eta\left(c_{n}\right) \text { or } \eta(x)=\eta\left(d_{n}\right) .
$$

So h satisfies condition (ii) of lemma 4 and hence h has no dense orbits.
Remark. If n is odd then we obtain two cases A^{\prime} and B^{\prime} depending on whether

$$
\left\{g^{i}\left(\eta\left(c_{n}\right)\right)\right\}_{i=1}^{\infty} \cap \eta\left(\left(c_{n}, d_{n}\right)\right)
$$

is empty or not, respectively. In case A^{\prime} we may use lemma 6^{\prime} to produce the map f_{n+1}. In case B^{\prime} we may use lemma 7^{\prime} to construct the map h which satisfies the same conditions as the map h in case B above.

To conclude the proof of theorem 2 we note that the above procedure either produces an infinite sequence of maps f_{1}, f_{2}, \ldots which satisfy (1)-(8) for all $n \geq 1$, or for some finite $n \geq 1$ we encounter case B (or B^{\prime}). In the former situation, by conditions 1,2 and 5 , the sequence f_{1}, f_{2}, \ldots converges to some map $f: \mathbb{T} \rightarrow \mathbb{T}$ which is C^{∞}, non-decreasing, degree one and has rotation number ρ. Moreover, if

$$
\tilde{c}=\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} d_{n}
$$

(the limits are equal by condition 4), then by conditions 3 and 6 we have

$$
\frac{d F}{d x}(x)=0 \quad \text { if and only if } \eta(x)=\eta(\tilde{c})
$$

Hence f is a homeomorphism of \mathbb{T} onto itself. Finally, by conditions 7 and 8 ,

$$
\lambda\left(f_{n}^{i}(\eta([a, b]))\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty
$$

uniformly in n, so

$$
\lambda\left(f^{i}(\eta([a, b]))\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty
$$

i.e. f satisfies condition (iii) of lemma 4. Hence f has no dense orbits and therefore f is the map whose existence is claimed by the theorem. Note that the lift of f has exactly one point of zero derivative in $[0,1)$.

We have already seen that if case B (or B^{\prime}) is encountered for some finite $n \geq 1$ then a homeomorphism $h: \mathbb{T} \rightarrow \mathbb{T}$ which is C^{∞}, has rotation number ρ and has no dense orbits may be constructed. Recall that the lift of h has exactly two points of zero derivative in $[0,1)$.

In either case the proof of theorem 2 is complete.

Application to maps of the interval

Let $I \subset \mathbb{R}$ be an interval and let $F: I \rightarrow I$ be a continuous map.
Definition. An interval $J \subset I$ will be called non-degenerate if J is not empty and not a singleton.
Definition. A homterval for $F: I \rightarrow I$ is a closed, non-degenerate interval $J \subset I$ which is not in the domain of attraction of any periodic orbit of F such that

$$
\left\{F^{n}(J): n \geq 0\right\}
$$

is a collection of disjoint, non-degenerate, closed intervals and $\left.F^{n}\right|_{J}$ is a homeomorphism for every $n>0$.

Coven \& Nitecki [1] have shown that the example of Denjoy of a C^{1} diffeomorphism $g: \mathbb{T} \rightarrow \mathbb{T}$ with no periodic points and no dense orbits can be modified to form a C^{1} map of an interval which has homtervals. Following their construction, we can modify a $C^{\infty} \operatorname{map} g: \mathbb{T} \rightarrow \pi$ which is a homeomorphism with irrational rotation number and no dense orbits given by theorem 1 above to form a C^{∞} map of an interval with homtervals, partially answering a question of Nitecki [5]. The construction proceeds as follows.

Fix an irrational $\rho \in[0,1)$ and let $h: \mathbb{T} \rightarrow \mathbb{T}$ be a homeomorphism with rotation number ρ which is C^{∞} and has no dense orbits. Let $\tilde{J} \subset \mathbb{T}$ be a closed connected interval with positive length satisfying

$$
h^{n}(\tilde{J}) \cap h^{m}(\tilde{J})=\varnothing \quad \text { for all } n, m \in \mathbb{Z}, n \neq m
$$

(any interval in the complement of an orbit will do). We may assume that $\tilde{J}=\eta(J)$ for an interval $J=[a, b] \subset(0,1)$. Let $H: \mathbb{R} \rightarrow \mathbb{R}$ be the lift of h with $H(0) \in[0,1)$, let

$$
\beta=H(a)+\frac{1}{2}(H(b)-H(a))
$$

and let $H_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be the lift of h with $H_{1}(0) \in[-1,0)$, so

$$
H_{1}(x)=H(x)-1 \quad \text { for all } x \in \mathbb{R} .
$$

Note that H is strictly increasing, so $H^{-1}(\beta) \in(a, b)$. Define

$$
\begin{gathered}
F_{1}:[\beta-1, \beta] \rightarrow[\beta-1, \beta] \\
F_{1}(x)= \begin{cases}H(x) & \text { if } H(x) \leq \beta, \\
H_{1}(x) & \text { otherwise } .\end{cases}
\end{gathered}
$$

Then F_{1} is a C^{∞} map away from the discontinuity at $H^{-1}(\beta) \in(a, b)$. By modifying F_{1} only on the interval J we can form a C^{∞} map

$$
F:[\beta-1, \beta] \rightarrow[\beta-1, \beta] .
$$

Moreover, if an interval J_{1} is chosen so that

$$
\eta\left(J_{1}\right)=h^{n}(\tilde{J}) \quad \text { for some } n>0
$$

so that

$$
\eta(\beta) \notin h^{i}\left(\eta\left(J_{1}\right)\right) \quad \text { for all } i>0
$$

(which may be guaranteed by taking n sufficiently large) then

$$
\left\{F^{i}\left(J_{1}\right): i>0\right\}
$$

is a collection of non-degenerate, closed intervals. Since for each $i \geq 0$ there exists $m, j \in \mathbb{Z}$ such that

$$
F^{i}\left(J_{1}\right)=H^{i}(J)-m
$$

it follows that J_{1} is a homterval for the map F and the construction is complete.

REFERENCES

[1] E. M. Coven \& Z. Nitecki. Non-wandering sets of the powers of maps of the interval. Ergod. Th. and Dynam. Sys. 1 (1981), 9-31.
[2] A. Denjoy. Sur les courbes definies par les equations differentialles à la surface de tore. J. de Math. Pure et Appliques, 7 (ser 9) (1932), 333-375.
[3] M. Herman. Sur la conjugaison differentiable des diffeomorphism du cercle à les rotation. I.H.E.S. Publ. Math. 49 (1979), 5-234.
[4] M. Herman. Notes on an example of A. B. Katok (handwritten notes).
[5] Z. Nitecki. Differentiable Dynamics. MIT Press: Cambridge, Mass., 1971.
[6] Z. Nitecki. Topological dynamics on the interval (preprint).

