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Abstract

Sulfur mustard (SM) is a threat to both civilian and military populations. Human skin is highly
sensitive to SM, causing delayed erythema, edema, and inflammatory cell infiltration, followed
by the appearance of large fluid-filled blisters. Skin wound repair is prolonged following
blistering, which can result in impaired barrier function. Key to understanding the action of
SM in the skin is the development of animal models that have a pathophysiology comparable
to humans such that quantitative assessments of therapeutic drugs efficacy can be assessed. Two
animal models, hairless guinea pigs and swine, are preferred to evaluate dermal products
because their skin is morphologically similar to human skin. In these animal models, SM
induces degradation of epidermal and dermal tissues but does not induce overt blistering, only
microblistering. Mechanisms of wound healing are distinct in these animal models. Whereas
a guinea pig heals by contraction, swine skin, like humans, heals by re-epithelialization. Mice,
rats, and rabbits are also used for SMmechanistic studies. However, healing is also mediated by
contraction; moreover, only microblistering is observed. Improvements in animal models
are essential for the development of therapeutics to mitigate toxicity resulting from dermal
exposure to SM.

Sulfur mustard (SM, bis 2-chloroethyl sulfide) is a potent skin vesicant synthesized for chemical
warfare. As a bifunctional alkylating agent, SM initiates its action by modifying and disrupting
cellular macromolecules, including DNA and proteins.1–5 Acute responses of skin to SM are
typically characterized by delayed onset erythema and intense itching, followed by the formation
of small fluid-filled vesicles; with time, these vesicles coalesce to form pendulous blisters.1,6,7 A
necrotic layer and ulceration can form on the affected skin surface following rupture of the
blisters. Responses of human skin to SM are multifactorial and depend on the dose and time
following exposure, as well as environmental conditions such as temperature and humidity.7,8

Location of exposure sites on the body, variations in skin properties, and underlying disease
states, along with age and sex, are all determinants of skin responses to SM.8

To understand themechanism of action of SM and developmedical countermeasure, various
animal models have been utilized, including mice, rats, guinea pigs, rabbits, and pigs.9–12

Unfortunately, there are no simple or common animal models for SM injury that produce true
blisters like humans. In this context, in describing early reporting on the use of human subjects
for mustard research in 1919, Sollman explained that “experiments on animals was [sic]
abandoned after a few trials, since their skin does not react in the same manner as human skin,
and the effects that do occur are not easily graded.”8 Blistering is not commonly observed in
animals.13,14 To produce true blistering, either unconventional species must be used, or
multistep procedures must be undertaken in common animal models.14 For example, it has been
reported that blisters can be produced on the skin of frogs, birds, and the inner ears of rabbits,15

on the skin of isolated perfused pig flaps,15,16 and on guinea pig skin that has been thermally
burned and allowed to re-epithelialize.16,17 Studies performed with SM on birds and frogs are
limiting as their skin is not similar to human skin. For this reason, SM research has relied on the
surrogate marker of microblistering or subepidermal blister formation at the dermal-epidermal
junction, which occurs in rodents, rabbits, and pigs.18–20 SM is known to damage not only
epidermal structures, including the basement membrane, but also stromal and vascular
components of the skin tissue.21–23

Translating SM data from animals to humans has been challenging not only because there is
little or no blistering, but also to additional factors such as distinct structural differences in the
tissue, unique aspects of the immune system, and mechanisms of wound healing. For example,
in mice, the skin and epidermis are thinner when compared to humans, there are fewer
epidermal cell layers, a lack of epidermal ridges and eccrine sweat glands, and limited adherence
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to underlying tissues.24 In humans and pigs, wounds close by
formation of granulation tissue followed by re-epithelialization24;
in contrast, wound closure in rodents and rabbits is primarily by
contraction, in part due to the presence of the panniculus
carnosus.25 At later stages, tissue remodeling during wound
healing occurs via fibroblast migration and myofibroblast
activity.26 It should be noted that contraction is usually defined
for incisional wounds27; the role of contraction in thermal and SM
injury is not clear since the extent of tissue damage may not allow
wound closure by the panniculus carnosus.

In rodent models, both haired and hairless strains have been
used; hairless animals are advantageous largely due to the ease of
visualizing a cutaneous response.28 Hair removal and associated
inflammation are avoided with these animals.29 However, it should
be noted that the skin of haired and hairless animal strains can be
morphologically different. For example, the epidermis of mice of
the most commonly used hairless strain, SKH1, is thicker than
haired strains.9 Haired and hairless strains are also genetically and
immunologically distinct, complicating efforts to compare results
from different laboratories.30 Little information is available on
differences in wound healing in response to chemical and thermal
injury in haired and hairless mouse strains.

In most animal models, different phases of SM injury can be
defined, including latency, erythema/inflammation, microblister-
ing, ulceration/eschar formation, and wound healing. The extent of
injury depends on several factors, including the model, location
and area of skin exposed to SM, as well as SM dose and methods of
administration and environmental conditions when applying SM.
Targeting one or more phases of injury is essential in the
development of effective countermeasures to mitigate SM toxicity.
Both clinical signs and morphological/biochemical parameters
have been used to characterize the action of SM in animal models.
Clinical signs are evident by visual inspection; at early times, this
includes erythema, edema and transepidermal water loss (TEWL),
and, at later times, extent of injury and whether injury is
superficial, intermediate in depth, or deep dermal injury.29 The
integrity of the dermal-epidermal junction, measured by dermal
torque, has been demonstrated in SM-treated guinea pigs.31 Laser
Doppler imaging has also been used to assess cutaneous blood flow
and ballistometry to evaluate mechanical properties of the skin,
including rigidity and elasticity in pig models.32,33

Techniques in histology, electron microscopy, and immuno-
histochemistry have been used to analyze structural alterations in
skin exposed to SM. These studies have largely focused on the
epidermis, basement membrane, and accessary structures,
including hair follicles and sebaceous glands. Early effects of
SM in basal cells of the epidermis, as reported in guinea pig skin
include nuclear condensation and mitochondrial swelling,
disorganization of desmosomes and hemidesmosomes, and
widening of intracellular spaces in the basal cell layer.19 At later
times, nuclear pyknosis, cell fragmentation, and necrosis
extending into suprabasal cells are evident.34 Markers of DNA
damage and apoptosis and necrosis also appear in epidermal
cells.35 Mediators of inflammation, including prostaglandins and
cytokines, are also expressed after SM-induced injury.11,22

Microvesicles appear in the lamina lucida of the basement
membrane as a consequence of degeneration of the basal
layer.36,37 Proteolysis of basement membrane components,
including laminins, collagens, and other anchoring proteins by
matrix metalloproteinases, contributes to the disruption of the
basal cell layer, microvesication, and ulceration.38,39 At later
times, in minipig skin, aberrant epidermal proliferation and

differentiation are associated with re-epithelialization including
hyperplasia, hyperkeratosis, and parakeratosis. This is thought to
contribute to prolonged wound healing.40,41

The dermis and hypodermis are also targets for SM. This is
important as the integrity of these tissues is critical for wound
healing.22,23,42,43 Leukocyte infiltration, a marker of inflammation,
has been observed in the dermis post-SM exposure in all
animals studied.19,44–46 In mouse and guinea pig skin, mast cell
degranulation is also evident, along with alterations in collagen
deposition.38,47,48 In pig skin, SM also disrupts the dermal
vasculature and subsequent blood flow, and responses can affect
tissue oxygenation, possibly leading to reperfusion injury.49,50

These pathologic responses can impair wound healing, lead to
infection, and initiate scarring.

Guinea Pig Skin Model of SM Toxicity

Both haired and hairless guinea pigs have been used to assess SM
toxicity with generally similar results (Table 1). Hairless guinea
pigs have been reported to be more sensitive to SM in terms of the
extent of dermal injury.51 These animals are also more sensitive to
SM-induced epidermal necrosis compared to other animal models,
including the weanling pig, mouse ear, and hairless mice.18 The
hairless guinea pig skin is considered morphologically more like
human skin,31,52 which has prompted greater use of these animals
to understand the mechanism of action of SM and for the
development of countermeasures.53

As indicated above, a characteristic early response of guinea pig
skin to SM is amarked inflammatory response, notably, infiltration
of neutrophils and macrophages into the tissue.54 Mustards cause
the release of inflammatory mediators, including reactive oxygen
and reactive nitrogen species, and cytokines such as TNFα and IL-
1α, which activate macrophages contributing to tissue injury.2,55

This is followed by the appearance of anti-inflammatory/wound
repair macrophages.56 That macrophages can contribute to wound
repair is evidenced by findings that intradermal injection of
activated humanmacrophages into SM-treated guinea pig skin can
significantly improve clinical signs of tissue damage.57

Of interest are studies by Graham et al.47 showing that SM
reduces mast cell numbers in hairless guinea pig skin, suggesting
that degranulation may be an early marker of toxicity. These
investigators hypothesized that histamine and other mediators
released by mast cells may play a role in SM-induced injury. These
data are in accord with studies by ours and other laboratories
demonstrating mast cell degranulation and reduced number of
mast cells in SM-exposed hairless mouse skin.38,48 The use of
antihistamine promethazine, in combination with the PARP
inhibitor niacinamide, and the non-steroidal anti-inflammatory
agent indomethacin in guinea pig skin, decreases mast cell
degranulation.58–60

Rat, Mouse, and Rabbit Models of SM Toxicity

In these models, exposure to SM is either by direct application of
liquid to the skin or as a vapor (Tables 2–5). Vapor exposures are
typically preferred since vapor is the more likely route of exposure
during a mass causality scenario. Depending on the dose
and environmental conditions, generally similar characteristic
responses are observed following treatment of the dorsal skin of
rats, mice, and rabbits with SM. Initially, there is a latency
period, which is followed by a cutaneous inflammatory response
characterized by erythema, edema, and leukocyte infiltration.
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Table 1. Effects of sulfur mustard on guinea pig skin

Animal Model Citations Strain/exposure route Measurements/treatments PMID #

Guinea
pig

Dorsal
skin

Vogt et al., 198419 Guinea pig/liquid Histopathology, TEM 6233199

Mershon et al., 199015; Braue et al.,
199720, 199817; Snider et al, 199931

Hairless guinea pig/vapor cap Draize test, histopathology, Nikosky’s signs 2258024
27333584
27332107
10594902

Cowan et al., 199394

Cowan & Broomfield, 199395
Hairless guinea pig/vapor cap Increased proteolytic activity, inflammation 8299005

8299000

Yourick et al., 199159, 199296, 199360,
199558

Hairless guinea pig/vapor cap Histopathology, erythema, NADþ/NADþ/
niacinamide, promethazine, indomethacin

1838996
1440603
8266337
7782559

Petrali et al., 199362, 199737; Kan
et al., 200334

Hairless guinea pig/vapor cap Histopathology, TEM, basement membrane,
basal cell apoptosis

8462065
9144634
12696578

Smith et al., 199552, 199718 Hairless guinea pig/vapor cap Histopathology 7593821
9039976

Kjellstrom et al., 199797 Haired guinea pig, continuous
flow vapor

Comparison of standard dressing vs surgical
excision vs surgical excision plus autografts

9140575

Logan et al., 199998 Hairless guinea pig/vapor cap PK/PD 10234473

Langenberg et al., 199899 Hairless guinea pig/liquid Toxicokinetics 10028407

Sawyer et al., 1999100, 2000101,
2008102; Mi et al., 2003103

Hairless guinea pig/vapor cap Draize test, pathology, apoptosis, p53/
hypothermia, L-NAME, dimercaptosuccinic
acid

10413186
10662607
14613718
18516227

Wormser et al., 1997104, 200228;
Brodsky et al., 2006105

Dunken Hartley and hairless
guinea pigs/ liquid, vapor cap

Comparative study, toxicokinetics,
histopathology/iodine

9049053
12242609
16252085

Dachir et al., 201077, 201222, 201457 Hairless guinea pig/vapor cap TEWL, PGE2, MMP-2/9, histopathology/
macrophages

20384890
23082902
24641113

Mishra et al., 2010106 Hairless guinea pig/vapor cap Immune sensitization, proliferation, cytokine
expression

19887117

Benson et al., 2011a107, 2011b108;
Weber et al., 201171

Hairless guinea pig/vapor cap PK/PD, histopathology, erythema, edema,
MMP-2/9, model development

21410818
21598172
21473735

Barillo et al., 201753 Hairless guinea pig/vapor cap Skin permeation studies/wound dressings 28846576

Table 2. Effects of sulfur mustard on rat skin

Animal Model Citations
Strain/exposure
route Measurements/treatments PMID #

Rat Dorsal
skin

Vojvodíc et al., 198574 Albino rats/liquid Survival time, weight loss, pathology/sodium thiosulfate, vitamin E,
heparin sulfate, dexamethasone, promethazine, atropine

4092884

Black et al., 1992109 Wistar rats/vapor SM metabolism, urine analysis/ thiodiglycol sulfoxide 1501468

Hambrook et al.,
1992110

Wistar rats/vapor
cap

SM metabolism 1615709

Kumar et al., 2002111 Wistar rats/liquid LD50/ amifostine,
DRDE-07

12269699

Vijayaraghavan et al.,
2005112

Wistar rats/liquid LD50, histopathology, DNA fragmentation 15629193

Kulkarni et al., 2006113 Wistar rats/liquid DNA fragmentation, histopathology/ DRDE-07 analogs 16421877

Karvaly et al., 2008114 Wistar rats/liquid SM degradation/barrier creams and ointments 17429799

Misik et al., 2013115 Wistar rats/liquid Decontamination protection, LD50/Argos™, Dermogel™, FloraFree™ 23078279

Pohanka et al., 201355 Wistar rats/liquid Antioxidant depletion in liver, kidney, muscle 22947058

Yue et al., 2014116,
2015117

Sprague-Dawley
rats/liquid

Metabolism, DNA adducts, histopathology, weight loss, bone marrow
micronucleus assay

24467472
25650027

Wang et al., 2015118 Sprague-Dawley
rats/liquid

Metabolism, DNA adducts 25955432

Steinritz et al., 2021119 Wistar rats/liquid SM creatine kinase B and DNA adducts 33635393
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Subsequently, there is microblister formation, tissue granulation,
epidermal necrosis, and, finally, wound repair and tissue
remodeling.15,61,62 More detailed information has been reported
on the effects of SM on hair follicles and sebaceous glands in the
mouse model.23,63 In hair follicles, SM induces epithelial cell
karyolysis within the hair root sheath, infundibulum, and isthmus
and reduces the numbers of sebocytes in sebaceous glands.64

Significant DNA damage and apoptosis are evident around
pilosebaceous units with increased numbers of inflammatory
cells surrounding utriculi. These findings may explain, at least in

part, depletion of hair follicles in human skin following exposure
to SM.

An important method that can partially overcome wound
contraction and the need for fur removal is the use of themouse ear
vesicant model (see Table 4). This method is largely based on
early studies showing that biological and biochemical processes
associated with inflammation can easily be measured following
exposure to cutaneous irritants or allergens.36,65–67 In this
model, SM is applied to the inner surface of the mouse ear,
which is largely free of hair. Ear cartilage appears to prevent

Table 3. Effects of sulfur mustard on mouse skin

Animal Models Citations Strain/exposure route Measurements/treatments PMID #

Mouse Dorsal
skin

Vijayaraghavan et al.,
1991120

Swiss mice/liquid Survival, body weight, lipid peroxidation/ flavonoids,
vitamin E, sodium thiosulfate

1926154

Smith et al., 199718 SKH1 hairless mice/liquid Histopathology 9039976

Rao et al., 199935 Swiss mice/liquid Systemic DNA damage 10614687

Blank et al., 2000121 SKH1 hairless mice /vapor cap Myeloperoxidase, inflammatory mediators 11428626

Ricketts et al., 2000122 SKH1 hairless mice /vapor cap Inflammatory mediators 11428647

Kumar et al., 2001123 Swiss mice/liquid Oxidative damage/ Trolox, quercetin, GSH 11248218

Anderson et al., 2002124 CD1 neonatal mice/vapor cap Histopathology 20597816

Kumar et al., 2002111

Kulkarni et al., 2006113

Vijayaraghaven et al.,
2005112

Swiss mice/liquid LD50, histopathology, DNA fragmentation/ amifostine,
DRDE-07 analogs

12269699
16421877
15629193

Sharma et al., 2010125 Swiss mice/liquid Mortality, hematology, GSH/GSSG, DNA fragmentation/
amifostine, NAC, melatonin, thiosulphate, DRDE-07

20466873

Vallet et al., 2012126 SKH-1 hairless mice/vapor cap Inflammatory mediators 21939433

Lomash et al., 2013127 Swiss albino mice/ liquid Histopathology, inflammatory-reparative biomarkers 22672652

Clery-Barraud et al.,
2013128

SKH-1 hairless mice/vapor cap TEWL, evaporimeter, cutometer, skin color change 22741598

Mouret et al., 201538

Sauvaigo et al.,
2016129,

Batal et al., 20134,
2015130

SKH-1 hairless mice/liquid TEWL, skin color change, histopathology, inflammatory
mediators, DNA repair enzymes, DNA, GSH adducts

25275893
26551547
24141030
25562541

Das et al., 2016131 C57BL6 mice/liquid Lethality, wound area, body weight, hematology, bone
marrow cellularity/ vitamin D

26940683

Joseph et al., 201163,
201464, 201623, 201848

SKH-1 hairless mice/vapor cup Wound healing, inflammatory markers/
anticholinergic prodrug

21672537
24662110
27371823
29127031

Table 4. Effects of sulfur mustard in the mouse ear vesicant model

Animal Model Citations
Strain/exposure
route Measurements/treatments PMID #

Mouse Mouse ear
vesicant model

Casillas et al.,200069,
Smith et al., 199718

CD1 mice/liquid Edema, histopathology, inflammatory meditators/Olvanil,
steroids, NSAIDs

11428628
9039976

Monteiro-Riviere et al.,
199936

CD1 mice/liquid Dermal edema, basement membrane proteins 10513676

Sabourin et al., 200070 CD1 mice/liquid Inflammatory mediators 11083082

Ricketts et al., 2000122 CD1 mice/liquid Inflammatory mediators 11428647

Powers et al., 200066 CD1 mice/liquid Serine and cysteine proteases, elastase, metalloproteases 11428632

Dachir et al., 200411 CD1 mice/liquid Histopathology, inflammatory mediators/ steroids, NSAIDs 15052605

Gerecke et al., 2009132 CD1 mice/liquid Microarrays/MMP2,
MMP9 inhibitors

18955075

Chang et al., 2018133,
2020a39, 2020b61

CD1 mice/liquid Inflammatory mediators, epidermal hyperplasia,
microblisters, laminin γ2 proteolytic fragments
/type IV collagenase inhibitor

29935281
32421930
32479919
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wound contraction.68 After a latency period, edema, measured
by changes in ear weight, epidermal necrosis, and epidermal-
dermal separation are assessed.65,69 Transmission electron
microscopy and immunohistochemistry have been used to
identify biomarkers of injury, as well as mechanisms of
subepidermal blister formation.36,70

In rabbits, dorsal and ventral skin and ear skin have been used
to investigate SM injury and the formation of microblisters.71–75 In
each exposure scenario, SM damage has been assessed visually by
monitoring erythema, wound healing, and histopathology.19,73,75,76

In the rabbit models, depending on the dose, SM damages the
superficial microvasculature as measured by Evans blue dye
extravasation and leakage of erythrocytes.19,77 SM also damages
fibroblasts, possibly disrupting the extracellular matrix. In contrast
to the dorsal and ventral skin, rabbit ears have no panniculus
carnosus; thus, wound contraction does not contribute to the
healing process.78 This model is thought to better reflect wound
healing in humans. However, in a continuous flow vapor exposure
model, rabbit ears have been reported to be significantly less
sensitive than human skin to SM injury.76

Pig Models of SM Toxicity

Pig skin is the most anatomically and physiologically similar to
human skin, compared to rodents and rabbits, making it a preferable
model for translational research (Tables 6 and 7). From a regulatory
standpoint, considerable background data are available on pig skin
related to the development of dermatological products, making this
model ideal for SM countermeasure research. Pig skin is tightly
attached to the subcutaneous connective tissue, contains a relatively
thick epidermis, distinct rete ridges and, like human skin, dense
elastic fibers in the dermis.79–81 Pig skin hair is coarser than human
hair but has a similar distribution.41,79,82 Although humans have
eccrine glands distributed throughout their skin, swine eccrine

glands are primarily found in the snout, lips, and carpal organ.80 In
the skin of both pigs and humans, re-epithelialization during
wound healing is associated with basal cell proliferation and
differentiation into enucleated granular cells that migrate outward
toward the surface of the skin.83 However, as with other animal
models, SM is unable to form true blisters, a characteristic sign of
toxicity in humans following vesicant exposure.6,7,84

Both dorsal and ventral skin models have been used to assess
SM toxicity in pig skin (see Tables 6 and 7). In general, the ventral
skin of pigs is thinner and more responsive to SM than dorsal
skin.85 The choice of dorsal versus ventral pig skin models is
dependent on the type of exposure (eg, liquid vs vapor cap) and the
type of injury being investigated (eg, superficial vs intermediate or
deep dermal). Both models can be used to assess pharmaceutical
preparations. However, dorsal skin is preferable with the use of
wound dressings that must be maintained for prolonged periods
of time (see further below). Both clinical and histopathological
endpoints are used to assess tissue damage. Clinical changes
include blood flow, elasticity, skin color, thickness, and spectral
properties.49,50 Histopathological changes include skin structure,
epithelial and basement membrane integrity, and expression of
markers of proliferation and differentiation of keratinocytes
during wound healing.40,86–88 Following these endpoints over time
will provide information on the wound healing process and the
effectiveness of potential countermeasures. Decontaminants,
protectants, anti-inflammatory agents, and wound dressing have
been evaluated for their ability to mitigate tissue damage induced
by SM, often with varying degrees of success.89

Based on pig skin models that have been developed to assess
medical countermeasures against SM-induced skin injury, one
product, Silverlon® Wound Contact, Burn Contact Dressings, has
been approved by the FDA.90 Manufactured as a non-adherent
knitted nylon fiber wound dressing coated with metallic silver,
Silverlon® is approved for use with decontaminated, unroofed first

Table 5. Effects of sulfur mustard on rabbit skin

Animal Model Citations Strain/exposure route Measurements/treatments PMID #

Rabbit Dorsal/
ventral skin

Vogt et al., 198419 Rabbit/liquid Histopathology, TEM/ hydrocortisone 6233199

Vojvodíc et al., 198574 Chinchilla rabbit/ liquid Skin lesions pathology/ sodium thiosulfate,
dexamethasone, promethazine

4092884

Dannenberg et al.,198544

Harada et al., 1985134, 198745

Higuchi et al., 1988135

Tsuruta et al., 1997136

Tanaka et al., 199746

New Zealand white
rabbits/liquid

In vivo-in vitro studies, histopathology, release of
inflammatory mediators, proteases,
chemoattractant

4050973
4050975
2433944
3049342
8796382
9187966

Chauhan et al., 199643 New Zealand white
rabbits /liquid

Histopathology, scanning electron microscopy,
extracellular matrix

8956094

Liu et al., 199973 Rabbits/liquid Lesion size, erythema/ topical skin protectants 10594900

Kumar et al., 2010137 New Zealand white
rabbits/liquid

Weight change, erythema/ amino alylaminoethane
thiols

20164158

Zhang et al., 2014138

Lin et al., 2014139

Nie et al., 2014140

Domestic rabbits/ liquid SM metabolism, DNA adducts, GSH adducts 24858262
24361979
24924210

Sun et al., 201575 New Zealand rabbits/
liquid

Histopathology/
decontamination with potassium ketoxime

24641121

Hind limb Hansen et al., 1951141 Albino rabbits/ liquid Appearance of lesions/ hypothermia 14923336

Rabbit ear Schoene et al., 198976 Albino rabbits/
continuous flow vapor
exposure cell

Erythema, dose, permeation 2596397

Zlotogorski et al.,199771 Albino rabbits/ liquid Draize, edema, erythema, histopathology 9184197
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and second degree burns induced by SM. Silverlon® also acts as an
oxygen-permeable sterile barrier, which promotes wound heal-
ing.53 Silver ions in the product also serve as an antimicrobial,
reducing infections at the wound site.91

Support for Silverlon® in the FDA approval process was based
on a pathophysiological scale in the Göttingen minipig vapor cap
model (Table 8). Individual endpoints indicate the extent and type
of repair and include the appearance of epithelial cells, basement
membrane damage, re-epithelialization of the wound, whether
abnormal hair follicles are present, extent of dermal inflamma-
tion and the presence of rete ridges, vascular proliferation, and
hemorrhage.33,92 In the case of Silverlon®, approvals were based

on re-epithelialization of the skin and improved appearance of the
basement membrane, as well as a reduction in dermal inflammation.
Silverlon® has also been FDA approved for radiation dermatitis and
cutaneous radiation injury through dry desquamation.93

Summary

Animal models are essential not only for understanding the
mechanism of action of SM, but also to develop effective therapeutics.
Importantly, therapeutics may be effective at different stages of SM
injury (eg, during the latency prior to a cutaneous response, during the
inflammatory response, or during wound healing/tissue remodeling)

Table 6. Effects of sulfur mustard on pig skin

Animal Model Citations Strain/exposure route Measurements/treatments PMID #

Pig/
minipig

Dorsal
skin
models

Lindsay et al., 1995142 Yucatan miniature swine/vapor
cap

Collagen, glycoprotein, histopathology 7598994

Smith et al., 199621 Weanling pig/liquid Histopathology 8902098

Brown et al., 1997143 Yucatan minipig/vapor cap Histopathology, transmission electron microscopy 9166101

Smith et al., 1997a18,
1997b87

Yorkshire cross weanling pig/
vapor cap

Basement membrane proteins, proliferation,
apoptosis

9039976
9302645

Logan et al., 2000144 Yorkshire cross weanling pig/
vapor cap

Measurement of SM skin off gassing 11428637

Reid et al., 200042 Yorkshire weanling pig/vapor
cap

Clinical evaluation, histopathology 11428629

Chilcott et al., 2000145,
200788

White pig/vapor cap TEWL, chromameter, skin reflectance spectroscopy,
histopathology/pretreat with barrier cream

10741590
17687688

Sabourin et al., 200286 Yorkshire weanling pig/vapor
cap

Proinflammatory markers 12481301

Hall et al., 201750 White pig/liquid Scanning laser Doppler, skin reflectance
spectroscopy, thermography, histopathology/
WoundStat™

28304107

Dachir et al., 201710 White pig/vapor cap or liquid Erythema, histology, cholinesterase inhibition/
Dermostyx (IB1)

27417258

Laskin et al., 202040 Gottingen minipig/vapor cap Histopathology, keratinocyte proliferation, growth
and differentiation markers

32445752

Barillo et al., 201753,
202092

Gottingen minipig/vapor cap Skin permeation studies/wound dressings,
TEWL, histopathology/ methods of debridement

28846576
31504620

Dachir et al., 2021146 White pig/vapor cap Erythema, cholinesterase inhibition/
decontamination- Fuller’s Earth, oxime lotion

33508307

Table 7. Effects of sulfur mustard on pig skin

Animal Model Citations Strain/exposure route Measurements/treatments PMID #

Pig Ventral
skin
models

Graham et al. 200249 Yorkshire cross weanling
pig/ vapor cap

Elasticity, scanning laser Doppler, TEWL, chromometer 12005121

Graham et al., 2006147 Yorkshire weanling cross
pig/liquid

Histopathology/laser debridement, hydrocolloid wound
dressings

17111042

Reid et al., 200042,
200732

Yorkshire weanling cross
pig/liquid

Chromometer, TEWL, scanning laser Doppler, histopathology 11428629
17374066

Rogers et al., 2008148 Yorkshire crossbred pig/
liquid

Transcript analysis, porcine genome arrays 18988085

Price et al., 2009149 Yorkshire crossbred pig/
liquid

Transcriptional analysis, porcine genome arrays 19694609

Graham et al., 200933 Yorkshire weanling
crossbred pig/vapor cap

Clinical measurements (TEWL, chromometer, torsional
ballistometry, ultrasonography), histopathology, basement
membrane proteins /Amino-Plex®, Aquacel®

18762227

Plahovinsak et al.,
201689

Yorkshire or Yorkshire
crossbred pig/ liquid

TEWL, Draize, chromometer, histopathology/
clobetasol propionate, diclofenac sodium, capsaicin

26362124

6 JD Laskin et al.

https://doi.org/10.1017/dmp.2023.177 Published online by Cambridge University Press

https://doi.org/10.1017/dmp.2023.177


and can be used alone or in combination. For example, Silverlon® is
effective for wound healing following the appearance of first- and
second-degree burns after exposure to SM. It remains to be
determined whether treatments with anti-inflammatory agents
prior to the development of SM burns will improve Silverlon®-
induced wound healing. Thus far, research in the field is limited as
SM is a blistering agent, and none of the animal models form overt
blisters in response to this vesicant. Further studies are required
to better understand differences between human and animal
responses to SM so that more effective countermeasures can be
developed that not only enhance wound healing, but also mitigate
the blistering response.
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