SPANS OF TRANSLATES IN $L^{p}(G)$

R. E. EDWARDS

(received 6 August 1964)

1. Introduction and preliminaries

Throughout this paper, G denotes a Hausdorff locally compact Abelian group, X its character group, and $L^{p}(G)(1 \leqq p \leqq \infty)$ the usual Lebesgue space formed relative to the Haar measure on G. If $f \in L^{p}(G)$, we denote by $T^{p}[f]$ the closure (or weak closure, if $p=\infty$) in $L^{p}(G)$ of the set linear combinations of translates of t.

Wiener's famous "closure of translations theorem" asserts that, if $f \in L^{1}(G)$, then $T^{1}[f]=L^{1}(G)$ if and only if $Z=\hat{f}^{-1}(0)$ is void, \hat{f} denoting the Fourier transform of f. Wiener proved the result for $G=R$, the additive group of real numbers ([1], p. 98, Theorem 9); it has since been extended to general G (see, for example, [9], p. 162). Wiener also showed ([1], p. 100, Theorem 11) that, if $t \in L^{2}(G)$, then $T^{2}[f]=L^{2}(G)$ if and only if Z is locally null; this result also extends (and easily) to general G. If G is compact, the analogue of Wiener's theorems is true and easy to prove for $L^{p}(G)$, whatever the value of p ([2], Corollary 3.2.2). But, if G is noncompact, no such complete results are known for values of p other than 1 and 2 . However, Segal ([2], Theorem 3.3). Pollard [3], Agnew [4], [5], and Edwards [6] have given partial results about $T^{p}(G)$ in case $f \in L^{1}(G) \cap L^{p}(G)$ and G is R or R^{n}; Segal ([2], Theorems 3.3 and 3.4) also gives partial results about $T^{p}[f]$ for general G, the assumption that f be integrable being replaced when $p>2$ by the demand that f be the Fourier transform of some element of $L^{p^{\prime}}(G)\left(1 / p+1 / p^{\prime}=1\right)$. A unified treatment was given by Herz [15] (and, indirectly, [16] - the main concern of which is the uniform approximations by linear combinations of translates of bounded uniformly continuous functions). The writer pleads guilty to having overlooked [15] until the present paper had been completed and submitted for publication, at which time private correspondence with Professor Herz corrected the oversight.

In this paper we start almost $a b$ initio. Sufficient conditions for $T^{p}[f]$ to exhaust $L^{p}(G)$ are obtained in Theorem (2.2) in a form slightly less demanding than in Herz's analogous Theorem 1. Partial converses appear in Theorems (2.5) and (6.2): these correspond roughly to Herz' Theorem 3.

These results include those of Segal, Agnew, and Pollard. The relationship with the results of Pollard are discussed in some detail in § 7: this is thought to be desirable because Pollard uses Abel summability for Fourier transforms, a technique which is not employed in our general treatment.

In § 3 we collect some results about the class of p-thin sets (our analogue of Herz's sets of type $U^{p^{\prime}}, 1 / p+1 / p^{\prime}=1$) and give an application in $\S 4$. In $\S 5$ we consider some connections between p-thinness for algebraic varieties and uniqueness theorems for associated partial differential equations, and use this to discuss some examples. Both here and in § 4, our examples amplify some of the remarks made in Herz [15]. The case $G=R^{n}$ is discussed further in $\S 6$.

We shall use systematically the generalised Fourier transform $\hat{\phi}$ of an arbitrary $\phi \in L^{\infty}(G)$, which transform exists as a pseudomeasure on X. Concerning pseudomeasures, see [7], Appendices II, III, and [8]. For our main Theorem (2.2) we shall require only the following facts:
(1.1) if $f \in L^{1}(G)$ and $\phi \in L^{\infty}(G)$, then $(f * \phi)^{\wedge}=\hat{f} \cdot \hat{\phi}$.
(1.2) Pseudomeasures can be localised, so that in particular one can define the support $\operatorname{supp} s$ of a pseudomeasure s to be the complement of the largest open subset of X on which s is zero. Then, if $f \in L^{1}(G)$ and $\phi \in L^{\infty}(G)$, the relation $\hat{f} \cdot \hat{\phi}=0$ implies that $\sup \hat{\phi} \subset \hat{f}^{-1}(0)$. The spectrum of ϕ can now be defined directly as the support $\operatorname{supp} \hat{\phi}$ of $\hat{\phi}$.
(1.3) A pseudomeasure having a finite support $\left\{\xi_{1}, \cdots, \xi_{n}\right\} \subset X$ is a linear combination of Dirac measures placed at the points ξ_{1}, \cdots, ξ_{n}.

It should be noted that, although Theorem (2.2) could be stated so as to include the case $p=1$ (i.e., Wiener's theorem), our arguments do not really simplify the known proofs of the latter, inasmuch as the properties of pseudomeasures are based upon results about the ring structure of $L^{1}(G)$ which are of much the same depth as Wiener's theorem itself. Thus the emphasis is everywhere on the case in which $1<p<\infty$ and G is noncompact.

2. The main theorem

We begin with a definition.
(2.1) Definition. A subset E of X is said to be p-thin if the relations

$$
\begin{equation*}
\phi \in C_{0}(G) \cap L^{p^{\prime}}(G), \operatorname{supp} \hat{\phi} \subset E \tag{2.1.1}
\end{equation*}
$$

imply that

$$
\begin{equation*}
\phi=0 . \tag{2.1.2}
\end{equation*}
$$

In (2.1.1) it is understood that $C_{0}(G)$ denotes the space of continuous functions on G which tend to zero at infinity, whilst p^{\prime} is defined by

$$
1 / p+1 / p^{\prime}=1
$$

Some discussion of p-thin sets will be given in $\S \S 3$ and 5 .
Herz [15] uses, in place of our concept of p-thinness, the notion of type $U^{p^{\prime}}:$ a closed set $E \subset X$ is of type $U^{p^{\prime}}$ if there exists no $\phi \neq 0$ which is bounded and continuous, belongs to $L^{p^{\prime}}(G)$, and is such that $\operatorname{supp} \hat{\phi} \subset E$. His Theorem 1 is our Theorem (2.2) to follow, with " p-thin" replaced by "of type $U^{p^{\prime} " .}$. It is evident that any set of type U^{p} is p-thin, so that Herz's Theorem 1 is implied by our Theorem (2.2). I do not know whether, when $p>1$, there exist sets E which are p-thin but not of type $U^{p^{\prime}}$.
(2.2) Theorem. Suppose that $1<p<\infty$, that $f \in L^{1}(G) \cap L^{p}(G)$, and that $Z=\hat{f}^{-1}(0)$ is p-thin. Then $T^{p}[f]=L^{p}(G)$.

Proof. According to the Hahn-Banach theorem it suffices to show that if $g \in L^{p^{\prime}}(G)$ satisfies

$$
\begin{equation*}
f * g=0 \tag{2.2.1}
\end{equation*}
$$

then $g=0$ a.e. To this end, take any $k \in L^{1}(G) \cap L^{p}(G)$. Then (2.2.1) implies that

$$
\begin{equation*}
f * k * g=0 \tag{2.2.2}
\end{equation*}
$$

Here $\phi=k * g$ belongs to $C_{0}(G) \cap L^{p^{\prime}}(G)$. Also, (2.2.2) yields via (1.1) the relation

$$
\hat{f} \cdot \hat{\phi}=0
$$

Using (1.2), this in turn leads to

$$
\operatorname{supp} \hat{\phi} \subset Z
$$

Since Z is assumed to be p-thin, reference to (2.1) confirms that $\phi=k * g=0$. This being the case for each $k \in L^{1}(G) \cap L^{p}(G)$, it follows easily that $g=0$ a.e. The proof is complete.

A similar argument yields an analogous result for $p=\infty$, this time in an "if and only if" form, and without assuming that $f \in L^{1}(G)$.
(2.3) Theorem. Suppose that $f \in L^{\infty}(G)$. Then $T^{\infty}[f]=L^{\infty}(G)$ if and only if supp $\hat{f}=X$.

Proof. The dual of $L^{\infty}(G)$ relative to its weak topology being $L^{1}(G)$, it has to be shown that

$$
\begin{equation*}
g \in L^{1}(G), f * g=0 \tag{2.3.1}
\end{equation*}
$$

implies $g=0$ a.e., if and only if $\operatorname{supp} \hat{f}=X$. But, by (1.1), (2.3.1) is equivalent to the equation $\hat{g} \cdot \hat{f}=0$. This implies $\hat{g}=0$ (i.e., $g=0$ a.e.), if and only if $\operatorname{supp} \hat{f}=X$, as alleged.
(2.4) Remark. There is an almost obvious extension of (2.2), giving a sufficient condition in order that a given family $\left(f_{i}\right)$ of functions in $L^{1}(G) \cap L^{p}(G)$ be such that the vector subspace of $L^{p}(G)$ generated by the translates of all the f_{i} be dense in $L^{p}(G)$: the said sufficient condition is that $\cap \hat{f}_{i}^{-1}(0)$ be p-thin. There is a similar extension of (2.3).

We next consider a partial converse of (2.2); see also (6.2) for the case $G=R^{n}$.
(2.5) Theorem. Suppose that $1<p<\infty$, that $f \in L^{1}(G) \cap L^{p}(G)$, and that $T^{p}[f]=L^{p}(G)$. Put $Z=\hat{f}^{-1}(0)$. Suppose that either
(i) the frontier ∂Z of Z relative to X is p-thin, or
(ii) Z is an S-set ([9], p. 158).

Then Z is p-thin.
Proof. The argument proceeds by contradiction. Suppose that Z were not p-thin. Then there exists a function $\phi \neq 0$ in $C_{0}(G) \cap L^{p^{\prime}}(G)$ for which supp $\phi \subset Z$. It will suffice to show that in either case $t * \phi=0$, i.e., that $\hat{f} \cdot \hat{\phi}=0$.

In case (ii), this follows from the known properties of S-sets. On the other hand, it is in any case evident that the relation $\hat{f} \cdot \hat{\phi}=0$ holds on a neighbourhood of each point of Z^{\prime} (complement in X) and on a neighbourhood of each point of the interior of Z. Hence, by the localisation principle for pseudomeasures, the support of $\hat{f} \cdot \hat{\phi}$ is contained in

$$
Z \cap(\text { interior } Z)^{\prime}=\partial Z
$$

Since $f * \phi \in C_{0}(G) \cap L^{p^{\prime}}(G)$, (i) entails that $f * \phi=0$ once more. The proof is complete.
(2.6) Remarks. (i) As Herz remarks ([15], Theorem 2*), if $T^{p}[f]=L^{p}(G)$, then there exists no $\phi \neq 0$ which is both a Fourier-Stieltjes transform and a member of $L^{p^{\prime}}(G)$ satisfying $\operatorname{supp} \phi \subset Z=\hat{f}^{-1}(0)$. For, since $\hat{\phi}$ is now a bounded measure, the relation supp $\hat{\phi} \subset Z$ entails that $\hat{f} \cdot \hat{\phi}=0$ and so that $f * \phi=0$; since $\phi \in L^{p^{\prime}}(G)$ and $T^{p}[f]=L^{p}(G)$, this gives $\phi=0$. Herein, instead of assuming that ϕ is a Fourier-Stieltjes transform, it is enough to assume that it is the weak limit in $L^{\infty}(G)$ of such transforms.
(ii) Herz ([15], Theorem 3) gives a different sort of partial converse of Theorem (2.2) in which \hat{f} is further restricted; see also Theorem (6.2) and the Remarks which follow it.

3. Concerning \boldsymbol{p}-thin sets

We shall collect a number of results which assist in showing that certain types of sets are p-thin, and thus assist in the application of (2.2).
(3.1) (i) Any subset of a p-thin set is p-thin.
(ii) A set E is p-thin if and only if every compact subset of E is p-thin.
(iii) A set E is p-thin if and only if, for each $\xi \in X$, there is a neighbourhood $U(\xi)$ of ξ such that $E \cap U(\xi)$ is p-thin.
(v) If E is p-thin, and if $q>p$, then E is q-thin.

Proof. Statement (i) is trivial.
As for (ii) we observe first that, since supp $\hat{\phi}$ is always a closed set, (2.1) shows that E is p-thin if and only if every closed subset of E is p-thin. Next, assuming that E is closed, if ϕ be replaced in (2.1) by functions of the form $k * \phi$, where $k \in L^{1}(G)$ and supp \hat{k} is compact, and if it be noted that ϕ is the uniform limit of such functions $k * \phi$, it appears that E is p-thin provided each compact subset of E is p-thin. The converse assertion is a trivial consequence of (i).

In proving (iii) we may, in view of (ii), assume that E is relatively compact in X. Then, if E satisfies the stated condition, we can find open sets $U_{m}(m=1,2, \cdots, n)$ which cover \bar{E} and such that $E \cap U_{m}$ is p-thin for each m. By known properties of $L^{1}(G)$, functions $k_{m} \in L^{1}(G)$ may be chosen so that supp $\hat{k}_{m} \subset U_{m}$ and $\sum_{m=1}^{n} \hat{k}_{m}=1$ on a neighbourhood of E. Then, if ϕ is as in (2.1), we have

$$
\phi=\sum_{m=1}^{n}\left(k_{m} * \phi\right) .
$$

On the other hand, $k_{m} * \phi \in C_{0}(G) \cap L^{p^{\prime}}(G)$ and $\operatorname{supp}\left(k_{m} * \phi\right)^{\wedge} \subset E \cap U_{m}$. Since $E \cap U_{m}$ is p-thin, $k_{m} * \phi=0$ for each m, and so $\phi=0$.
(iv) This statement is clear from the inclusion

$$
C_{0}(G) \cap L^{q^{\prime}}(G) \subset C_{0}(G) \cap L^{p^{\prime}}(G),
$$

valid whenever $q^{\prime}<p^{\prime}$, i.e., whenever $q>p$.
(3.2) If G is noncompact and $p>1$, each discrete subset of X is p-thin.

Proof. According to (1.3), any finite subset of G is p-thin. The rest follows from (3.1 ii).
(3.3) (i) If $p \geqq 2$, any locally null E subset of X is p-thin.
(ii) If $1 \leqq p \leqq 2$, any p-thin subset E of X is locally null.

Proof. (i) If $p \geqq 2$, then $p^{\prime} \leqq 2$, so that if ϕ is as in (2.1), then the pseudomeasure $\hat{\phi}$ is defined by a function in $L^{p}(X)$. Since this same pseudomeasure has its support contained in E, the defining function must vanish l.a.e. outside E and therefore l.a.e. on X. But then $\phi=0$, showing that E is p-thin.
(ii) Here we have $p^{\prime} \geqq 2$. If E were not locally null, E would contain a compact set K having positive measure. If ϕ is the inverse Fourier transform of the characteristic function of K, then $\phi \in C_{0}(G) \cap L^{2}(G) \subset C_{0}(G) \cap L^{p^{\prime}}(G)$ and satisfies $\phi(0)=\int_{K} d \xi>0$. Thus E is not p-thin.
(3.4) If G is noncompact and $p>1$, and if E is a compact subset of X which supports no true pseudomeasures, then E is p-thin. (It may be shown without difficulty that these hypotheses are satisfied whenever E is both a Helson set and an S-set).

Proor. If ϕ is as in (2.1), then $\hat{\phi}$ is a bounded measure with support contained in E. Moreover, as may be shown without much difficulty, the fact that E supports no true pseudomeasures entails that E is a Helson set. The conclusion $\phi=0$ now follows from [9], Theorem 5.6.10, p. 119.

For G the discrete additive group of integers, examples of such sets E are given in [10].
(3.5) Suppose that G is noncompact and $p>1$. Let E be subset of X contained in an S-set S with the following property; if, for any complex number z of unit modulus, we define

$$
A_{z}=\{x \in G: \xi(x)=z \text { for all } \xi \in S\}
$$

(so that A_{1} is the annihilator in G of S), then the closed subgroup G_{0} of G generated by

$$
\bigcup\left\{A_{z}:|z|=1\right\}
$$

is noncompact. Then E is p-thin.
Proof. Let ϕ be as in (2.1), and let $a \in A_{z}$ for some z. Since S is an S-set and $\operatorname{supp} \hat{\phi} \subset S, \phi$ is the strict (and hence the pointwise) limit of trigonometric polynomials formed from elements of S. It follows at once that $\phi(x+a)=z \cdot \phi(x)$ identically in $x \in G$. Consequently $|\phi(x+a)|=$ $|\phi(x)|$ for all $x \in G$ and all $a \in G_{0}$. Since $\phi \in C_{0}(G)$ and G_{0} is noncompact, it follows that $\phi=0$.
(3.6) It is convenient to list here a few categories of S-sets; for the following results, see [9], pp. 161, 169-172.
(i) If E is closed and ∂E contains no nonvoid perfect sets, then E is an S-set. Any C-set is an S-set.
(ii) Any finite set is a C-set. If ∂E is a C-set, so too is E.
(iii) A finite union of C-sets is a C-set.
(iv) Any closed subgroup of X is a C-set.
(v) Any translate of an S-set [resp. a C-set] is an S-set [resp. a C-set].
(vi) If E is a closed semigroup in X such that 0 belongs to the closure of the interior of E, then E is an S-set.
(vii) If $G=R^{n}=X$, any closed rectilinear simplex, any vector subspace, any closed halfspace, any closed polyhedral set, and any star-shaped body is a C-set.
(3.7) (i) Suppose that $E_{1} \subset E$ are subsets of X, that E_{1} is a p-thin C-set, and that $E \cap U^{\prime}$ is p-thin for every open set $U \supset E_{1}$. Then E is p-thin.
(ii) If E_{1} and E_{2} are p-thin subsets of X, E_{1} being a C-set, then $E=E_{1} \cup E_{2}$ is p-thin.
(iii) If E_{1}, \cdots, E_{n} are p-thin C-sets, then so too is $E=E_{1} \cup \cdots \cup E_{n}$.

Proof. Statement (ii) follows directly from (i) since, if the hypotheses of (ii) are fulfilled, $E \cap U^{\prime} \subset E_{2}$ for every $U \supset E_{1}$. Statement (iii) follows from (ii) by induction, in view of (3.6.iii). Thus all depends on proving (i), which we shall effect in two steps.
(a) Denote by $A(X)$ the set of all functions u on X of the form

$$
u(\xi)=\int_{G} v(x) \overline{\xi(x)} d x \equiv \hat{v}(\xi),
$$

v ranging over $L^{1}(G) . A(X)$ is made into a Banach space under the norm $\|u\|_{A}=\|v\|_{1}$. The dual of $A(X)$ is precisely the space $P(X)$ of pseudomeasures on X. We aim to show that, under the hypotheses of (i), every pseudomeasure s on X is the weak limit in $P(X)$ of pseudomeasures of the form

$$
\begin{equation*}
\mu+\hat{g} \cdot s, \tag{3.7.1}
\end{equation*}
$$

where μ is a bounded Radon measure on X satisfying supp $\mu \subset E_{1}$ and $g \in L^{1}(G)$ is such that $\operatorname{supp} \hat{g} \subset U^{\prime}$ for some neighbourhood U of E_{1}, U possibly depending on g. In order to do this, we have to show that any $u \in A(X)$, orthogonal to all pseudomeasures of the form (3.7.1), is orthogonal to s.

Now, if u is orthogonal to all pseudomeasures of the form (3.7.1), it appears first (by taking $g=0$) that u vanishes on E_{1}. Since E_{1} is a C-set, this entails ([9], p. 169) that u is the limit in $A(X)$ of functions $\hat{g} \cdot u$, where the variable function g is as specified in (3.7.1). But then

$$
s(u)=\lim s(\hat{g} \cdot u)=\lim \hat{g} \cdot s(u)=\lim 0=0,
$$

since by hypothesis u is orthogonal to all pseudomeasures of the form (3.7.1). This establishes the possibility of the said approximation.
(b) Suppose now that ϕ is as in (2.1), and that the hypotheses of (i) are satisfied. By (a) we can write

$$
\begin{equation*}
\hat{\phi}=\lim \left(\mu_{i}+\hat{g}_{i} \cdot \hat{\phi}\right) \tag{3.7.2}
\end{equation*}
$$

weakly in $P(X)$, the μ_{i} being bounded Radon measures on X satisfying supp $\mu_{i} \subset E_{i}$, and $g_{i} \in L^{1}(G)$ being such that supp $\hat{g}_{i} \subset U_{i}^{\prime}$ for some neighbourhood U_{i} of E_{1}. Now $\hat{g}_{i} \cdot \hat{\phi}$ is the transform of $g_{i} * \phi$, which (like ϕ) belongs to $C_{0}(G) \cap L^{p^{\prime}}(G)$. Since also supp $\hat{g}_{i} \cdot \hat{\phi} \subset E \cap U_{i}^{\prime}$, and since $E \cap U_{i}^{\prime}$ is p-thin by hypothesis, it follows that $g_{i} * \phi=0$. Thus (3.7.2) reads simply

$$
\hat{\phi}=\lim \mu_{i}
$$

weakly in $P(X)$, which shows that $\operatorname{supp} \phi \subset E_{1}$. So, since E_{1} is p-thin, $\phi=0$. This completes the proof of (i).
(3.8) If G is noncompact and $p>1$, and if E is a subset of X whose derived set E_{1} is a p-thin C-set, then E is p-thin.

Proof. If U is any neighbourhood of $E_{1}, E \cap U^{\prime}$ is discrete. It suffices now to apply (3.7.i).
(3.9) Let (E_{i}) be a locally finite, disjoint family of closed p-thin sets. Then $E=\bigcup E_{i}$ is p-thin.

Proof. In view of (3.1), it suffices to show that the union, E, of two disjoint compact p-thin sets, E_{1} and E_{2}, is p-thin.

Now E_{1} and E_{2} possess disjoint neighbourhoods U_{1} and U_{2}. Choose $f_{k}(k=1,2)$ from $L^{1}(G)$ such that $\hat{f}_{k}=1$ on a neighbourhood of E_{k} and $\operatorname{supp} \hat{f}_{k} \subset U_{k}$. If ϕ is as in (2.1) we shall have $\phi=f_{1} * \phi+f_{2} * \phi$, since $\hat{f}_{1}+\hat{f}_{2}=1$ on a neighbourhood of $E \supset \operatorname{supp} \phi$. Then $f_{k} * \phi \in C_{0}(G) \cap L^{p^{\prime}}(G)$ and supp $\left(f_{k} * \phi\right)^{\wedge} \subset U_{k} \cap E=E_{k}$. Since E_{k} is p-thin, so $f_{k} * \phi=0$ and therefore $\phi=0$. Thus E is p-thin.
(3.10) Both (3.7) and (3.9) prompt the question: Is it always true that the union of two p-thin sets is again p-thin? An affirmative answer, for the special case in which $G=R^{n}$ and the sets concerned are closed, is given in (6.2).

Some more specialised examples of p-thin sets are given in § 5 .
(3.11) Herz ([15], Theorem 4) gives two conditions, each of which is sufficient to ensure (when $p \leqq 2$) that a closed set $E \subset R^{n}$ is of type $U^{p^{\prime}}$ (and therefore certainly p-thin), namely:
(i) the (Haar) measure of the set of points at distance below h from K is $o\left[h^{n(2 / p-1)}\right]$ as $h \rightarrow 0, K$ being any compact subset of E;
(ii) the Hausdorff dimension of E is inferior to $2 n(p-1) / p$.

4. An application

We discuss an application of (2.2) which in a sense extends the result of Segal, and presents at the same time a multidimensional generalisation of Agnew's results.
(4.1) Suppose that $G_{k}(k=1,2, \cdots, n)$ are noncompact groups, the character group of G_{k} being denoted by X_{k}. Put $G=G_{1} \times \cdots \times G_{n}$, whose character group is (isomorphic to) $X=X_{1} \times \cdots \times X_{n}$.

Let $f_{k} \in L^{1}\left(G_{k}\right) \cap L^{p}\left(G_{k}\right)$ be such that

$$
\begin{equation*}
Z_{k}=\hat{f}^{k-1}(0) \text { is discrete. } \tag{4.1.1}
\end{equation*}
$$

Let $f \in L^{1}(G) \cap L^{p}(G)$ be defined by

$$
\begin{equation*}
f\left(x_{1}, \cdots, x_{n}\right)=f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right) . \tag{4.1.2}
\end{equation*}
$$

(4.2) Theorem. Assume that the hypotheses of (4.1) are fulfilled, and that $1<p<\infty$. Then $T^{p}[f]=L^{p}(G)$.

Proof. From (4.1.2) it follows that

$$
\hat{f}\left(\xi_{1}, \cdots, \xi_{n}\right)=\hat{f}_{1}\left(\xi_{1}\right) \cdots \hat{f}_{n}\left(\xi_{n}\right)
$$

whence it appears that

$$
\begin{equation*}
Z \equiv \hat{f}^{-1}(0)=\left(Z_{1} \times X_{2} \times \cdots \times X_{n}\right) \cdots\left(X_{1} \times \cdots \times X_{n-1} \times Z_{n}\right) \tag{4.2.1}
\end{equation*}
$$

We must show that Z is a p-thin subset of X.
For each k, let K_{k} be a compact subset of X_{k}. If $K=K_{1} \times \cdots \times K_{n}$, then (4.2.1) shows that

$$
\begin{equation*}
K \cap Z \subset Q_{1} \cup \cdots \cup Q_{n} \tag{4.2.2}
\end{equation*}
$$

where

$$
Q_{1}=\left(K_{1} \cap Z_{1}\right) \times X_{2} \times \cdots \times X_{n}
$$

and the remaining Q_{k} are similarly defined. Since Z_{1} is discrete, $K_{1} \cap Z_{1}$ is finite. Therefore Q_{1} is a finite union of sets of the form

$$
\left\{\alpha_{1}\right\} \times X_{2} \times \cdots \times X_{n}
$$

where $\alpha_{1} \in X_{1}$. Each of these latter sets is a translate of $\{0\} \times X_{2} \times \cdots \times X_{n}$ $=P_{1}$, say. The set P_{1} is a C-set, by (3.6.iv), and its annihilator in G is $G_{1} \times\{0\} \times \cdots \times\{0\}$, which is noncompact. By (3.5), therefore, P_{1} is p-thin. That Q_{1} is a p-thin C-set now follows from (3.6.v) and (3.7.iii). Similarly, each Q_{k} is a p-thin C-set. Applying (3.7.iii) again, (4.2.2) shows that $K \cap Z$ is p-thin. Since the compact sets K here considered form a base for the compact subsets of X, it follows from (3.1) that Z is p-thin.

The proof is completed by appeal to (2.2).
(4.3) Remark. If, in (4.2), one or more of the G_{k} are compact, the theorem will remain valid provided the corresponding sets Z_{k} are void.
(4.4) Corollary. Suppose that $1<p<\infty$ and that f is a non-null function on R^{n} of the form

$$
f(x)=f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right)
$$

where for each $k=1,2, \cdots, n, f_{k} \in L^{p}(R)$ and vanishes a.e. outside some compact subset of R. Then $T^{p}[f]=L^{p}\left(R^{n}\right)$.

Proof. In this case, $\hat{f}_{k}^{-1}(0)$ is a discrete subset of R (identified with its own character group in the usual way), since \hat{f}_{k} is an entire function which does not vanish identically.
(4.5) Notwithstanding Corollary (4.4), when $n>1$ it is not the case that any non-null $f \in C_{c}\left(R^{n}\right)$ has the property that $T^{p}[f]=L^{p}\left(R^{n}\right)$ for
every p satisfying $1<p<\infty$. (The corresponding assertion with $n=1$ is excluded by Corollary (4.4), of course.) A simple counterexample follows.

In general we identify the character group of R^{n} with R^{n} itself, the character function being

$$
\xi(x)=\exp \left(-2 \pi i \sum_{k=1}^{n} \xi_{i} x_{i}\right)
$$

In R^{n}, let S denote the unit hypersphere, s the surface measure on S, and $|S|=\int_{S} d s$. The function ϕ on R^{n} defined by

$$
\phi(x)=|S|^{-1} \int_{S} \exp 2 \pi i\left(x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}\right) d s(\xi)
$$

is expressible as a nonzero constant multiple of $r^{-\frac{1}{2} n+\frac{1}{2}} J_{\frac{1}{2} n-\frac{1}{2}}(2 \pi r)$, where $r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}}$ and J_{ν} denotes the ν-th order Bessel function. Wellknown properties of J_{ν} show that $\phi \in C_{0}\left(R^{n}\right) \cap L^{p^{\prime}}\left(R^{n}\right)$ provided $n>1$ and $p^{\prime}>2 n /(n-1)$, i.e., provided $n>1$ and $p<2 n /(n+1)$. Since $\bar{\phi}$ is a measure supported by S, it follows that S is not p-thin for any p satisfying $1 \leqq p<2 n / n+1$.

Now suppose that $f \in C_{e}\left(R^{n}\right)$ is of the form

$$
f=u+\left(4 \pi^{2}\right)^{-1} \Delta u
$$

where $u \not \equiv 0$ belongs to $C_{0}\left(R^{n}\right)$, and where Δ denotes the Laplacian. Then, if $\rho=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{\frac{1}{2}}$,

$$
\hat{f}=\left(1-\rho^{2}\right) \hat{u}
$$

vanishes on S, and $f \neq 0$. It follows, since $\hat{\phi}$ is a measure supported by S, that $f * \phi=0$. Since $\phi \neq 0$, this last equation shows that $T^{p}[f] \neq L^{p}\left(R^{n}\right)$ for $1 \leqq p<2 n /(n+1)$.

For this same f, Theorem (2.2) and (3.3.i) combine to show that $T^{p}[f]=L^{p}\left(R^{n}\right)$ whenever $p \geqq 2$. The truth of the relation $T^{p}[f]=L^{p}\left(R^{n}\right)$ remains undecided for values of p satisfying $2 n /(n+1) \leqq p<2$. See also (5.6) and (6.3).

Herz ([15], final paragraph) remarks that "consideration of a few Bessel functions" will show that if $p<2 n /(n+1)$ there exist non-null functions $f \in L^{p}\left(R^{n}\right)$ with a compact support such that $T^{p}[f] \neq L^{p}\left(R^{n}\right)$. In (5.4) infra we see in detail how Bessel functions appear in a related connection.

5. Algebraic varieties and p-thin sets

(5.1) Throughout this section we take $G=R^{n}$, identified with its own character group as in (4.5). In this case, as is easily verified, the pseudomeasure $\hat{\phi}$ can be identified with the distributional Fourier transform of ϕ.

We shall consider, in respect of p-thinness, sets $V \subset R^{n}$ which are (not necessarily irreducible) algebraic varieties in R^{n}. Thus V will be defined by a system of equations

$$
\begin{equation*}
P_{i}(\xi) \equiv P_{i}\left(\xi_{1}, \cdots, \xi_{n}\right)=0 \quad(i \in I) \tag{5.1.1}
\end{equation*}
$$

each P_{i} being a polynomial over the complex field in n indeterminates. (The polynomial ring being Noetherian, it is always possible to define V by a system (5.1.1) in which the index set I is finite, but we do not need to assume this here.)

For each polynomial P we denote by $P(D)$ the linear partial differential operator

$$
P\left[(2 \pi i)^{-1} \partial / \partial x_{1}, \cdots,(2 \pi i)^{-1} \partial / \partial x_{n}\right]
$$

It is a convenient piece of notation to denote by $F^{p}\left(R^{n}\right)$ the set of functions ϕ on R^{n} which, together with each of their partial derivatives, belong to $C_{0}\left(R^{n}\right) \cap L^{v^{\prime}}\left(R^{n}\right)$, and which are such that $\operatorname{supp} \hat{\phi}$ is compact. Each $\phi \in F^{p}\left(R^{n}\right)$ is necessarily analytic on R^{n} (and even extendible into an entire-analytic function of n complex variables).

The following simple result will be needed.
Lemma. For $n=1,2, \cdots$ and $1 \leqq p \leqq \infty$, define

$$
m_{n, p}=\left\{\begin{array}{ll}
0 & \text { if } p \geqq 2, \tag{5.1.2}\\
2[(2-p) n / 4 p]+2 & \text { if } n \geqq 2 \text { and } 1 \leqq p<2, \\
1 & \text { if } n=1 \text { and } 1 \leqq p<2,
\end{array}\right\}
$$

where the square brackets on this occasion denotes the integral part. If $\phi \in F^{p}\left(R^{n}\right)$, then $\hat{\phi}$ is a distribution of order at most $m_{n, p}$.

Proof. If $p \geqq 2, \hat{\phi}$ is a function. If $1 \leqq p<2$ and $n \geqq 2$, Hölder's inequality shows that, if $m=m_{n, p}$ and $\phi \in F^{p}\left(R^{n}\right)$, then $\phi=\left(1+r^{2}\right)^{\frac{1}{2} m} \eta$, where $f \in L^{2}\left(R^{n}\right)$ and $r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}}$. Consequently,

$$
\hat{\phi}=\left(1-\Delta / 4 \pi^{2}\right)^{\frac{1}{2} m} \hat{f}
$$

where Δ denotes the n-dimensional Laplacian and $\hat{f} \in L^{2}\left(R^{n}\right)$. Similar estimates apply when $n=1$.

We can now relate the property of p-thinness of an algebraic variety V to a uniqueness property of the corresponding system of partial differential equations.
(5.2) Theorem. (i) Suppose that V, defined by (5.1.1), is p-thin, and that $\left(m_{i}\right)$ is any family of nonnegative integers. Then the system

$$
\begin{equation*}
\phi \in C_{0}\left(R^{n}\right) \cap L^{p^{\prime}}\left(R^{n}\right), \quad P_{i}(D)^{m_{i}} \phi=0 \quad(i \in I) \tag{5.2.1}
\end{equation*}
$$

has only the trivial solution $\phi \equiv 0$.
(ii) Let $m=m_{n, p}$ be defined by (5.1.2) and suppose that the system of partial differential equations

$$
\begin{equation*}
\phi \in F^{p}\left(R^{n}\right), \quad P_{i}(D)^{m+1} \phi=0 \quad(i \in I) \tag{5.2.2}
\end{equation*}
$$

has only the trivial solution $\phi \equiv 0$.
Then V, defined by (5.1.1), is p-thin.
Proof. (i) If ϕ satisfies (5.2.1), then, on taking Fourier transforms, it is seen that

$$
P_{i}(\xi)^{m_{i}} \hat{\phi}=0 \quad(i \in I) .
$$

This system of equations entails that $\operatorname{supp} \hat{\phi} \subset P_{i}^{-1}(0)$ for $i \in I$, and hence that supp $\hat{\phi} \subset V$. Since V is p-thin, it follows that $\phi \equiv 0$.
(ii) Suppose that $\phi \in C_{0}\left(R^{n}\right) \cap L^{p^{\prime}}\left(R^{n}\right)$ and $\operatorname{supp} \hat{\phi} \subset V$: it must be shown that $\phi \equiv 0$. By considering in place of ϕ functions of the type $\phi * h$, where h is the inverse Fourier transform of an element of $C_{o}^{\infty}\left(R^{n}\right)$, we may assume from the outset that $\phi \in F^{p}\left(R^{n}\right)$. Now, since supp $\hat{\phi}$ is a subset of V, the lemma in (5.1) combines with a known theorem ([14], pp. 97-98, Théorème XXXIII) to show that $P_{i}^{m+1} \cdot \hat{\phi}=0$, i.e., that $P_{i}(D)^{m+1} \phi=0$, for each $i \in I$. Thus ϕ is a solution of the system (5.2.2) and is therefore trivial.
(5.3) Corollary. Let V be an algebraic variety in R^{n} defined by an equation

$$
\begin{equation*}
P(\xi)=0, \tag{5.3.1}
\end{equation*}
$$

P being a polynomial. In order that V be p-thin, it is
(i) necessary that the implication

$$
\begin{equation*}
\phi \in C_{0}\left(R^{n}\right) \cap L^{p^{\prime}}\left(R^{n}\right), \quad P(D) \phi=0 \Rightarrow \phi=0 \tag{5.3.2}
\end{equation*}
$$

be valid, and
(ii) sufficient that the implication

$$
\begin{equation*}
\phi \in F^{\eta}\left(R^{n}\right), \quad P(D) \phi=0 \Rightarrow \phi=0 \tag{5.3.2}
\end{equation*}
$$

be valid.
Proof. (i) The necessity of the validity of (5.3.2) follows at once from (5.2.i).
(ii) The sufficiency of the validity of (5.3.2) follows from (5.2.ii), if one remarks that $F^{p}\left(R^{n}\right)$ is stable under partial differentiations and hence under the operator $P(D)$.
(5.4) As an application of Corollary (5.3), we will show that if $n>1$ an ($n-1$)-dimensional hypersphere S in R^{n} is p-thin if and only if $p \geqq 2 n /(n+1)$.

Indeed, the arguments in (4.5) show that S is not p-thin if $p<2 n /(n+1)$. Turning to the converse, we start from the associated differential equation, which in this case takes the form

$$
\begin{equation*}
\Delta \phi+c^{2} \phi=0 \tag{5.4.1}
\end{equation*}
$$

where $c>0$. Suppose that ϕ is a solution of (5.4.1) which belongs to $C_{0}\left(R^{n}\right) \cap L^{p^{\prime}}\left(R^{n}\right)$. We aim to show that, if $p \geqq 2 n /(n+1)$, then $\phi=0$. By replacing ϕ by any translate thereof, it will suffice to show that $\phi(0)=0$. To this end, we denote by S_{τ} the hypersphere in R^{n} with centre 0 and radius r, and write s_{r} for the surface measure on S_{r}. Then ([12], p. 289) one has

$$
\begin{equation*}
\Gamma\left(\frac{1}{2} n\right)(c r)^{-\frac{1}{2} n+1} J_{\frac{1}{2} n-1}(c r) \phi(0)=\left|S_{r}\right|^{-1} \int d s_{r} \tag{5.4.2}
\end{equation*}
$$

where $\left|S_{r}\right|=\int d s_{r}=$ const. r^{n-1}. By Hölder's inequality,

$$
\begin{align*}
\int|\phi| d s & \leqq\left(\int|\phi|^{p^{\prime}} d s_{r}\right)^{1 / p^{\prime}}\left(\int d s_{r}\right)^{1 / p} \\
& =\left|S_{r}\right|^{1 / p} \cdot M(r)^{1 / p^{\prime}} \tag{5.4.3}
\end{align*}
$$

where

$$
M(r)=\int|\phi|^{p^{\prime}} d s_{r}
$$

Now

$$
\|\phi\|_{p^{\prime}}^{p^{\prime}}=\int_{0}^{\infty} d r \int|\phi|^{p^{\prime}} d s_{r}=\int_{0}^{\infty} M(r) d r<\infty
$$

Also, as $r \rightarrow \infty$,

$$
\begin{equation*}
\left.J_{\frac{1}{2} n-1}(c r) \sim(2 / \pi c r)^{\frac{1}{2}} \cos \left[c r-\left(\frac{1}{2} n-1\right) \pi / 2-\pi / 4\right)\right] \tag{5.4.4}
\end{equation*}
$$

The cosine factor here is bounded away from zero on each of an infinite sequence of disjoint congruent intervals. Since $\int_{0}^{\infty} M(r) d r<\infty$, it follows that a sequence $r_{i} \rightarrow \infty$ may be chosen from these intervals such that $r_{i} M\left(r_{i}\right) \rightarrow 0$. From (5.4.2), (5.4.3), and (5.4.4) it then appears that

$$
|\phi(0)| \leqq \text { const. } \left.r^{\frac{1}{2} n-1} \cdot\left|S_{r}\right|^{-1} \cdot\left|S_{r}\right|^{1 / p} \cdot M(r)^{1 / p^{\prime}} \right\rvert\, J_{\frac{1}{2} n-1}(c r)
$$

Taking $r=r_{i}$, this yields

$$
|\phi(0)| \leqq \text { const. } r_{i}^{(n-1)\left(\frac{1}{2}-1 / p^{\prime}\right)-1 / p} \cdot\left[r_{i} M\left(r_{i}\right)\right]^{1 / p^{\prime}}
$$

Letting $i \rightarrow \infty$, this gives $\phi(0)=0$, provided that

$$
(n-1)\left(\frac{1}{2}-1 / p^{\prime}\right)-1 / p^{\prime} \leqq 0
$$

i.e., provided that $p \geqq 2 n /(n+1)$.
(5.5) The result in (5.4) for hyperspheres naturally extends to images of hyperspheres under vector space isomorphisms of R^{n}. We note also that
results given by Littman [13] show that sufficiently smooth ($n-1$)-dimensional surfaces in R^{n} which have everywhere positive Gaussian curvature fail to be p-thin for $1 \leqq p<2 n /(n+1)$.
(5.6) Example. Consider a function t on R^{n} which is a function of $r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}}$ only, say $f(x)=F(r)$, where

$$
\left.\int_{0}^{\infty}|F(r)|\right|^{n-1} d r<\infty, \int_{0}^{\infty}|F(r)|^{p} r^{n-1} d r<\infty .
$$

The Fourier transform of f is then of the form $\hat{f}(\xi)=G(\rho)$, where $\rho=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{\frac{1}{2}}$ and

$$
G(\rho)=2 \pi \rho^{-\frac{1}{2} n+1} \int_{0}^{\infty} r \frac{1}{2}^{n} J_{\frac{1}{2} n-1}(2 \pi \rho r) F(r) d r .
$$

If we assume that $G(\rho)$ is zero for a set of $\rho \geqq 0$ which is discrete, and that $p \geqq 2 n /(n+1)$, then (2.2), (3.9), and (5.4) combine to show that $T^{p}[f]=L^{p}\left(R^{n}\right)$. The stated condition on the zeros of G is certainly satisfied if f is nonnull and has a compact support.

6. Further results for $G=R^{\boldsymbol{n}}$

The principal result of this section, Theorem (6.2), gives for $G=R^{n}$ another partial converse of Theorem (2.2) in which f itself (rather than merely the set $\left.\hat{f}^{-1}(0)\right)$ is further restricted. At the same time, it provides an almost complete answer (for $G=R^{n}$) to the question raised in (3.10).

The proof of (6.2) uses a lemma, which is valid for general G.
(6.1) Lemma. Suppose that $t_{i} \in L^{1}(G) \cap L^{p}(G)$ and $T^{p}\left[f_{i}\right]=L^{p}(G)$ for $i=1,2$. Then $f=f_{1} * f_{2} \in L^{1}(G) \cap L^{p}(G)$ and $T^{p}[f]=L^{p}(G)$.

Proof. It is simple to verify that, if $h \in L^{p}(G)$ and $T^{p}[h]=L^{p}(G)$, then to each $\varepsilon>0$ and each $g \in L^{p}(G)$ there corresponds a function k which is continuous and has a compact support such that $\|h * k-g\|_{D}<\varepsilon$. (Notice that each translate of h is the limit in $L^{p}(G)$ of functions $h * k$ with k as specified.) This being so, we first choose k_{1} so that $\left\|f_{1} * k_{1}-g\right\|_{D}<\frac{1}{2} \varepsilon$. Then, since $k_{1} \in L^{p}(G)$, we may choose k_{2} so that $\left\|f_{2} * k_{2}-k_{1}\right\|_{p}<\frac{1}{2} \varepsilon \cdot\left\|f_{1}\right\|_{1}^{-1}$. Combining these inequalities, it is seen that $\left\|f * R_{2}-g\right\|_{D}<\varepsilon$. Finally, $f * k_{2}$ is the limit in $L^{p}(G)$ of linear combinations of translates of f. Thus $g \in T^{p}[f]$ and the lemma follows.

Let now $m=m_{n, p}$ be defined as in (5.1.2), and let us denote by $K^{p}\left(R^{n}\right)$ the set of $t \in L^{1}\left(R^{n}\right) \cap L^{p}\left(R^{n}\right)$ such that $\hat{f} \in C^{m}\left(R^{n}\right)$. Obviously, $K^{p}\left(R^{n}\right)$ is a convolution algebra containing the Schwartz space $\mathscr{S}\left(R^{n}\right)$. It is simple to show that any closed subset E of R^{n} is the zero-set $\hat{f}^{-1}(0)$ for some $f \in \mathscr{S}\left(R^{n}\right)$. In fact, let U_{r} be the set of points of R^{n} at distance
less than r^{-1} from E. By Urysohn's lemma, there exists a continuous function $F_{r}: R^{n} \rightarrow[0,1]$ which vanishes on E and takes the value 1 on U_{r}^{\prime}. By regularisation, we may assume that $F_{r} \in C^{\infty}\left(R^{n}\right)$ and that each mixed partial derivative $D^{p} F_{r}$ is bounded. Let

$$
c_{r}=r^{-2}\left[\operatorname{Sup}_{|p| \leqq r}\left\|D^{p} F_{r}\right\|_{\infty}\right]^{-1}
$$

so that $\left\|D^{p}\left(c_{r} F_{r}\right)\right\|_{\infty} \leqq r^{-2}$ for $r \geqq|p|$. It follows then that

$$
F=\sum_{r=1}^{\infty} c_{r} F_{r} \in C^{\infty}\left(R^{n}\right)
$$

and that $D^{p} F$ is bounded for each p. The function $\xi \rightarrow e^{-|\xi|^{2}} F(\xi)$ belongs to $\mathscr{S}\left(R^{n}\right)$ and so can be expressed as \hat{f} for some $f \in \mathscr{S}\left(R^{n}\right)$. Evidently, $F^{-1}(0)=E$, which confirms the claim made above.

We can now state and prove the main result of this section.
(6.2) Theorem. (a) Let E be a closed subset of R^{n}. In order that E be p-thin it is
(i) sufficient that

$$
\begin{equation*}
f \in \mathscr{S}\left(R^{n}\right), \hat{f}^{-1}(0) \subset E \Rightarrow T^{p}[f]=L^{p}\left(R^{n}\right) \tag{6.2.1}
\end{equation*}
$$

and
(ii) necessary that

$$
\begin{equation*}
f \in K^{p}\left(R^{n}\right), \hat{f}^{-1}(0) \subset E \Rightarrow T^{p}[f]=L^{p}\left(R^{n}\right) \tag{6.2.2}
\end{equation*}
$$

(b) The validity of either implication, (6.2.1) or (6.2.2), is thus necessary and sufficient that E be p-thin.
(c) The union of two p-thin closed subsets of R^{n} is p-thin.

Proof. (a) Suppose that the implication (6.2.1) is valid. As we have shown, E can be written as $\hat{f}^{-1}(0)$ for some $f \in \mathscr{S}\left(R^{n}\right)$. If E were not p-thin, we could choose $\phi \in C_{0}\left(R^{n}\right) \cap L^{p^{\prime}}\left(R^{n}\right)$ such that supp $\hat{\phi} \subset E$ and $\phi \neq 0$. Let $g=f * \cdots * f$, with $m+1$ factors. Then $g \in \mathscr{S}\left(R^{n}\right)$ and \hat{g} and its partial derivatives of orders at most m all vanish on E. So ([14], pp. 97-98, Théorème XXXIII again) $\hat{g} \cdot \hat{\phi}=0$, i.e., $g * \phi=0$. Since $\phi \neq 0$, this shows that $T^{p}[g] \neq L^{p}\left(R^{n}\right)$ and so, by (6.1), that $T^{p}[f] \neq L^{p}\left(R^{n}\right)$. This establishes the sufficiency of (6.2.1).

The necessity of (6.2.2) is a special case of (2.2).
(b) This follows at once from (a) and the obvious implication (6.2.2) \Rightarrow (6.2.1).
(c) Suppose $E_{i}(i=1,2)$ are closed p-thin subsets of R^{n} and that $E=E_{1} \cup E_{2}$. Write $E_{i}=\hat{f}_{i}^{-1}(0)$ with $f_{i} \in \mathscr{P}\left(R^{n}\right)$. Put $f=f_{1} * f_{2}$, which belongs to $\mathscr{S}\left(R^{n}\right)$. By (b), $T^{p}\left[f_{i}\right]=L^{p}\left(R^{n}\right)$ for $i=1,2$ and so, by Lemma (6.1) , $T^{p}[f]=L^{p}\left(R^{n}\right)$. Since $\hat{f}^{-1}(0)=E$, another application of (b) entails that E is p-thin.

Remarks. Part (a) of Theorem (6.2) as akin to Theorem 3 of Herz [15], inasmuch as both constitute partial converses of our Theorem (2.2) and his Theorem 1, respectively. On the other hand, Herz's Theorem 3 corresponds to a considerably stronger form of the implication (6.2.2), differentiability properties of f being replaced by Lipschitz conditions on \hat{f}. As is implicit in [15] and [16], it is possible to show that if s is any pseudomeasure on X, and if $f \in L^{1}(G)$ is such that \hat{f} satisfies a Lipschitz condition of order $\alpha>0$ and vanishes on supp s, then $\hat{f^{m}} \cdot s=0$ holds for all sufficiently large integers m. We here interpret the Lipschitz condition on \hat{f} as meaning that, for some base (U_{i}) of relatively compact neighbourhoods of 0 in X,

$$
\left.\left|\hat{f}\left(\xi^{\prime}\right)-\hat{f}(\xi)\right| \leqq \text { const. [meas } U_{i}\right]^{\boldsymbol{x}}
$$

for $\xi^{\prime}-\xi \in U_{i}$.
More precisely and more generally: if $f \in L^{1}(G) \cap L^{p}(G)(1 \leqq p \leqq \infty)$ and $\phi \in L L^{p^{\prime}}(G)$, then $f * \phi=0$ provided $\hat{f}=0$ on $\operatorname{supp} \hat{\phi}$ and

$$
\hat{f}(\xi)=O\left(\left[\text { meas } U_{i}\right]^{1 / p-\frac{1}{2}}\right)
$$

for $\xi \in K+U_{i}, K$ being any compact subset of supp $\hat{\phi}$. (The Lipschitz condition becomes void, and can be dropped entirely, if $p>2$.) The case $p=1$ is an extension of a result of Pollard [17] for the case $G=R$. Compare Herz [16], Lemma 4.4.
(6.3) We collect here a few remarks bearing upon a problem first raised by Herz ([15], final paragraph).

Consider again the case in which $f \in L^{p}\left(R^{n}\right)$ is nonnull and vanishes a.e. outside some compact subset of R^{n}. The following facts have already emerged:
(a) If $n=1$ and $p>1$, or if n is arbitrary and $p \geqq 2$, then $T^{p}[f]=L^{p}(R)$ (see Theorem (2.2));
(b) If $p>1$ and n is arbitrary, and if f has the special form described in (4.4), then $T^{p}[f]=L^{p}\left(R^{n}\right)$; and likewise if $n>1$ and $p \geqq 2 n /(n+1)$ (see (5.6));
(c) if $n>1$ and $1 \leqq p<2 n /(n+1)$, then $T^{p}[f]$ is in general a proper subspace of $L^{\nu}\left(R^{n}\right)$ (see (4.5)).

Concentrating on the case $n>1$, it is natural to ask whether there exist values of p (necessarily greater than or equal to $2 n /(n+1)$) such that $T^{p}[f]=L^{p}\left(R^{n}\right)$ for all f of the type considered. Now Theorem (6.2) shows that it is equivalent to ask whether there exist values of $p(\geqq 2 n /(n+1))$ such that $\hat{f}^{-1}(0)$ is p-thin for each f of the type considered. Furthermore, by the Paley-Wiener-Schwartz theorem, it is the same thing to ask whether there exist such values of p such that $F^{-1}(0)$ is p-thin for all functions $F \neq 0$ on R^{n} which are extendible into entire functions of exponential type of n complex variables. In view of (3.1.iii) and the Weierstrass Vor-
bereitungsatz, this is reduced to determining whether a locus, defined in a neighbourhood of the origin, by an equation of the form

$$
\xi_{n}^{s}+A_{s-1}\left(\xi_{1}, \cdots, \xi_{n-1}\right) \xi_{n}^{-1}+\cdots+A_{0}\left(\xi_{1}, \cdots, \xi_{n-1}\right)=0
$$

where s is a positive integer and the A_{j} are analytic and vanish at the origin, is p-thin for $p \geqq 2 n /(n+1)$.

Whilst (3.3.i) implies an affirmative answer for $p \geqq 2$, the problem is open for $2 n /(n+1) \leqq p<2$.

7. A comparison

In this section we suppose that $G=R$, the additive group of real numbers. In Pollard's version of (2.2), the condition on $Z=\hat{f}^{-1}(0)$, which corresponds to our demand that Z be p-thin, reads as follows: the relations

$$
\begin{equation*}
g \in L^{p^{\prime}}(R), \lim _{\sigma \not 0} \int e^{-\sigma|x|-2 \pi i \xi x} g(x) d x=0 \quad\left(\xi \in Z^{\prime}\right) \tag{7.1}
\end{equation*}
$$

shall imply that

$$
\begin{equation*}
g=0 \text { a.e. } \tag{7.2}
\end{equation*}
$$

If we write $g_{\sigma}(x)=e^{-\sigma|x|} g(x)$, then $g_{\sigma} \in L^{1}(R)$ for $\sigma>0$ and (7.1) reads

$$
\begin{equation*}
\lim _{\sigma \not 0} g_{\sigma}(\xi)=0 \quad\left(\xi \in Z^{\prime}\right) \tag{7.3}
\end{equation*}
$$

We aim to show that this condition is in fact equivalent to the requirement that Z be p-thin.

Suppose first that (7.3) holds, and let \hat{g} denote the Fourier-Schwartz transform of g. From (7.3) it follows (compare the discussion in [11]) that $\lim _{\sigma \downarrow 0} \hat{g}_{\sigma}=0$ locally uniformly on Z^{\prime}. Since $g_{\sigma} \rightarrow g$ in the Schwartz space $\mathscr{S}^{\prime}(R)$, it follows at once that $\hat{g}=0$ on Z^{\prime}, i.e., that supp $\hat{g} \subset Z$.

Conversely, if $g \in L^{p^{\prime}}(R)$ is such that $\operatorname{supp} \hat{g} \subset Z$, and if

$$
K_{\sigma}(\xi)=2 \sigma /\left(\sigma^{2}+4 \pi^{2} \xi^{2}\right)
$$

denotes the Fourier transform of $e^{-\sigma|x|}$, then

$$
\begin{equation*}
\hat{g}_{\sigma}=K_{\sigma} * \hat{g} \tag{7.4}
\end{equation*}
$$

This formula holds indeed in the pointwise sense, as one may verify most easily by observing that \hat{g} is distributionally of the form $u+d v / d \xi$, where $u, v \in L^{2}(R)$. This special form of \hat{g} combines with (7.4) to show also that $\hat{g}_{\sigma} \rightarrow 0$ pointwise on Z^{\prime}, which is (7.3).

Thus Pollard's condition signifies exactly that if $g \in L^{p^{\prime}}(R)$ and $\operatorname{supp} \hat{g} \subset Z$, then $g=0$ a.e. That this is equivalent to saying that Z is
p-thin in the sense of (2.1), follows by considering functions ϕ of the form $k * g$ with (say) k continuous and having a compact support. Each such function ϕ will belong to $C_{0}(R) \cap L^{p^{\prime}}(R)$, and $\operatorname{supp} \hat{\phi} \subset \operatorname{supp} \hat{g} \subset Z$.

References

[1] Wiener, N., The Fourier integral and certain of its applications (Cambridge Univ. Press (1933)).
[2] Segal, I., The group algebra of a locally compact group. Trans. Amer. Math. Soc. 61 (1947), 69-105.
[3] Pollard, H., The closure of translations in L^{y}. Proc. Amer. Math. Soc. 2 (1951), 100-104.
[4] Agnew, R. P., Spans in Lebesgue and uniform spaces of peak functions. Amer. J. Math. 67 (1945), 431-436.
[5] Agnew, R. P., Spans in Lebesgue and uniform spaces of step functions. Bull. Amer. Math. Soc. 51 (1945), 229-233.
[8] Edwards, R. E., The exchange formula for distributions and of spans translates. Proc. Amer. Math. Soc. 4 (1953), 888-894.
[7] Kahane, J.-P., et Salem, R., Ensembles parfaits et séries trigonométriques. Act. Sci. et Ind. 1301 (Hermann, Paris, (1963)).
[8] Kahane, J.-P., Transformees de Fourier de fonctions sommables. Proc. Int. Congress Math. Stockholm 1962, 114-131.
[9] Rudin, W., Fourier analysis on groups (Interscience Publishers (1962)).
[10] Kahane, J.-P., et Salem, R., Sur les ensembles linéaires ne portant pas de pseudomesures. C. R. Acad. Sci. Paris 243 (1956), 1185-1187.
[11] Beurling, A., Sur les spectres des fonctions. Colloques Int. du C.N.R.S. XV. Analyse Harmonique. Nancy 1947. (C.N.R.S., Paris (1949)).
[12] Courant, R., Methods of mathematical physics, Vol. II. Partial Differential Equations (Interscience Publishers (1962)).
[13] Littman, W., Fourier transforms of surface-carried measures and differentiability of surface averages. Bull. Amer. Math. Soc. 69 (1963), 766-770.
[14] Schwartz, L., Théorie des Distributions. Tome I. Act. Sci. et Ind. 1091 (Paris (1950)).
[15] Herz, C. S., A note on the span of translations in L ${ }^{p}$. Proc. Amer. Math. Soc. 8 (1957), $724-727$.
[16] Herz, C. S., The spectral theory of bounded functions. Trans. Amer. Math. Soc. 94 (1960), 181-232.
[17] Pollard, H., The harmonic analysis of bounded functions. Duke Math. J. 20 (1953), 499-512.

Department of Mathematics,
Institute of Advanced Studies,
Australian National University.

