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1. Introduction and preliminaries

Throughout this paper, G denotes a Hausdorff locally compact Abelian
group, X its character group, and LP(G) (1 ^ p ^ co) the usual Lebesgue
space formed relative to the Haar measure on G. If / e L"(G), we denote
by Tp[f] the closure (or weak closure, if p = oo) in LV(G) of the set linear
combinations of translates of /.

Wiener's famous "closure of translations theorem" asserts that, if
feU{G), then T1[f]=L1[G) if and only if Z=f~1(0) is void, / denoting
the Fourier transform of /. Wiener proved the result for G = R, the additive
group of real numbers ([1], p. 98, Theorem 9); it has since been extended
to general G (see, for example, [9], p. 162). Wiener also showed ([1], p. 100,
Theorem 11) that, if / e L*(G), then T2[/] = L*(G) if and only if Z is locally
null; this result also extends (and easily) to general G. If G is compact,
the analogue of Wiener's theorems is true and easy to prove for LV(G),
whatever the value of p ([2], Corollary 3.2.2). But, if G is noncompact,
no such complete results are known for values of p other than 1 and 2.
However, Segal ([2], Theorem 3.3). Pollard [3], Agnew [4], [5], and Ed-
wards [6] have given partial results about TP(G) in case / e U{G) n LP(G)
and G is R or R"; Segal ([2], Theorems 3.3 and 3.4) also gives partial results
about T"[f] for general G, the assumption that / be integrable being replaced
when p > 2 by the demand that / be the Fourier transform of some element
of L*'(G) (llp+ljp' = l). A unified treatment was given by Herz [15]
(and, indirectly, [16] — the main concern of which is the uniform ap-
proximations by linear combinations of translates of bounded uniformly
continuous functions). The writer pleads guilty to having overlooked [15]
until the present paper had been completed and submitted for publication,
at which time private correspondence with Professor Herz corrected the
oversight.

In this paper we start almost ab initio. Sufficient conditions for Tv[f]
to exhaust LV(G) are obtained in Theorem (2.2) in a form slightly less
demanding than in Herz's analogous Theorem 1. Partial converses appear
in Theorems (2.5) and (6.2): these correspond roughly to Herz' Theorem 3.
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[2] Spans of translates in L"(G) 217

These results include those of Segal, Agnew, and Pollard. The relationship
with the results of Pollard are discussed in some detail in § 7: this is thought
to be desirable because Pollard uses Abel summability for Fourier trans-
forms, a technique which is not employed in our general treatment.

In § 3 we collect some results about the class of />-thin sets (our analogue
of Herz's sets of type U"', l/p+ljp' = 1) and give an application in § 4.
In § 5 we consider some connections between ^-thinness for algebraic
varieties and uniqueness theorems for associated partial differential
equations, and use this to discuss some examples. Both here and in § 4,
our examples amplify some of the remarks made in Herz [15]. The case
G = R" is discussed further in §6.

We shall use systematically the generalised Fourier transform $ of
an arbitrary <f>eL°°(G), which transform exists as a pseudomeasure on
X. Concerning pseudomeasures, see [7], Appendices II, III, and [8]. For
our main Theorem (2.2) we shall require only the following facts:

(1.1) if fsV{G) and ^eL°°(G), then (f*<f>f =} ' • $.
(1.2) Pseudomeasures can be localised, so that in particular one can

define the support supp s of a pseudomeasure s to be the complement of
the largest open subset of X on which s is zero. Then, if feLl{G) and
<f> e Z-°°(G), the relation/- ^ = 0 implies that sup ^C / " 1 ^ ) . The spectrum
of <j> can now be defined directly as the support supp ^ of ^.

(1.3) A pseudomeasure having a finite support {£lt • • •, £„} C X is a
linear combination of Dirac measures placed at the points fi, •••,£„.

It should be noted that, although Theorem (2.2) could be stated so
as to include the case p = 1 {i.e., Wiener's theorem), our arguments do not
really simplify the known proofs of the latter, inasmuch as the properties
of pseudomeasures are based upon results about the ring structure of LX(G)
which are of much the same depth as Wiener's theorem itself. Thus the
emphasis is everywhere on the case in which 1 < p < oo and G is non-
compact.

2. The main theorem

We begin with a definition.

(2.1) DEFINITION. A subset E of X is said to be ^>-thin if the relations

(2.1.1) </> e C0(G) n Z/(G), supp ^ C E

imply that

(2.1.2) <f> = 0.

In (2.1.1) it is understood that C0(G) denotes the space of continuous
functions on G which tend to zero at infinity, whilst p' is defined by
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1IP+1IP' = 1.

Some discussion of ^-thin sets will be given in §§ 3 and 5.
Herz [15] uses, in place of our concept of ^-thinness, the notion of

type U*': a closed set E C X is of type Up' if there exists no <f> =£ 0 which is
bounded and continuous, belongs to LP'{G), and is such that supp $ C E.
His Theorem 1 is our Theorem (2.2) to follow, with "p-thin" replaced by
"of type Up'". It is evident that any set of type Up' is ̂ -thin, so that Herz's
Theorem 1 is implied by our Theorem (2.2). I do not know whether, when
p > 1, there exist sets E which are />-thin but not of type U"'.

(2.2) THEOREM. Suppose that 1 < p < oo, that f e V{G) n LP{G), and
that Z = / - l (0 ) is p-thin. Then Tp[f] = L"(G).

PROOF. According to the Hahn-Banach theorem it suffices to show
that if gsLp'{G) satisfies

(2.2.1) / * S = 0 ,

then g = 0 a.e. To this end, take any k eV{G) n LP(G). Then (2.2.1)
implies that

(2.2.2) / * & * # = 0.

Here <f> = k*g belongs to C0{G) r\Lp'(G). Also, (2.2.2) yields via (1.1)
the relation

/ • * = 0.

Using (1.2), this in turn leads to

supp | C Z .

Since Z is assumed to be ^-thin, reference to (2.1) confirms that
<£ = k *g = 0. This being the case for each k eLx(G) n LP(G), it follows
easily that g = 0 a.e. The proof is complete.

A similar argument yields an analogous result for p = oo, this time
in an "if and only if" form, and without assuming that feL1(G).

(2.3) THEOREM. Suppose that /eX°°(G). Then T°\f] = L°°(G) if and
only if suppf = X.

PROOF. The dual of U°(G) relative to its weak topology being
it has to be shown that

(2.3.1) g e L i ( G ) , f * g = O

implies g = 0 a.e., if and only if s u p p / = X. But, by (1.1), (2.3.1) is
equivalent to the equation £ •/== 0. This implies g = 0 {i.e., g = 0 a.e.),
if and only if s u p p / = X, as alleged.
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(2.4) REMARK. There is an almost obvious extension of (2.2), giving
a sufficient condition in order that a given family (ft) of functions in
£X(G) n L*(G) be such that the vector subspace of LP(G) generated by
the translates of all the /,- be dense in LP(G): the said sufficient condition
is that fl /r1(0) be p-thin. There is a similar extension of (2.3).

We next consider a partial converse of (2.2); see also (6.2) for the
case G = R".

(2.5) THEOREM. Suppose that 1 < p < oo, thatfeL1{G) n LP(G), and
that T*\f] = L*(G). Put Z =f-i(0). Suppose that either

(i) the frontier 8Z of Z relative to X is p-thin, or
(ii) Z is an S-set ([9], p. 158).

Then Z is p-thin.

PROOF. The argument proceeds by contradiction. Suppose that Z
were not ^-thin. Then there exists a function <f> ^= 0 in C0(G) n LP'(G)
for which supp $ C Z. It will suffice to show that in either case / * <f> = 0,
i.e., that /•<£ = 0.

In case (ii), this follows from the known properties of S-sets. On the
other hand, it is in any case evident that the relation / • ^ = 0 holds
on a neighbourhood of each point of Z' (complement in X) and on a neigh-
bourhood of each point of the interior of Z. Hence, by the localisation
principle for pseudomeasures, the support of / • ^ is contained in

Z n (interior Z)' = dZ.

Since f *<f>eC0(G) n L"'(G), (i) entails that / * <£ = 0 once more. The
proof is complete.

(2.6) REMARKS, (i) As Herz remarks ([15], Theorem 2*), if
T'[f] = LP(G), then there exists no <f> j± 0 which is both a Fourier-Stieltjes
transform and a member of LP'(G) satisfying supp $ C Z =/~1(0). For,
since $ is now a bounded measure, the relation supp $C Z entails that
/ • $ = 0 and so that / * <f> = 0; since ^ e L*'(G) and T*[/] = L'{G), this
gives <£ = 0. Herein, instead of assuming that <f> is a Fourier-Stieltjes
transform, it is enough to assume that it is the weak limit in U°(G) of
such transforms.

(ii) Herz ([15], Theorem 3) gives a different sort of partial converse
of Theorem (2.2) in which / is further restricted; see also Theorem (6.2)
and the Remarks which follow it.

3. Concerning p-thin sets

We shall collect a number of results which assist in showing that
certain types of sets are ^>-thin, and thus assist in the application of (2.2).

(3.1) (i) Any subset of a p-thin set is £-thin.
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(ii) A set E is ^>-thin if and only if every compact subset of E is >̂-t
(iii) A set E is />-thin if and only if, for each f e X, there is a neigh-

bourhood U(S) of I such that E n U(£) is p-thin.
(v) If E is £-thin, and if q > p, then E is ^-thin.

PROOF. Statement (i) is trivial.
As for (ii) we observe first that, since supp ^ is always a closed set,

(2.1) shows that E is p-thxa. if and only if every closed subset of E is ^>-thin.
Next, assuming that E is closed, if <f> be replaced in (2.1) by functions of
the form k * <f>, where k e £*(G) and supp k is compact, and if it be noted
that <j> is the uniform limit of such functions k * <f>, it appears that E is
p-ihin provided each compact subset of E is />-thin. The converse assertion
is a trivial consequence of (i).

In proving (iii) we may, in view of (ii), assume that E is relatively
compact in X. Then, if E satisfies the stated condition, we can find open
sets Um (m = 1, 2, •••,») which cover E and such that E n Um is />-thin
for each m. By known properties of ^(G), functions ^^^(G) may be
chosen so that supp km C Um and 2m=-i ̂ » = • on a neighbourhood of E.
Then, if <j> is as in (2.1), we have

On the other hand, km * <f> e C0(G) n LP'(G) and supp (km * tf>)~ CE n Um.
Since E n Um is />-thin, km * <f> = 0 for each m, and so <f> = 0.

(iv) This statement is clear from the inclusion

C0(G)nL*(G)CC0(G)nL»\G),

valid whenever q' < p', i.e., whenever q > p.
(3.2) If G is noncompact and p > 1, each discrete subset of X is ̂ -thin.

PROOF. According to (1.3), any finite subset of G is ^>-thin. The rest
follows from (3.1 ii).

(3.3) (i) If p :> 2, any locally null E subset of X is p-thin.
(ii) If 1 ̂  >̂ ^ 2, any £-thin subset E of X is locally null.

PROOF, (i) lip ^2, then p' < 2, so that if <\> is as in (2.1), then the
pseudomeasure ^ is defined by a function in L"(X). Since this same pseu-
domeasure has its support contained in E, the defining function must
vanish l.a.e. outside E and therefore l.a.e. on X. But then <j> = 0, showing
that E is ^-thin.

(ii) Here we have p' 2:2. If E were not locally null, E would contain a
compact set K having positive measure. If <j> is the inverse Fourier transform
of the characteristic function of K, then <£ e C0(G) n L2(G) C C0(G) n ZP'(G)
and satisfies ^(0) = fKd£ > 0. Thus £ is not
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(3.4) If G is noncompact and p > 1, and if E is a compact subset of
X which supports no true pseudomeasures, then E is ^>-thin. (It may be
shown without difficulty that these hypotheses are satisfied whenever E
is both a Helson set and an S-set).

PROOF. If <£ is as in (2.1), then ^ is a bounded measure with support
contained in E. Moreover, as may be shown without much difficulty, the
fact that E supports no true pseudomeasures entails that E is a Helson
set. The conclusion <f> = 0 now follows from [9], Theorem 5.6.10, p. 119.

For G the discrete additive group of integers, examples of such sets
E are given in [10].

(3.5) Suppose that G is noncompact and p > 1. Let E be subset of X
contained in an S-set S with the following property; if, for any complex
number z of unit modulus, we define

At = {xeG: £(*) = * for all £ 6 S}

(so that A1 is the annihilator in G of S), then the closed subgroup Go of G
generated by

U {A. • \A = 1}

is noncompact. Then E is />-thin.

PROOF. Let <f> be as in (2.1), and let a e Az for some z. Since S is an
S-set and supp $CS, ^ is the strict (and hence the pointwise) limit of
trigonometric polynomials formed from elements of S. It follows at once
that </>(x+a) = z • <f>(x) identically in zeG. Consequently \<f>{x-\-a)\ =
\<f>(x)\ for all x e G and all a e Go. Since <f> s C0(G) and Go is noncompact,
it follows that <f> = 0.

(3.6) It is convenient to list here a few categories of S-sets; for the
following results, see [9], pp. 161, 169—172.

(i) If E is closed and 8E contains no nonvoid perfect sets, then E is
an S-set. Any C-set is an S-set.

(ii) Any finite set is a C-set. If ZE is a C-set, so too is E.
(iii) A finite union of C-sets is a C-set.
(iv) Any closed subgroup of X is a C-set.
(v) Any translate of an S-set [resp. a C-set] is an S-set [resp. a C-set].
(vi) If E is a closed semigroup in X such that 0 belongs to the closure

of the interior of E, then E is an S-set.
(vii) If G = R" = X, any closed rectilinear simplex, any vector sub-

space, any closed halfspace, any closed polyhedral set, and any star-shaped
body is a C-set.

(3.7) (i) Suppose that Ex C E are subsets of X, that Ex is a £-thin
C-set, and that E n U' is ̂ >-thin for every open set U D E1. Then E is
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(ii) If E1 and E2 are />-thin subsets of X, E1 being a C-set, then
E — 2?! u £ 2 is />-thin.

(iii) If ^ ! , • • •, En are />-thin C-sets, then so too is E = Ex u • • • u En.

PROOF. Statement (ii) follows directly from (i) since, if the hypotheses
of (ii) are fulfilled, E n U' C E2 for every U D Ex. Statement (iii) follows
from (ii) by induction, in view of (3.6.iii). Thus all depends on proving (i),
which we shall effect in two steps.

(a) Denote by A(X) the set of all functions u on X of the form

v ranging over L1^). A(X) is made into a Banach space under the norm
IML = IMli- The dual of A(X) is precisely the space P(X) of pseudo-
measures on X. We aim to show that, under the hypotheses of (i), every
pseudomeasure s on X is the weak limit in P(X) of pseudomeasures of the
form

(3.7.1) p+g-s,

where fi is a bounded Radon measure on X satisfying supp fiC Et and
g e l ' ( G ) is such that supp^CC/' for some neighbourhood U of Elt U
possibly depending on g. In order to do this, we have to show that any
ueA(X), orthogonal to all pseudomeasures of the form (3.7.1), is or-
thogonal to s.

Now, if u is orthogonal to all pseudomeasures of the form (3.7.1), it
appears first (by taking g = 0) that u vanishes on Et. Since Ex is a C-set,
this entails ([9], p. 169) that u is the limit in A {X) of functions £ • u, where
the variable function g is as specified in (3.7.1). But then

s(u) = lim s(g • u) = lim£ • s(u) = lim 0 = 0,

since by hypothesis w is orthogonal to all pseudomeasures of the form
(3.7.1). This establishes the possibility of the said approximation.

(b) Suppose now that <j> is as in (2.1), and that the hypotheses of (i)
are satisfied. By (a) we can write

(3.7.2) I = lim (fit+gt • 4)

weakly in P[X), the /it being bounded Radon measures on X satisfying
supp [x€ C Eit and g( e LX(G) being such that supp^, C U'j for some neigh-
bourhood U{ of E1. Now gt • $ is the transform of g( * <f>, which (like <j>)
belongs to C0(G) n LP'(G). Since also supp£, • ^ C E n U't, and since
E n U't is £-thin by hypothesis, it follows that gt * <j> = 0. Thus (3.7.2)
reads simply

^ = lim /if
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weakly in P(X), which shows that supp ^ C If],. So, since Ex is />-thin,
<f> = 0. This completes the proof of (i).

(3.8) If G is noncompact and p > 1, and if E is a subset of X whose
derived set Ex is a />-thin C-set, then If is p-thirx.

PROOF. If U is any neighbourhood of Elt E nU' is discrete. It suf-
fices now to apply (3.7.i).

(3.9) Let (E{) be a locally finite, disjoint family of closed />-thin sets.
Then E = \J E( is p-thia.

PROOF. In view of (3.1), it suffices to show that the union, E, of two
disjoint compact />-thin sets, Ex and E2, is p-ttiin.

Now Ex and E% possess disjoint neighbourhoods Ux and U2. Choose
fk (k = I, 2) from Ll(fi) such that / , = 1 on a neighbourhood of Ek and
supp/t C t/fc. If ^ is as in (2.1) we shall have ^ = / 1 * ^ + / 2 * ^ , since
/1+/2 = 1 on a neighbourhood oi ED supp$. Then fk* <f> eC0(G) n Lv'{G)
and supp ( / t * ^ ) ' v C ! J t n £ = 2?fc. Since if* is />-thin, so fk * <f> = 0 and
therefore <£ = 0. Thus if is £-thin.

(3.10) Both (3.7) and (3.9) prompt the question: Is it always true
that the union of two />-thin sets is again ^-thin? An affirmative answer,
for the special case in which G = Rn and the sets concerned are closed, is
given in (6.2).

Some more specialised examples of />-thin sets are given in § 5.
(3.11) Herz ([15], Theorem 4) gives two conditions, each of which is

sufficient to ensure (when p 5̂  2) that a closed set E C Rn is of type Up'
(and therefore certainly />-thin), namely:

(i) the (Haar) measure of the set of points at distance below h from
K is o[h"(Z/v~v] as h -*• 0, K being any compact subset of E;

(ii) the Hausdorff dimension of E is inferior to 2n{p—l)jp.

4. An application

We discuss an application of (2.2) which in a sense extends the result
of Segal, and presents at the same time a multidimensional generalisation
of Agnew's results.

(4.1) Suppose that Gk (k = 1, 2, • • •, n) are noncompact groups, the
character group of Gk being denoted by Xk. Put G = Gxx • • • xGn, whose
character group is (isomorphic to) X = Xxx • • • xXn.

Let fkeL1(Gk) n Lp(Gk) be such that

(4.1.1) Zfc=/*-1(0) is discrete.

Let feL1(G)nL"(G) be defined by
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(4.2) THEOREM. Assume that the hypotheses of (4.1) are fulfilled, and
that 1 < p < oo. Then Tp\j] = LP(G).

PROOF. From (4.1.2) it follows that

whence it appears that

(4.2.1) Z =/- i (0) = ( 2 l X Z 2 x • • • XXJ • • • (Xxx • • • xXn_xxZn).

We must show that Z is a />-thin subset of X.
For each k, let Kk be a compact subset of Xk. If K=K1X • • • X/Cn

then (4.2.1) shows that

(4.2.2)

where
xXn

and the remaining (?j. are similarly defined. Since Zx is discrete, Kx n Zt

is finite. Therefore Qx is a finite union of sets of the form

W x X s x ••• x l , ,

where a.1eX1. Each of these latter sets is a translate of {0} X X2 X • • • X Xn

= Px, say. The set Px is a C-set, by (3.6.iv), and its annihilator in
G is G1x{0}x • • • x{0}, which is noncompact. By (3.5), therefore, Px is
£-thin. That Qx is a £-thin C-set now follows from (3.6.v) and (3.7.iii).
Similarly, each Qk is a p-thin C-set. Applying (3.7.iii) again, (4.2.2) shows
that K n Z is p-thm. Since the compact sets K here considered form a base
for the compact subsets of X, it follows from (3.1) that Z is ^-thin.

The proof is completed by appeal to (2.2).

(4.3) REMARK. If, in (4.2), one or more of the Gk are compact, the
theorem will remain valid provided the corresponding sets Zk are void.

(4.4) COROLLARY. Suppose that 1 < p < oo and that f is a non-null
function on Rn of the form

f{x) = /x(x,) • • • /.(*„),

where for each k = 1, 2, • • •, n, fk e LP(R) and vanishes a.e. outside some
compact subset of R. Then Tp[f] = Lp(Rn).

PROOF. In this case, /^(O) is a discrete subset of R (identified with
its own character group in the usual way), since }k is an entire function
which does not vanish identically.

(4.5) Notwithstanding Corollary (4.4), when n > 1 it is not the case
that any non-null / e Cc(R

n) has the property that T*[f] = L»{R") for
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every p satisfying 1 < p < oo. (The corresponding assertion with n = 1
is excluded by Corollary (4.4), of course.) A simple counterexample follows.

In general we identify the character group of Rn with Rn itself, the
character function being

k=l

In Rn, let S denote the unit hypersphere, s the surface measure on S,
and |S| = $sds. The function <f> on Rn defined by

is expressible as a nonzero constant multiple of >'~**f*7'jn_j(2jw), where
r = (z\ + • • • +a;£)£ and /„ denotes the v-th order Bessel function. Well-
known properties of /„ show that <f> e C0(R

tt) n Lv\Rn) provided « > 1
and p' > 2»/(«—1), i.e., provided n > 1 and /> < 2»/(w+l). Since ^ is a
measure supported by S, it follows that S is not ^>-thin for any p satisfying

Now suppose that / e Ce(R
n) is of the form

where u ^= 0 belongs to Ce(R
n), and where A denotes the Laplacian. Then,

if , = ({?+•••+£)*.

vanishes on 5, and / ^ 0. It follows, since ^ is a measure supported by S,
that / * <£ = 0. Since ^ =ẑ  0, this last equation shows that T'\f] ^ L*(Rn)
for 1 ^ / » < 2 » / ( « + l ) .

For this same /, Theorem (2.2) and (3.3.i) combine to show that
T'\f] = L*(Rn) whenever p ^ 2. The truth of the relation T>[f] = L»(Rn)
remains undecided for values of p satisfying 2«/(w4-l) :g p < 2. See also
(5.6) and (6.3).

Herz ([15], final paragraph) remarks that "consideration of a few
Bessel functions" will show that if p < 2M/(W+1) there exist non-null
functions feL"(Rn) with a compact support such that Tp[f] ^Lp(Rn).
In (5.4) infra we see in detail how Bessel functions appear in a related
connection.

5. Algebraic varieties and p-thin sets

(5.1) Throughout this section we take G = R", identified with its
own character group as in (4.5). In this case, as is easily verified, the
pseudomeasure ^ can be identified with the distributional Fourier transform
o f <f>.
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We shall consider, in respect of ^-thinness, sets VCR" which are (not
necessarily irreducible) algebraic varieties in Rn. Thus V will be defined by
a system of equations

(5.1.1) Pt(E) ^ P<(flf • • -, SJ = 0 (iel),

each P, being a polynomial over the complex field in n indeterminates. (The
polynomial ring being Noetherian, it is always possible to define V by a
system (5.1.1) in which the index set / is finite, but we do not need to
assume this here.)

For each polynomial P we denote by P{D) the linear partial dif-
ferential operator

It is a convenient piece of notation to denote by FP(R") the set of
functions </> on Rn which, together with each of their partial derivatives,
belong to C0(R

n) r>Lv'(Rn), and which are such that supp^ is compact.
Each <f> e F"(Rn) is necessarily analytic on Rn (and even extendible into
an entire-analytic function of n complex variables).

The following simple result will be needed.

LEMMA. For n = 1, 2, • • • and 1 ^ p ^ oo, define

( 0 if p ^ 2,

2[(2-p)nl±p]+2 if n ^ 2 and 1 ^ p < 2,
1 if n = 1 and 1 ^ p < 2,

K//jere 2fte square brackets on this occasion denotes the integral part. If<f>e Fp(Rn),
then $ is a distribution of order at most mn>p.

PROOF. If p ^ 2, ^ is a function. If 1 ^ /> < 2 and w ^ 2, Holder's
inequality shows that, if m = wB>J) and <£ e F»(#n), then <£ = (1+r2)*"1/,
where feLz(Rn) and r = (â  + •'• • + < j i . Consequently,

where J denotes the M-dimensional Laplacian and feL%{Rn). Similar
estimates apply when n = 1.

We can now relate the property of />-thinness of an algebraic variety
V to a uniqueness property of the corresponding system of partial dif-
ferential equations.

(5.2) THEOREM, (i) Suppose that V, defined by (5.1.1), is p-thin, and
that (ntf) is any family of nonnegative integers. Then the system

(5.2.1) + e C0(R") n L*(R*), P,(2))"'^ = 0 (iel)

has only the trivial solution <f> = 0.
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(ii) Let m = mn>v be defined by (5.1.2) and suppose that the system of
partial differential equations

(5.2.2) ^ e F»(R"), P{(D)m+l<f> = 0 (» e I)

has only the trivial solution (f> = 0.
Then V, defined by (5.1.1), is p-thin.

PROOF, (i) If <j> satisfies (5.2.1), then, on taking Fourier transforms,
it is seen that

P , ( f ) -^ = 0 (iel).

This system of equations entails that supp $ C Pj1 (0) for i e I, and hence
that supp | C F . Since V is ^>-thin, it follows that <f> = 0.

(ii) Suppose that ^ e C0(i?
n) n Z"'^") and supp $CV: it must be

shown that <j> = 0. By considering in place of ^ functions of the type
<f> * h, where h is the inverse Fourier transform of an element of Cf{Rn),
we may assume from the outset that <f> e F"(Rn). Now, since supp $ is a
subset of V, the lemma in (5.1) combines with a known theorem ([14],
pp. 97-98, Theoreme XXXIII) to show that P™+1 • ̂  = 0, i.e., that
Pi(D)m+14> = 0, for each iel. Thus ^ is a solution of the system (5.2.2)
and is therefore trivial.

(5.3) COROLLARY. Let V be an algebraic variety in R" defined by an
equation

(5.3.1) P(f) = 0,

P being a polynomial. In order that V be p-thin, it is
(i) necessary that the implication

(5.3.2) <f> e C0(R
n) n L»'(Rn), P{D)</> = 0 => 4, = 0

be valid, and

(ii) sufficient that the implication

(5.3.2) <f> e F'[Rn), P(D)<f> = 0 => <f> = 0

be valid.
PROOF, (i) The necessity of the validity of (5.3.2) follows at once from

(5.2.i).
(ii) The sufficiency of the validity of (5.3.2) follows from (5.2.ii), if

one remarks that Fv(Rn) is stable under partial differentiations and hence
under the operator P(D).

(5.4) As an application of Corollary (5.3), we will show that if n > 1
an (n— 1)-dimensional hypersphere S in i?" is ^>-thin if and only if
p ^
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Indeed, the arguments in (4.5) show that S is not ^-thin if
p < 2»/(«+l). Turning to the converse, we start from the associated dif-
ferential equation, which in this case takes the form

(5.4.1) A<f>+c2<f> = 0 ,

where c > 0. Suppose that <j> is a solution of (5.4.1) which belongs to
C0{Rn) n Lv'(Rn). We aim to show that, if p ^ 2»/(»+l), then <£ = 0.
By replacing <f> by any translate thereof, it will suffice to show that <j>(0) = 0.
To this end, we denote by ST the hypersphere in Rn with centre 0 and
radius r, and write sT for the surface measure on Sr. Then ([12], p. 289)
one has

(5.4.2) r$n) (<T)-i»+\7i,.-i W ( 0 ) = |Sr|-i J dsr,

where \Sr\ = J dsT = const. rn~x. By Holder's inequality,

(5.4.3)
= IS,.!1'" • Mir)1'",

where
M{r) =

Now

Also, as r ->- oo,

(c) ~ (2Mcr)i cos [cr-(Jn-

The cosine factor here is bounded away from zero on each of an infinite
sequence of disjoint congruent intervals. Since J™ M(r)dr < oo, it follows
that a sequence rt -> oo may be chosen from these intervals such that
rtM(r,) -> 0. From (5.4.2), (5.4.3), and (5.4.4) it then appears that

const. r* - i • |Sr |-

Taking r = r{, this yields

0(O)| ^ const. rjn-iH [^

Letting i -> oo, this gives <£(0) = 0, provided that

i.e., provided that p ^ 2w/(«+l).
(5.5) The result in (5.4) for hyperspheres naturally extends to images

of hyperspheres under vector space isomorphisms of Rn. We note also that
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results given by Littman [13] show that sufficiently smooth (»—l)-dimen-
sional surfaces in Rn which have everywhere positive Gaussian curvature
fail to be />-thin for 1 ^ p < 2»/(«+l).

(5.6) EXAMPLE. Consider a function / on Rn which is a function of
r = (a^+ • • • +x*)* only, say f(x) = F(r), where

f |F(r)|r—1ir < oo, f°° |F(r)|V—^ < oo.
J 0 JO

The Fourier transform of / is then of the form /(f) = G(p), where
P = (f*+ • • • +f*)i and

If we assume that G(p) is zero for a set of p 2; 0 which is discrete, and
that p ^ 2»/(»+l), then (2.2), (3.9), and (5.4) combine to show that
Tp[f] = Lp{Rn). The stated condition on the zeros of G is certainly satisfied
if / is nonnull and has a compact support.

6. Further results for O = R"

The principal result of this section, Theorem (6.2), gives for G = Rn

another partial converse of Theorem (2.2) in which / itself (rather than
merely the set/~1(0)) is further restricted. At the same time, it provides
an almost complete answer (for G = Rn) to the question raised in (3.10).

The proof of (6.2) uses a lemma, which is valid for general G.

(6.1) LEMMA. Suppose that fteL1(G) n LP(G) and r»[/4] = LP(G) for
i = 1, 2. Then f = ft * /2 eV{G) n LP(G) and Tp[f] = L'(G).

PROOF. It is simple to verify that, if heL*(G) and T"[h] = L"(G),
then to each e > 0 and each g e LP(G) there corresponds a function k
which is continuous and has a compact support such that ||A * k— g\\v < s.
(Notice that each translate of h is the limit in LP(G) of functions h * k
with k as specified.) This being so, we first choose kt so that
||/1*^1—g\\v < Je. Then, since k1eLp(G), we may choose k2 so that
||/2 * k2—A^l, < \e- H/jllr1. Combining these inequalities, it is seen that
11/ * 2̂—£ll» < e. Finally, / * k2 is the limit in LP(G) of linear combinations
of translates of /. Thus g e Tp\j] and the lemma follows.

Let now m = mn „ be defined as in (5.1.2), and let us denote by
Kp(R») the set of /e i ' ( i ?" ) n L*(Rn) such that / e Cm{Rn). Obviously,
Kp(Rn) is a convolution algebra containing the Schwartz space S?(Rn).
It is simple to show that any closed subset E of Rn is the zero-set f'1 (0)
for some / e Sf (Rn). In fact, let Ur be the set of points of R" at distance
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less than f1 from E. By Urysohn's lemma, there exists a continuous
function FT : Rn -> [0, 1] which vanishes on E and takes the value 1 on
U'r. By regularisation, we may assume that FrsC'x(Rn) and that each
mixed partial derivative DvFr is bounded. Let

so that WD'faFJWn ^ r-2 for r ^ \p\. It follows then that

r=l

and that DPF is bounded for each p. The function I -> c~IJ|tF(f) belongs
to 5^(2?") and so can be expressed as / for some / e £P{Rn). Evidently,
F-^O) = F , which confirms the claim made above.

We can now state and prove the main result of this section.

(6.2) THEOREM, (a) Let E be a closed subset of Rn. In order that E be
p-thin it is

(i) sufficient that

(6.2.1) / e ST(R*), f-^O) CE^ T*[f] = £»(/?"),

and
(ii) necessary that

(6.2.2) feK"(R"), /^(O) C E => r"[/] = £»(#").

(b) The validity of either implication, (6.2.1) or (6.2.2), is thus necessary
and sufficient that E be p-thin.

(c) The union of two p-thin closed subsets of Rn is p-thin.

PROOF, (a) Suppose that the implication (6.2.1) is valid. As we have
shown, E can be written as f-1 (0) for some / e S"(Rn). If E were not ^-thin,
we could choose <f> e C0(R

n) n L"'(Rn) such that s u p p $ C E and <f> # 0.
Let £ = / * • • • * / , with m+1 factors. Then g e Sf{Rn) and g and its
partial derivatives of orders at most m all vanish on E. So ([14], pp. 97—98,
Theoreme XXXIII again) g • $ = 0, i.e., g * <f> = 0. Since <f> ^ 0, this shows
that T*\g\ # Z»(#n) and so, by (6.1), that r»[/] ^ L»(Rn). This estabhshes
the sufficiency of (6.2.1).

The necessity of (6.2.2) is a special case of (2.2).
(b) This follows at once from (a) and the obvious implication

(6.2.2) => (6.2.1).
(c) Suppose Ef (i = 1, 2) are closed ^>-thin subsets of Rn and that

E = Exu E2. Write F< = / r 1 ( 0 ) with /,- 6 SP{Rn). Put f = f1*fi, which
belongs to Sf(Rn). By (b), r p [ / f ] = L»(Rn) for i = 1, 2 and so, by Lemma
(6.1), T'\f\ = L»(Rn). Since/-i(0) = E, another application of (b) entails
that E is />-thin.
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REMARKS. Part (a) of Theorem (6.2) as akin to Theorem 3 of Herz
[15], inasmuch as both constitute partial converses of our Theorem (2.2)
and his Theorem 1, respectively. On the other hand, Herz's Theorem 3
corresponds to a considerably stronger form of the implication (6.2.2),
differentiability properties of / being replaced by Lipschitz conditions on / .
As is implicit in [15] and [16], it is possible to show that if s is any pseudo-
measure on X, and if / e LX(G) is such that / satisfies a Lipschitz condition
of order a > 0 and vanishes on supp s, then /"»• s = 0 holds for all suffi-
ciently large integers m. We here interpret the Lipschitz condition on /
as meaning that, for some base (Ut) of relatively compact neighbourhoods
of 0 in X,

l/(*')-/(*)! ^ const, [meas Uf]*
for f ' - f eUt.

More precisely and more generally: if / e X1(G) n LV(G) (1 ^ p t£, oo)
and <f> e L?'(G), then / *<f> = 0 provided / = 0 on supp <f> and

= 0 ([meas f/J1/"-*)

for f eK+Uit K being any compact subset of supp cj>. (The Lipschitz con-
dition becomes void, and can be dropped entirely, if p > 2.) The case
p = 1 is an extension of a result of Pollard [17] for the case G — R. Compare
Herz [16], Lemma 4.4.

(6.3) We collect here a few remarks bearing upon a problem first raised
by Herz ([15], final paragraph).

Consider again the case in which feLv(Rn) is nonnull and vanishes
a.e. outside some compact subset of R". The following facts have already
emerged:

(a)If» = landp > 1, or if n is arbitrary and p ^ 2, then r»[/] =£,"(£)
(see Theorem (2.2));

(b) If p > 1 and n is arbitrary, and if / has the special form described
in (4.4), then T'[f] = Lp(Rn); and likewise if n > 1 and p ^ 2«/(»+l)
(see (5.6));

(c) if n > 1 and 1 ^ p < 2M/(M+1), then T"\J] is in general a proper
subspace of L'(Rn) (see (4.5)).

Concentrating on the case n > 1, it is natural to ask whether there
exist values of p (necessarily greater than or equal to 2M/(«+1) ) such that
Ts[f] = Lv(Rn) for all / of the type considered. Now Theorem (6.2) shows
that it is equivalent to ask whether there exist values of p (2: 2nj(n+l))
such that / - 1 (0) is ^>-thin for each / of the type considered. Furthermore,
by the Paley-Wiener-Schwartz theorem, it is the same thing to ask whether
there exist such values of p such that F'1^) is ^>-thin for all functions
F ^ 0 on Rn which are extendable into entire functions of exponential
type of n complex variables. In view of (3.l.iii) and the Weierstrass Vor-
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bereitungsatz, this is reduced to determining whether a locus, defined in
a neighbourhood of the origin, by an equation of the form

Z+A^fo, • • : f«-i)£T1+ • • • +A0(Slt • • >, S^) = 0,

where s is a positive integer and the A, are analytic and vanish at the
origin, is ^>-thin for p 2> 2«/(«4-l).

Whilst (3.3.i) implies an affirmative answer for p 2: 2, the problem
is open for 2»/(»+l) 52 p < 2.

7. A comparison

In this section we suppose that G = R, the additive group of real
numbers. In Pollard's version of (2.2), the condition on Z =/-1(0), which
corresponds to our demand that Z be p-thin, reads as follows: the relations

(7.1) ge IS(R), lim f e~v^-^xg{x)dx = 0 (f e Z')
<rlOJ

shall imply that

(7.2) g = 0 a.e.

If we write ga{x) = e~~*Wg(z), then g<reL1(R) for a > 0 and (7.1) reads

(7.3)

We aim to show that this condition is in fact equivalent to the requirement
that Z be £-thin.

Suppose first that (7.3) holds, and let g denote the Fourier-Schwartz
transform of g. From (7.3) it follows (compare the discussion in [11]) that
lima.l0ga. = 0 locally uniformly on Z'. Since gv -*• g in the Schwartz space
&"{R), it follows at once that g = 0 on Z', i.e., that suppgCZ.

Conversely, if g e LP'(R) is such that supp | C Z, and if

denotes the Fourier transform of e"0"1*', then

(7.4) i. = K.*§.

This formula holds indeed in the pointwise sense, as one may verify most
easily by observing that g" is distributionally of the form u+dv/d^, where
u, v eLi(R). This special form of £ combines with (7.4) to show also that
£„ -> 0 pointwise on Z', which is (7.3).

Thus Pollard's condition signifies exactly that if g e V (R) and
supp gC Z, then g = 0 a.e. That this is equivalent to saying that Z is
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/>-thin in the sense of (2.1), follows by considering functions <f> of the form
k * g with (say) k continuous and having a compact support. Each such
function <f> will belong to C0{R) nL*'(R), and supp $ C supp £ C Z.
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