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Abstract

We prove that maximal annuli in L3 bounded by circles, straight lines or cone points in a pair of parallel
spacelike planes are part of either a Lorentzian catenoid or a Lorentzian Riemann’s example. We show
that under the same boundary condition, the same conclusion holds even when the maximal annuli have
a planar end. Moreover, we extend Shiffman’s convexity result to maximal annuli; but by using Perron’s
method we construct a maximal annulus with a planar end where a Shiffman-type result fails.
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1. Introduction

In 1956, Shiffman [18] proved simple but beautiful theorems on minimal surfaces
lying between two horizontal planes. Let M be a minimal annulus in R3, P1, P2
horizontal planes such that ∂M = C1 ∪ C2 and Ci ⊂ Pi for all i = 1, 2. First,
Shiffman’s circle theorem: for any horizontal plane P between P1 and P2, M ∩ P
is a circle whenever C1, C2 are circles. Second, Shiffman’s convexity theorem: for
any horizontal plane P between P1 and P2, M ∩ P is a convex Jordan curve whenever
C1, C2 are convex Jordan curves. Fang [3] generalized Shiffman’s circle theorem
when a minimal annulus is bounded by a circle and a straight line in parallel planes.
In the case where both curves are straight lines, they must be parallel. Moreover Fang
and Wei [6] proved that a minimal annulus with one planar end, bounded by straight
lines or circles in a pair of parallel planes, is part of a Riemann’s example. On the
other hand, Shiffman’s convexity theorem does not hold when the minimal annulus
has a planar end. Fang and Hwang [5] constructed a minimal annulus with a planar
end bounded by a circle and a strictly convex noncircular Jordan curve such that its
intersection with a horizontal plane is a nonconvex Jordan curve.
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[2] Maximal annuli with parallel planar boundaries L3 209

By analogy with minimal surfaces in R3, López et al. [16] proved that (i) only
Lorentzian catenoids and Lorentzian Riemann’s examples are foliated by circles in
parallel planes. And they proved a theorem similar to that of Enneper (see [17]),
that is, (ii) on a maximal spacelike surface foliated by pieces of circles, the planes
containing these circles must be parallel. By (ii), we can rewrite (i) as follows: only
Lorentzian catenoids and Lorentzian Riemann’s examples are foliated by pieces of
circles. Also, they proved a theorem similar to Shiffman’s circle result: (iii) given a
maximal annulus M bounded by two parallel planar circles, the intersection of M with
a plane parallel to the boundary circles is again a circle. Hence, the maximal annulus
is part of a Lorentzian catenoid or a Lorentzian Riemann’s example.

In this paper we extend Fang, Hwang and Wei’s works to the maximal version
(see [3, 5, 6]). We have organized the present paper as follows.

In Section 2 we review some well-known facts on the Lorentz–Minkowski space.
In particular, we refer the readers to the result in López et al. [16].

In Section 3 we consider maximal annuli bounded by parallel planar curves which
have constant curvature. We prove the Lorentzian version of Shiffman’s circle
theorem.

THEOREM 1 (See Theorem 3.1). A maximal annulus, bounded by straight lines,
circles or cone points in a pair of parallel planes, is part of a Lorentzian catenoid
or a Lorentzian Riemann’s example. If both curves are straight lines, they must be
parallel.

In Section 4 we consider maximal annuli with a planar end bounded by parallel
planar curves of constant curvature.

THEOREM 2 (See Theorem 4.1). A maximal annulus with a planar end, bounded by
straight lines, circles or cone point in a pair of parallel planes, is part of a Lorentzian
Riemann’s example.

In Section 5 we prove the Lorentzian version of Fang and Hwang’s theorem. More
precisely, we have the following theorem.

THEOREM 3 (See Theorem 5.2). We construct a maximal annulus with a planar
end bounded by a circle and a strictly convex noncircular Jordan curve such that its
intersection with a horizontal plane is a nonconvex Jordan curve.

2. Preliminaries

Let L3 be the three-dimensional Lorentz–Minkowski space, that is, the real vector
space R3 endowed with the Lorentz–Minkowski metric 〈, 〉, where 〈, 〉 = dx1

2
+

dx2
2
− dx3

2 and x1, x2, x3 are the canonical coordinates of R3. We say that a vector
v ∈ R3

− {0} is spacelike, timelike or lightlike if |v|2 = 〈v, v〉 is positive, negative or
zero, respectively. The zero vector 0 is spacelike by convention. A plane in L3 is
spacelike, timelike or lightlike if the normal vector of the plane is timelike, spacelike
or lightlike, respectively. An immersed surface 6 ⊂ L3 is called spacelike if every
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tangent plane is a spacelike. An immersed spacelike surface6 is called maximal if the
mean curvature is zero everywhere.

Near a regular point of a maximal surface, a unit normal vector field can be
considered as a Gauss map

N :6→H2
= {(x1, x2, x3) ∈ L3

: x1
2
+ x2

2
− x3

2
=−1},

where H2 is the hyperbolic sphere in L3 with constant intrinsic curvature identically
−1. Denote by C the extended complex plane C ∪ {∞}. Let the stereographic
projection σ for H2 be defined by

σ : C− {|z| = 1} →H2, z 7→

(
2 Im(z)

|z|2 − 1
,
−2 Re(z)

|z|2 − 1
,
|z|2 + 1

|z|2 − 1

)
,

where σ(∞)= (0, 0, 1), that is, σ(z) is the intersection of H2 and the line joining the
point (Re(z), Im(z), 0) and ‘the north pole’ (0, 0, 1) of H2. It is well known that σ is
conformal in the natural manner. Here H2 has two connected components

H2
+ :=H2

∩ {x3 ≥ 1} and H2
− :=H2

∩ {x3 ≤−1}.

Since6 is of zero mean curvature, the coordinate functions x1, x2, x3 are harmonic
functions and hence it admits a Weierstrass representation (see [14] for details).

THEOREM 2.1 (Weierstrass representation of maximal surface in L3). Any maximal
spacelike surface in L3 is represented as

X (p)= Re
∫ p(1

2
(1+ g2)η,

i

2
(1− g2)η, gη

)
= Re

∫ p

(ω1, ω2, ω3), p ∈ D

(2.1)
where D is a domain in C, and η (respectively, g) is holomorphic 1-form (respectively
meromorphic function) on D such that g2η is holomorphic 1-form on D and that
|g(ζ )| 6= 1 for ζ ∈ D. Moreover:

(a) the Gauss map N is given by N (ζ )= σ(g(ζ ));
(b) the induced metric is given by ds = (|1− |g|2||η|/2);
(c) the Gauss curvature is given by K = [4|dg|/|1− |g|2|2|η|]2.

REMARK 2.2. Many properties of maximal surfaces are similar to minimal surfaces.
Contrary to the case of minimal surfaces, maximal surfaces have naturally arising
singularities due to the geometry of the Gauss map. And since the Gauss curvatures of
maximal surfaces are always nonnegative, so every maximal surface is stable.

Following Calabi [1] (for a general method, see [2]), every nonplanar complete
maximal surface has singularities. Hence, many authors has studied singularities
intensively (see [7, 8, 15, 19]). Let X :D→ L3 be a continuous map defined on
an open disc D, q be a interior point of D, and suppose that X is a maximal
immersion on D − {q}. Let z be a conformal parameter on D − {q} associated to the
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metric ds2
= λ2(z)|dz|2 induced by X , where λ(z) > 0 for any z ∈ z(D − {q}). Define

q to be an isolated singularity of X if for any sequence {qn} ⊂D − {q} tending to q ,
the limit limn→∞ λ(z(qn)) vanishes. In this case, we say that X (D) is a maximal
surface with a singularity at X (q). There are two kinds of isolated singularities called
branch points and conelike singularities.

In the case where D − {q} endowed with a induced complex structure is
conformally a once punctured disc, then q is called a branch point. This means that
η = 0 near q , η is a holomorphic 1-form of Weierstrass representation and the surface
cannot be embedded.

Suppose now that D − {q} is conformally to an annulus {z ∈ C : 0< r < |z|< 1}.
If X can be extended continuously to

C0 = {z ∈ C | 0< r < |z| ≤ 1} with X ({|z| = 1})= X (q).

In this case we call q a conelike singularity, P0 = X ({|z| = 1})= X (q) is called a
cone point, and the surface is embedded near the cone point. At the cone point,
maximal surfaces are naturally extended.

LEMMA 2.3 (Extension for a cone point in L3
[7]). Let X0 : C = {r < |z|< 1} → L3

be an embedded maximal surface with cone point P0 = X0({|z| = 1}), then the
following holds.

Let the Weierstrass data (g, η) of X0 satisfy that g is injective and |g| = 1 on
{|z| = 1} and η 6= 0 on {|z| = 1}. The surface X0 reflects analytically about {|z| = 1}
to the mirror surface. More precisely, let J (z)= 1/z denote the inversion about
{|z| = 1}, the mirror surface X∗0 has the Weierstrass data (J ∗g = 1/g, J ∗φ =−φ) and
satisfies X∗0 =−X0 + 2P0, where P0 = X0({|z| = 1}). Moreover, for any spacelike
plane 5 contains P0 the Lorentzian orthogonal projection π : X0→5 is a local
homeomorphism and near P0, X0 is asymptotic to the half light cone with vertex at P0.

A circle in L3 is defined to be a planar curve with nonzero constant curvature.
Therefore, there are three different types of circles in L3 since there are three different
types of planes in L3. In this paper, however, circles are the same as in R3 since we
focus only on spacelike planes in L3. Straight lines in L3 are defined as similarly.

We introduce Lorentzian Riemann’s examples.

THEOREM 2.4 [16]. Let X : M→ L3 be a spacelike conformal nonplanar maximal
immersion of a Riemann surface M. If X (M) is foliated by pieces of Euclidean circles
in parallel planes with normal Euclidean vector v = (0, 0, 1), then, up to scaling and
linear isometries in L3, the Gauss map g of X satisfies:

(1) dg/dz = g; or
(2) (dg/dz)2 = g(g2

+ 2rg + 1), where r ∈ R.

We call the first case a Lorentzian catenoid and the second case a Lorentzian
Riemann’s example.

Now we consider a connected component of the outside of a Euclidean ball. This
connected component is conformally equivalent to a punctured disc and the metric has
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a pole at the puncture. The connected component is called an end. The asymptotic
behaviour of an end is similar to an end of minimal surfaces (see [17] for details). A
similar result in the Lorentzian setting can be found in [11]. Also a different approach
to an end by Klyachin can be found in [13]. We omit the proof.

LEMMA 2.5. Let X :D\{0} → L3 be an embedded end of the maximal surface with
vertical limit normal and the Weierstrass data (g, η), then the following holds.

The order of pole of ωi for all i = 1, 2, 3 is two and the end X is asymptotic to the
following:

(x1, x2, x3)= (αr−1 cos θ, αr−1 sin θ, β log r),

on a neighbourhood of 0, where z = reiθ , we have α ∈ R\{0} and β ∈ R.

An end is called a planar end (respectively, catenoidal end) if β = 0 (respectively,
β 6= 0) and it is asymptotic to a horizontal plane (respectively, a vertical half
Lorentzian catenoid).

3. Maximal annuli in a slab

By Lorentzian isometry we can denote a spacelike plane

5=5t = {(x1, x2, x3) | x3 = t}

and a slab S(a, b)= {(x1, x2, x3) | a ≤ x3 ≤ b}. By homothety we also assume that
S(a, b)= S(−1, 1).

THEOREM 3.1. Let A ⊂ S(−1, 1) be a compact maximal annulus in a slab whose
set of singularities consists of a finite (possibly empty) set of conelike singularities.
Suppose that A(1)= A ∩51 and A(−1)= A ∩5−1 are straight lines, circles or cone
points.

(1) If both A(1) and A(−1) are circles, then A(t)= A ∩5t is a circle or cone point
for all −1< t < 1. In particular, A is embedded and the number of cone points
is at most one.

(2) If A(1) or A(−1) is a straight line, the other is a circle and A is embedded, then
A(t)= A ∩5t is a circle or a cone point for all −1< t < 1.

(3) If both A(1) and A(−1) are straight lines and A is embedded, then A(t)=
A ∩5t is a circle or a cone point for all −1< t < 1.

(4) If A(1) is a straight line or a circle and A(−1) is a cone point (in the case where
A(1) is a straight line, we also assume that A is embedded), then A(t)= A ∩5t
is a circle or a cone point for −1< t < 1.

In order to prove the Theorem 3.1, we need some lemmas.

LEMMA 3.2. Let A ⊂ S(−1, 1) be a properly immersed maximal annulus such that
both A(1) and A(−1) are circles or straight lines, then A can be conformally
parameterized by

X : AR − C→ L3,
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where AR = {z ∈ C : 1/R ≤ |z| ≤ R} for all 1< R <∞ and the set C is determined
as follows.

If A(1) and A(−1) are both circles, then C = ∅; if A(1) is a straight line and
A(−1) is a circle (respectively, A(1) is a circle and A(−1) is a straight line), then
C = {p : |p| = R} (respectively, C = {q : |q| = 1/R}); if A(1) and A(−1) are both
straight lines, then C = {p, q : |p| = R, |q| = 1/R}.

In any case, the Gauss map g of A has neither zero nor pole in the interior of AR ,
and it can be extended to a neighbourhood of AR . Moreover, the extended g has either
zero or pole order two at p and q.

PROOF. Since A is a proper maximal annulus, the conformal structure of the interior
of A is equivalent to interior of AR = {z ∈ C : 1/R ≤ |z| ≤ R} for some 1< R <∞,
and a conformal harmonic immersion X : AR − C→ S(−1, 1), where C is a subset
of ∂AR and A({|z| = R} − C)= A(1), A({|z| = 1/R} − C)= A(−1). In particular,
the third coordinate function X3, which is harmonic with X3|({|z|=R}−C) = 1,
X3|({|z|=1/R}−C) =−1 and −1< X3|Int(AR) < 1, can be extended to whole AR such
that X3|{|z|=R} = 1, and X3|{|z|=1/R} =−1. By the existence and uniqueness of the
Dirichlet problem, X3 = (1/log R)log |z|, we have for any −1< t < 1, that A(t)=
A ∩5t is the image X ({z ∈ AR : |z| = Rt

}).
First, g cannot have zeros or poles in Int(AR), the interior of AR . Suppose not,

then the preimage of A(t) for t has at least four rays at a zero or a pole by the
harmonicity of maximal surfaces. However, the preimage of A(t) is a circle since
X3 = (1/log R)log |z|. So there are no zeros and poles in the interior.

It remains only to prove that on the boundary of A, that is, the Gauss map N is not
perpendicular to the x1x2 = xy-plane. Since boundaries are composed with a circle
or a straight line, the projection of the boundary into the xy-plane satisfies the sphere
condition, inner or outer. There is well-defined normal direction at every boundary
point. Near any boundary point p, N has a vertical normal, the surface is a graph over
a small open disc D ⊂ P1 with p on ∂D, assuming that p ∈ A(1). Then we can write
by the maximal surface equation. We write (x, y, z = x3) ∈ A, where x3 = z(x, y)
satisfies

(1− z2
y)zxx + 2zx zyzxy + (1− z2

x )zyy = 0, z2
x + z2

y < 1.

Since X3, the third coordinate function of A, is harmonic, by the maximum principle
we have for any (x, y) ∈ D that z(x, y) < 1= z(p). Define a uniformly elliptic
operator on a smaller domain if necessary,

Lu = (1− u2
y)uxx + 2ux u yuxy + (1− u2

x )u yy, u2
x + u2

y < 1.

Then z satisfies Lz = 0. By the Hopf boundary point lemma

∂z

∂ν
> 0,

where ν is the outward normal to ∂D at p. However, this means that the normal is
not vertical. This contradiction proves that N is never vertical on the boundary of A.
Hence, g 6= 0 or∞.
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If A(1) is a straight line, by Lorentzian isometry we can assume that A(1) is
parallel to the y-axis in L3. Then the normal vector of A along the A(1) stays in
the xz-plane. Let C1 = C ∩ {|z| = R}, g is real on {|z| = R} − C1. Using the Schwarz
reflection principle, g can be extended to {R < |z|< R3

} by g̃(z)= g(R2/z) for all
R < |z|< R3. So we obtain a maximal surface

A= X : {1/R < |z|< R3
} − C1→ S(−1, 3).

Since X is properly immersed, the extended surface X({1/R < |z|< R3
} − C1) is also

properly immersed and contains a complete maximal annular end. Since the Gaussian
curvature of a maximal surface is always nonnegative, by [10, Huber’s theorem] (or
see [19, Appendix]), the annular end of A conformally equivalent to a punctured disc
and the Gauss map of A can be extended to the puncture. Hence, C1 = {p} is singleton
and g is either zero or infinite, unless the length of the straight line is finite. Hence, A
has a vertical limit end, by Lemma 2.5, at the p has zero of order two. If A(−1) is a
straight line, we apply the same process. 2

Now, we derive the Lorentzian Shiffman function in terms of Weierstrass data. First
we calculate the planar curvature of each A(t)= A ∩5t for all −1≤ t ≤ 1. At any
point of A(t), let ψ be the angle between the tangent vector and the positive x-axis.
By Lemma 3.2, g 6= 0,∞ in the interior of AR , so the unit normal vector is g/|g|, and
φ = arg g = Im(log g)= ψ − π/2. We note that the function φ can be multivalued
but harmonic. Now suppose that s is the arc length parameter of the curve A(t), and
X−1(A(t))= {z : |z| = r = Rt

}, write z = reiθ , then the curvature of A(t) is

κ = ψs = φs =
d

ds
Im(log g)= Im

(
d

ds
log g

)
= Im

(
g′

g

dz

dθ

dθ

ds

)
= Im

(
g′

g
izr−13−1

)
= r−13−1 Re

(
z

g′

g

)
.

(3.1)

Here we use the fact that on the curve {z : |z| = r = Rt
},

dz

dθ
= ireiθ , ds =3|dz| = r3 dθ.

By a direct calculation, we have the Lorentzian Shiffman function:

u := r3
∂κ

∂θ
= Im

[
1
2
|g|2 + 1

|g|2 − 1

(
z

g′

g

)2

− z
d

dz

(
z

g′

g

)]
. (3.2)

LEMMA 3.3. Let A and C be as in Lemma 3.2, and let u be the Lorentzian Shiffman
function as (3.2). Then u can be continuously extended on the set C and u = 0 on the
boundary ∂A.

PROOF. Let

U (z) =

[
−

1
2

(
z

g′(z)

g(z)

)2

− z
d

dz

(
z

g′(z)

g(z)

)]
+

[(
1−

1

1− |g|2

)(
z

g′(z)

g(z)

)2]
= 8(z)+9(z).
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We claim that both8 and9 are C∞ complex functions near any point of the set C . The
claim is proved, then since u(z)= Im U (z) is smooth near z0, u(z) can be continuously
extended to p.

Let z0 = p or q . By Lemma 3.2, the extended Gauss map g̃ has a zero or a pole of
order two. Let us assume that g(z0)= 0.

First, we show that 8 is a C∞ complex function near each point of the set C . Let
ζ = z − z0, we have

g̃(z)= (z − z0)
2h(z)= ζ 2h(z0 + ζ ),

where h is a holomorphic function and h(z0) 6= 0. For convenience, write g instead
of g̃, then

z
g′(z)

g(z)
=

2z0

z − z0
+ 2+ z

h′(z)

h(z)
=

a−1

ζ
+

∞∑
k=0

akζ
k, a−1 = 2z0.

We also have (
z

g′(z)

g(z)

)2

=
a2
−1

ζ 2 +
2a−1a0

ζ
+

∞∑
k=0

bkζ
k,

and

z
d

dz

(
z

g′(z)

g(z)

)
=−

a−1z0

ζ 2 −
a−1

ζ
+ (ζ + z0)

∞∑
k=1

kakζ
k−1.

Since a−1 = 2z0, we have a2
−1 − 2a−1z0 = 0. The expression

z
h′(z)

h(z)
= (ζ + z0)

∞∑
k=0

1
k!

(
h′

h

)(k)
(z0)ζ

k
= z0

h′(z0)

h(z0)
+

∞∑
k=1

ckζ
k,

implies

a0 = 2+ z0
h′(z0)

h(z0)
.

Now we calculate the value a0. The Weierstrass representation for the extended
surface S is

φ1 =
1

log R

1
2z

(
1
g̃
+ g̃

)
dz, φ2 =

1
log R

i

2z

(
1
g̃
− g̃

)
dz, ω3 =

1
log R

1
z

dz.

For simplicity, we write g instead of g̃. Let us choose a loop γ around z0 small enough
so that the inside of γ has only one element of the set C . By the well-definedness of
an extended maximal surface and∫

γ

(ω1, ω2, ω3)=
−→
0 ,

we have ∫
γ

1
zg
=

∫
γ

g

z
= 0.
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Then

0 = lim
z→z0

(
(z − z0)

2

zg(z)

)′
= lim

(
1

zh(z)

)′
= −

1

z2
0h(z0)

−
h′(z0)

z0h2(z0)
.

Finally, we have

a0 = 2+ z0
h′(z0)

h(z0)
= 1.

Hence,

8(z) = −
1
2

a2
−1 − 2a−1z0

ζ 2 −
a−1a0 − a−1

ζ

−
1
2

∞∑
k=0

bkζ
k
− (ζ + z0)

∞∑
k=0

kakζ
k−1
=

∞∑
k=0

dkζ
k

is holomorphic near z = z0.
Now we consider the function 9(z). Since

|g(z)|2 = |z − z0|
4
|h(z)|2 = |ζ |4|h(z)|2 and ζ 2

(
z

g′(z)

g(z)

)2

is holomorphic, it follows that

1

ζ 2

(
1−

1

|g|2 − 1

)
=

1

ζ 2

∞∑
k=1

|g|2k
= ζ 2

∞∑
k=1

|ζ |4(k−1)
|h(z)|2k

is a smooth function near the z0. Thus, 9(z) is a smooth function near z0, and so U (z)
is also smooth. Since u|∂A−C = 0 and u can be continuously extended to C , u = 0 on
the ∂A. 2

LEMMA 3.4. The Lorentzian Shiffman function u can be smoothly extended on the
conelike singularities.

PROOF. Let X : {r < |z|< 1} imply that L3 has cone point at X ({c := |z| = 1}) with
Weierstrass data (g, φ). By Möbius transformation on c, we can assume that the
curve c is Re(z)= 0 the involution J is J (z)=−z, and the Weierstrass data of the
mirror surface are (1/g,−φ). Write g = ew(z), then we have w(−z)=−w(z).

The Lorentzian Shiffman function u extends to c if and only if

V (z) := Im
(

1

|g2 − 1|

(
d log g

dz

)2)
extends to c.

We claim that V (z) can be smoothly extended to c.
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Take z0 ∈ iR and let the Taylor series of the function

w(z)=
∞∑

m=0

am(z0)(z − z0)
m .

Since w(−z)=−w(z), we have (−1)mam(z0)=−am(z0), that is, Re(a2n(z0))= 0
and Im(a2n+1(z0))= 0 for all n ∈ N ∪ {0}. Since g is injective near a conelike
singularity, we have a1(z0) 6= 0, for any z0 ∈ c.

Now we have

|g(z)| − 1= eRe(w(z))
− 1= Re(w(z))H̃1(Re(w(z))),

where H1(z)= (ez
− 1)/z and z ∈ C. Since the coefficient of the function is w(z), we

deduce that Rew(z)= Re(z)V1(z), where V1 is a suitable smooth function around c,
and because of a0(z0) 6= 0 for all z0 in the compact set c, we have |V1|c ≥ ε > 0. Thus,

|g(z)| − 1= Re(z)H1(z),

where the smooth function is H1(z) with |H1|c ≥ ε
′ > 0. By similar argument, we

have

Im
((

d log g

dz

)2)
= Re(z)H2(z),

where H2 is a smooth function around c. Hence, around c,

V (z)=
H2(z)

H1(z)(1+ |g(z)|)

is a smooth function. 2

PROOF OF THEOREM 3.1. Let us show that A : M→ L3 bounded by two cone
points P1 and P−1 is not possible. If not, by Lemma 2.3 successive reflections
about cone points, we have a complete maximal annulus Ã : M̃→ L3 with infinitely
many conelike singularities such that Ã is a translation invariant. The quotient of M̃
under the holomorphic translation induced by above translation gives a torus T , and
the Weierstrass data (ω1, ω2, ω3) of Ã can be induced on T . Furthermore, ω j is
holomorphic, and so ω j = λ jτ0 for all j = 1, 2, 3, where λ j ∈ C and τ0 is a nonzero
holomorphic 1-form on T . Because ω2

1 + ω
2
2 − ω

2
3 = 0 and the associated maximal

immersion is singly periodic, it is not hard to see that λ j = r jλ, where r j ∈ R,
λ ∈ C and r2

1 + r2
2 − r2

3 = 0. In particular, Ã lies in a lightlike straight line, which
is impossible.

First, both A(1) and A(−1) are circles. By Lemma 3.2, we find a conformal annulus
AR and that the set C is empty. By Lemmas 3.3 and 3.4, the Lorentzian Shiffman
function u is a smooth in the interior of AR and u satisfies

4Au = 2K u, u|∂AR = 0.

Since every maximal surface is stable, the first eigenvalue of Jacobi operator is
positive. Hence, u ≡ 0 and5t is a circle or a conelike singularity, for any−1< t < 1.
Moreover, A is part of the Lorentzian catenoid or a Lorentzian Riemann’s example.
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So the maximal annulus is embedded. Because Lorentzian Riemann’s examples can
have at most one cone point without planar end, the maximal annulus has at most one
cone point.

Second, A(1) is a straight line and A(−1) is a circle. By Lemma 3.2, the function u
is smooth near A(1) and zero on the A(1). The same argument in the first case still
holds. The third case is similar to the second case.

Finally, either A(1) or A(−1) is a cone point and the other is a circle or straight
line. Using the Lemma 2.3, we obtain maximal annulus bounded by circles or straight
lines. So it is a previous case. The theorem is complete. 2

COROLLARY 3.5. Let A(1) and A(−1) be nonparallel straight lines to each other.
Then 0 = A(1) ∪ A(−1) cannot bound a properly embedded maximal annulus in
S(−1, 1).

4. Maximal annuli with a planar end in a slab I

In this section, we consider maximal annuli with an end. This gives a
characterization of Lorentzian Riemann’s examples.

THEOREM 4.1. Let A ⊂ S(−1, 1) be an embedded maximal annulus with a planar
end in a slab whose set of singularities consists of a finite (possibly empty) set
of conelike singularities. Suppose that A(1)= A ∩51 and A(−1)= A ∩5−1 are
straight lines, circles or cone points, except they are bounded by two cone points, then
A(t)= A ∩5t is a circle or cone point for any−1< t < 1, except at the height of the
end where the intersection is a straight line. Consequently, A is part of a Lorentzian
Riemann’s example, so if the boundary consists of two straight lines, then the lines
must be parallel.

LEMMA 4.2. Let A ⊂ S(−1, 1) be a maximal annulus with a planar end and both
A(1) and A(−1) consist of circles or straight lines, then A can be conformally
parameterized by

X : AR − C − {ze} → L3,

where AR = {z ∈ C : 1/R ≤ |z| ≤ R} for all 1< R <∞ and the set C is determined
as follows.

For |p| = R and |q| = 1/R, we have C = {p, q} if A(1) and A(−1) are straight
lines; C = {p} (respectively, C = {q}) if A(1) is a straight line and A(−1) is a circle
(respectively, A(1) is a circle and A(−1) is a straight line); and C = ∅ otherwise.

In any case, the Gauss map g of A has neither zero nor pole in the interior of AR ,
and g can be extended to a neighbourhood of AR such that the extended g has either
zero or pole of order two at ze, p and q.

PROOF. Since the Gaussian curvature of a maximal surface is always nonnegative. By
Huber’s theorem, the conformal domain of a maximal surface is AR − C − {ze}. By
Lemma 2.5, the Gauss map g has zero or pole of order two at ze. For the rest parts of
lemma are proved in the same way as in Lemma 3.2. 2
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PROOF OF THEOREM 4.1. Either A(1) or A(−1) is a cone point, using Lemma 2.3,
the maximal annulus can be extended to maximal surface bounded by circles or straight
lines. By the Lemmas 3.3, 3.4 and 4.2, the Lorentzian Shiffman function u can be
smoothly extended to the set C , the end ze and cone points. Then u satisfies

4Au = 2K u, u|∂AR = 0.

By the stability of Jacobi operator, u ≡ 0. So the theorem is complete. 2

5. Maximal annuli with a planar end in a slab II

First, we extend the Shiffman’s convexity theorem to Lorentzian space.

THEOREM 5.1. Let A ⊂ S(−1, 1) be a properly immersed maximal annulus where
A(1) and A(−1) consist of convex Jordan curve, then A ∩5t is a strictly convex
Jordan curve for every −1< t < 1. In particular, A is embedded.

PROOF. Let the angle function ψ , the planar curvature κ as (3.1). Define h =
Re(z(g′/g))= r3κ for any r3> 0. Here h is a harmonic and nonnegative on the
boundary. By the strong maximum principle, h is strictly positive. Thus, A ∩5t
is locally strictly convex. Similar to a minimal surface [4], the period of the angle
function ψ is exactly 2π . Hence, A ∩5t is strictly convex. 2

THEOREM 5.2. We construct a maximal annulus A ⊂ S(−1, 1) with a planar end and
it satisfies the following properties: A ∩5t0 is a nonconvex Jordan curve for some
t0 ∈ (−1, 1), even when the boundary ∂A consists of a circle and a strictly convex real
analytic Jordan curve.

LEMMA 5.3. Let A ⊂ S(−1, 1) be a maximal annulus with a planar end, and the
boundary ∂A consists of two Jordan curves lying in a pair of parallel planes which
are the boundary of S(−1, 1), then A can be conformally parameterized by

X : AR − {ze} → L3,

where AR = {z ∈ C : 1/R ≤ |z| ≤ R} for all 1< R <∞ and 1/R < |ze|< R.
Moreover, if A ∩5t are strictly convex C2 Jordan curves for all −1≤ t ≤ 1 except

at t0 ∈ (−1, 1), the height of the end, then A ∩5t0 is a straight line.

PROOF. Because A is a maximal annulus with a planar end, in the interior, as
in Lemma 4.2, A is conformally equivalent to AR − {ze} for suitable 1< R <
∞ and 1/R < |ze|< R. By the same argument and the Dirichlet problem X3 ≡

(1/log R)log |z|, the planar curvature κ(z)= |z|−13−1 Re(z(g′/g)). Since ze 6=

0, then g′/g is meromorphic and has an isolated pole at ze 6= 0, and 4(z)=
Re(z(g′/g))= |z|3κ(z) takes positive and negative values near ze. So 4−1(0) is a
nonempty set and a real analytic one-dimensional variety except for isolated points
{pi } ⊂4

−1(0), at the pi , so D4(pi ) is zero and at least four equal angular curves emit
from pi . However, A ∩5t are strictly convex except t0, so are4 6= 0 except |z| = |z0|.
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So 4−1(0)⊂ {z : |z| = t0} and 4−1(0) has no singularities and is a one-dimensional
manifold without boundary. This means that 4−1(0)= {z : |z| = t0} − {ze}. Hence,
4(z)= Re(z(g′/g))= |z|3κ(z)≡ 0 on {z : |z| = t0} − {ze}. The only case is κ ≡ 0,
so X ({z : |z| = t0} − {ze}) is a straight line. 2

We are going to construct a maximal surface by solving the exterior Dirichlet
problem for the maximal surface equation. The variational problem of the area
functional leads to the following divergence form of the maximal surface equation:

Qν = Div
(

Dν√
1− |Dν|2

)
,

with |Dν|6 1. Because we use Perron’s method, we define the subsolution and
supersolution to the maximal surface equation.

DEFINITION 5.4 (Subsolution and supersolution). Let � be a domain in the (x1, x2)

plane. A C0(�) function α is a subsolution (respectively, supersolution) in � if for
every ball B b� where B ⊂�, and every function ν satisfying Qν = 0 in B and
α ≤ ν (respectively, α ≥ ν) on ∂B, then we have α ≤ ν (respectively, α ≥ ν).

We follow the classical Perron’s strategy (see [9]). (i) A subsolution (supersolution)
in a domain � satisfies the strong maximum principle. (ii) Let ν be a subsolution in �
and B be a ball strictly contained in �. Denote by ν the solution in B satisfying ν = ν
on the boundary ∂B. We define the solution lifting of ν in B b� (B ⊂ Int�) by

V (x)=

{
ν(x) for x ∈ B

ν(x) for x ∈�− B.

Then the function V is also subsolution in �. (iii) If ν1 and ν2 are subsolutions
(respectively supersolutions) to the maximal surface equation, using the maximum
principle, sup{ν1, ν2} (respectively inf{ν1, ν2}) is a subsolution (respectively
supersolution) to the maximal surface equation.

For a continuous function ϕ defined on ∂�, define Sϕ to be the set of subsolutions
to the maximal surface equation which are C0(�) and equal to ϕ on the boundary ∂�.
The guarantee of Sϕ is nonempty and existence of a supersolution ν+, the function
µ(x)= supν∈Sϕ ν(x) solves the Dirichlet problem{

Qµ= 0 in �

µ= ϕ on ∂�.

This is a classical argument by iterating the solution lifting in small balls.

PROOF OF THEOREM 5.2. Choose a C , a Lorentzian catenoid with cone point in
50 = x1x2-plane. Let C+ = C ∩ {(x1, x2, x3) ∈ L3

: x3 ≥ 1} and D1 ⊂51 be a disc
with ∂D1 = C ∩51, let C− be a reflection of C+ with respect to 51, then C− is a
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graph of the function v :50 − D→ R, where D is a vertical translation of D to the
plane 50.

Kim and Yang [12] construct maximal surfaces asymptotic to the Lorentzian
catenoid with genus k. Let M1 be a Kim and Yang’s example with genus one. We cut
M1 at a sufficient large height. Then we gain an annular end E such that E is a graph
and has noncircular real analytic strictly convex boundary lying in a horizontal plane.
Because C− ∩5−1 is a circle with enclose a disc D−1, we can translate the end E
in such a way that ∂E ⊂5−1\D−1 and E ∩ C− = ∅. Denote by B−1 ⊂5−1\D−1
the closed bounded convex domain bounded by ∂E in 5−1. Let B be the vertical
translation of B−1 to 50 and use the notation �=50 − (D ∪ B). The annular end E
is a graph as w :50 − B→ R such that w ≡−1 on ∂B.

On �, we have a subsolution (respectively, supersolution) ν− = sup{v,−1}
(respectively, ν+ = inf{1, w}) to the maximal surface equation. They satisfy the
boundary condition ν± = ϕ on ∂�, where ϕ : ∂�→ R is the function{

ϕ = 1 on ∂D

ϕ =−1 on ∂B.

Hence, µ(x)= supν∈Sϕ ν(x) solves the Dirichlet problem{
Qµ= 0 in �

µ= ϕ on ∂�.

So the graph of µ is a maximal surface A bounded by a circle and a noncircular real
analytic strictly convex Jordan curve in 51 and 5−1, respectively. Since −1≤ µ≤ 1,
we have A ⊂ S(−1, 1) with an end. So the end must be planar. Let t0 ∈ (−1, 1) be
the height of the end, the intersection curve A ∩5t0 is not a straight line. Suppose
not A ∩5t0 is straight line denote As be a subannulus of A bounded by a circle and a
straight line. By Theorem 3.1, As is part of a Lorentzian Riemann’s example, thus A is
also part of a Lorentzian Riemann’s example. This contradicts the boundary condition
of A. Hence, by Lemma 5.3, there exist t ∈ (−1, 1) such that A ∩5t is a nonconvex
Jordan curve. 2
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