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ON THE DIRICHLET PROBLEM OF ELLIPTIC TYPE

MAREK GALEWSKI

We investigate the existence of solutions and their stability for elliptic Dirichlet prob-
lems with nonlinearity of a convex-concave type. By relating the primal action and
the dual action functionals on certain subsets of their domains we get the existence of
solutions which are further stable with respect to a numerical parameter. We allow
also for the differential operator to depend on a numerical parameter.

1. INTRODUCTION

In the paper we consider the existence and stability of solutions the following family
of boundary value problems for k = 0 ,1 ,2 , . . .

(1.1) -div(<pk{y,\Vx\n-l)\Vx\n-2Vx) + Hk
x(y,x) = Gk

x(y,x)

Gk(y,x) -» G°x(y,x), Hk(y,x) -* H°(y,x), <pk(y,x) -> <Po(y,x) almost everywhere on fi,
for all x in a certain interval that will be specified later, l/n+l/m = 1, ipk :ClxR-¥ R is
a Caratheodory function, that is, it is continuous with respect to x for almost everywhere
y s fi and measurable in y for every x € R; there exist constants Mk, Mk > 0 such that
for almost everywhere y € £1 and for all t € R+

(1.2) M N w ( » , * ) ^

and such that the sequences {M*}£i0, {Mk}*io
are bounded by Mi and M2 say; ft C RT

is a region with a regular boundary, n > r; there exist constants mk ^ m0 > 0 such that
for all a ̂  b, a, b € R and almost everywhere y G fi

(pk (y,a)a-(pk (y,b)b^mk{a-b).

Let {dk\k
xLl be a sequence of decreasing positive numbers bounded away from 0. Let

cs, C denote the best Sobolev constants from the inequalities

(1.3) max|z(y)| ^ cs\\Vx\\Ln{n), ||x||Ln(n)
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By {Hk)', {Gk)* : Q x R -¥ R we understand the Fenchel-Young duals of functions Hk,

Gk : fi x R —¥ R with respect to the second variable defined by, see [1]

(HkY(y,u) = sup{xu - Hk(y,x)}, (Gk)'(y,u) = {sup™ - Gk(y,x)}.

x€R xeR

We assume for all k = 0,1,2,. . . that

G l . Gk, Gk : fi x [—d0, d0] —• R are Caratheodory functions, Gk is convex with respect
to x for almost everywhere y, Gk(y,x) = +oo for (y,x) £ f i x (i?\[-d0, d0]) and

G2. G*(y, 0) ^ 0, for almost everywhere y £ SI, function y -* {Gk)*(y, 0) is integrable.

G3. G* is differentiable in x on [—do, do] for almost everywhere y € Q and there exists
a constant a > 0 (independent of fc) such that

(1.5) max \Gk
x(y,x)\^a.

i€(—ao,oo]

HI. i/*, Hk : Cl x R -t R are Caratheodory function, /7fc is convex with respect to

the second variable,

(1.6) Hk{y, x)x ^ 0 for x € R, Hk{y, 0) = 0, for almost everywhere y € fi,

function y —¥ (Hk)*(y,0) is integrable, there exists a constant j3 (independent of /c)

(1.7) max \HZ(y,x)\^0.
i6[-ao,oo]

H2. Hk is differentiable in x on [—d̂ , dk] for almost everywhere y € f2 and there exists
a constant 6 > 0 (independent of k) such that

(1.8) -max | ^ ( y > a r ) | ^ 6 .
ze[-ao,do]

Let us define for all k = 0 ,1 ,2 , . . . the following number

(1.9) 5fc = essesup max | * |
en xe[<toa

We prove that for each k = 1,2,... there exists a solution Xk to problem (1.1) satisfying:
xk(y) G [-dk,dk] on fi and IIVi*^1, , , ^ C(vo\(n))1/m/{Mk)gk. Moreover from a
sequence {xk}kLi we may choose a subsequence {xk^JL-^ such that such that lim xkj = x

weakly in Wo
l'n({l) and

(1.10) -d iv( V o (y , i V x r - ^ I V x I ^ V x ) + H°x(y,x) = G°x(y,x),
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The only growth type assumption that we impose on the nonlinearity G, is (1.4).

In the following example we show the family of functions for which G1-G3, H1-H2 are

satisfied.

E X A M P L E 1.1. Let 0 = ( ( ( v o l ( f i ) ) 1 / m c 5 - 1 ) / ( M * ) c ) " 1 . For k = 0 , 1 , 2 . . . we put

Gk(y,x) = p(\ex -l-x* - fk(y)x2),
8

where fk G L°°(fi) with essesup/t(y) G [1,2] and with lim fk(y) — fo(y) for almost
yen *-»<»

everywhere y G fl and let n = 5. Now we show the existence of the sequence {rfjt}?Lo
of decreasing positive numbers bounded away from 0. We need to show that (1.4) is
satisfied, that is,

The above inequality is satisfied for dk < 18. The remaining assumptions obviously hold.
As far as function H is concerned we may take any function Hk(y,x) = fk(y)x2 + hk(x),
where fk G L°°{Q) for k = 0,1,2..., fk(y) ^ 0 and hk : R -* R is a convex continuously
differentiate function such that h'k{x)x ^ 0 for all x £ R.

In the paper we construct a variational method which is derived by considering the
action and a dual action functionals connected with the investigated equation. The rela-
tions between both functionals are obtained with the aid of a Fenchel-Young conjugacy,
see [1, 8]. In order to provide an approach that will apply not only for Dirichlet problem
(1.1) but also for some other type of Dirichlet problems we write a duality theory for some
more general Dirichlet problem. In this paper we substantially modify the variational
method form [2] and also provide the possibility of considering the differential operator
varying with k. In order to prove existence and stability results we investigate relations
between the critical values and critical points of a certain type to the primal and dual
action functional, see formulas (2.4) and (2.5). The idea of stability of solutions for the
Dirichlet problems which we apply originates mainly from work [9]. Although it is the
approach of the author's previous work [2] that we use.

By other methods, that is, by mountain pass approach or some other differential or
topological approach, the Dirichlet problems of elliptic type are considered for example
in [3, 4, 5, 7]. A dual variational method is applied [6] but for less general differential
operator that does not depend on a numerical parameter. The existence results in the
papers cited differ substantially from ours.
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2. DUALITY RESULTS AND THE EXISTENCE OF SOLUTIONS

We shall develop the existence results for the following family of Dirichlet Problems

for k = 0 , 1 , 2 , . . .

(2.1) -div Fk(y,Vx(y)) + Hk
x(y,x) = Gk

x(y,x)

where we denote -<pk(y, \Vx\n-l)\Vx\n-2Vx by Fk(y, Vx(y)) and by Fk : 0, x RT -> R
we denote its potential. We first fix k — 0 ,1 ,2 , . . . and consider the following set

Xk = {x€ ^-"(n) , x(y) e [-dk,dk] on Q, I I V x ^ , ^ C^°l{^) gk

LEMMA 2 . 1 . Assume Gl, G2, HI. For any u € Xk there exists a solution x € Xk

to Dirichlet Problem

(2.2) -div(yk{y, I V z r ^ V x I - ' V x ) + Hk
x(y,x) = Gk

x(y,u), x{y\an = 0.

P R O O F : Indeed, we take any u e Xk. We show the existence of solution to (2.2) by
a direct variational method, [5]. Indeed the action functional

Jk
A(x)= f Fk(y,Vx(y))dy+ f Hk(y, x(y)) dy - [ Gh(yM

Jn Jn Jn

for which (2.2) is the Euler-Lagrange equation is by (1.2) and by (1.6) and by convexity
of H coercive on WQ>n(Q.). Being convex it is also weakly lower semicontinuous. Hence
the action functional JA has a minimum over WQ'U(D,) which satisfies its Euler-Lagrange
equation, that is, (2.2). By (1.4) we obtain

Hence

f-div(yk(y, \Vx(y)\n-l)\Vx(y)\n-2Vx(y))x(y) + Hk(y,x(y))x(y)dy

= [ Gk{y,u(y))x(y)dy.

Therefore using definition of gk, see (1.9), inequality (1.3) and (1.2) we get

Mk f\Vx(y)\n+Hk{y,x(y))x(y)dy^ f <pk(y, IVx^""1) |Vx(y)|n
Jn Jn v '

Hk
x(y,x(y))x(y)dy ^ Cgk "JJjVx(y)\ndy.
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Since / Hk(y,x(y))x(y)dy ^ 0 and by (1.4) we obtain
Jn

Therefore and by (1.4)

llc(fj) ^ ° Jjk 9k

Thus x(y) € [-dk, dk] for all y E Q. U

Therefore we may for each k = 0 ,1 ,2 , . . . define the Xk c W1>P(Q) in the following
manner: for each x € Xk the relation

(2.3) - div Fk (y, Vz(y)) + Hk
x(y, x) = Gk

x(y, x)

implies x £ Xk.

In view of Lemma 2 we may put Xk — Xk. By its definition Xk is weakly compact

in Wl*{Q).

Let W = {p € L"(Q) : divp e L«(fi)}. The functional 7fc : VF1-P(fi) -> i? for which

(2.1) for k = 0,1,2 . . . is the Euler-Lagrange equation reads

(2.4) Jk(x)= f Fk(y,Vx(y))dy+ f Hk{y,x(y))dy - f Gk(y,x(y))dy
Jn Jn Jn

and the dual functional Jok '• W x L'(Q) -¥ Ris given by

(2.5) JDk(p,q)= f(Gky{y,- div p(y) + q(y))dy
Jn

- f(Hky(y,q(y))dy- I{Fk)'{y,P{y))dy.
Jn Jn

For each k = 0 ,1 ,2 , . . . we now define a set Xk which comprises of these (p, q) G W

x Lq(Q.) for which there exists an x € Xk such that

p(y) = Fk(y,x(y)), q(y) = H*(y,i(y))

almost everywhere and where x e X is related to x by definition of Xk, see relation
(2). By its definition it follows that X* is nonempty and relatively weakly compact in
W x L«(J2).
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THEOREM 2 . 2 . Assume Gl, G2, Hi. For any k = 0,1,2,... tiere exists a triple

(xk,pk,qk) e Wl'p(Q)W x Z,»(fi) satisfying the system

(2.6) inf JDk{p,q) = JDk(pk,qk) = Jk(xk) = inf Jk(x),
( ) € X £ * € * *

(2.7) Pk(y) = F*(y,

(2.8) 5*(v) = tf«(v,

(2.9) -divpfc(y) +qk(y) = Gk{y,xk(y)).

PROOF: Let us fix A; = 0,1,2,. . . . We observe that Jk is bounded from below
on Xk. Thus and by the properties of Xk there exists a minimising sequence { a ^ } ^
for Jk which may be assumed to be weakly convergent in Wl<p(£l) and thus strongly in
17(0,). Since Xk is weakly compact, the limit xk of the sequence {z^}!^! belongs to Xk.

Since Jk is weakly lower semicontinuous Xk we obtain Jk{xk) = inf Jk{x). In order to
xeXk

demonstrate that system (2.6)-(2.9) is satisfied, in other words to show that equation
(2.1) has a solution, we shall have to construct a duality theory relating both action
functionals. First we relate the critical values to both functionals on sets Xk, X% and
later by showing that there exists (pk,qk) e X% corresponding to xk we have system
(2.6)-(2.9) satisfied.

We begin with demonstrating

(2.10) inf JDk{p,q)= inf Jk(x).
(p,q)6X% x€Xk

We consider the following auxiliary functional JokiPeTt • X* x Xk —• R defined by

+ f Hk{y, x(y)) dy
Jn

f{ q(y))dy- f (-divp(y) + q{y))x{y) dy.
Jn Jn

First we prove that for any (p, q) € X*

(2.11) inf J%ktPert(p,q,x) = JDk(p,q).

Fix (p, q) € X% and observe that by the Fenchel-Young inequality and the definition of
the Fenchel-Young transform for convex integral functionals, see [8], we obtain

f{-divp{y))x{y)dy- f Fk(y,Vx(y))dy < f (Fky(y,p(y)) dy
Jn Jn Jn

/ q(y)x(y)dy- / Hh(y,x(y)) dy ^ (Hky(y,q(y)) dy
Jn Jn Jn

and
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for all x G Xk. Moreover by the definition of Xk,

P(V) = Fk(y,xp(y)), q(y) = Hk
x(y,xp{yj)

for certain xp, xp G Xk related by (2). Therefore we get

/'(-divP(y))xp(y)dy- I Fk(y,Vxp(y))dy = f {Fky{y,p{y))dy
Jn Jn Jn

and
/ q{y)xp{y)dy- / Hk(y,xp(y)) dy = (Hk)'{y,q(y))dy.
Jn Jn Jn

Hence

(2.12) f(Fkr{y,p(y))dy+ f (Hky(y,q(y))dy
Jn Jn

= sup{ /(-divp(y) + q(y))x(y)dy- [ Fk{y,Vx(y)) dy - f Hk(y,x(y))dy)
xex* Un Jn Jn J

< f(Fk)'(y,p(y))<iy+ [(Hky(y,q(y))dy.
Jn Jn

and thus (2.11) follow.

Next we prove that for any x € Xk

(2-13) mf l

Fix x £ Xk. We obtain

f ( - divp{y) + q(y))x{y) dy - f {Gk)* (y, - divp(y) + q{y)) dy ^ f Gk(y, x{y)) dy
Jn Jn Jn

and by definitions of Xk and X* it follows that there exists (px, qx) G X% such that

- divpx(y) + qx(y) = Gk{y,x(y)).

This shows (2.13) by the same argument as applied above.

Now by (2.11) and (2.13) we have (2.10) since

Since Xk G Xk, there exists (pfc,<7fc) G Xĵ  such that relation (2.9) holds. Hence and

by the Fenchel-Young inequality we get Jjfc(xfc) ^ Jok{pk,qk)- By (2.10) and by Jfc(xjt)

= inf Jk(x) we obtain JDk(j>k>Qk) — Jk(xk) and (2.6) follows. Thus we have
xexk

f(Fky(y,Pk(y))dy+ f Fk{y,Vxk(y))dy- I' pk{y)Vxk{y)dy
Jn Jn Jn

f Hk{y,xk(y))dy+ f(Hky(y,qk(y))dy- [ qk(y)xk(y)dy = 0.
Jn Jn Jn

Since by the Fenchel-Young inequalities both terms are nonnegative we get (2.8) and
(2.7) satisfied. D
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3. T H E STABILITY OF SOLUTIONS

THEOREM 3 . 1 . We assume Gl, G2, G3, HI, H2. Let Gk{y,x) ->• G°Jy,x),

Hx{y,x) -*• Hl{y,x), <fik{y,x) -*• Vo(y,a;) almost everywhere on Q for any
k—HX> k—K3O

x € [—do, do]- For each k € N there exists a solution x* to the problem (1.1) and

there exists a subsequence {xk }?ii and x € Xo such that lim ifc. = i weakly in Wo
lin(ft)

and

(3.1) -d iv(^ 0 ( j / , |Vxr l ) |Vx | " - 2 Vx) +H°x(y,x) = G°x(y,x),

x(j/)|en = 0.

PROOF: By Theorem 2 for each k — 1,2,... there exists a solution to (1.1). Since
dk < rf0 for A; = 1,2,... it follows that Xk C Xo for all A; = 1,2, There exists a

subsequence {xkj}JLi °f {xk}kLi weakly convergent in Wo
l'"(fi), which up to subsequence

may be assumed to be strongly convergent x 6 Xo in Ln(Q).

We now prove that

(3.2) lim Gkj{y,xki(y)) = G°x(y,x(y)) almost everywhere,

possibly up to a subsequence. Indeed, we get

(3.3) Gkj{y,xk,{y))-Gx(y,x{y))

= GkJ (y, xkj (y)) - GkJ (y, x(y)) + Gk' (y, y, x(y)) - G°x (y, x(y)).

By (1.5) and by the mean value theorem we observe that

Gk'(y,xkj(y)) - Gkj(y,x(v))\ < ^(v) ~

Since {xkj}^=i is convergent almost everywhere it follows that

(3.4) n1

Thus from (3.3) using the above and the assumptions we obtain (3.2). By the same

arguments we demonstrate that

lim Hx>^ (y,Xfc (j/))= Hx(y,x(y)) almost everywhere.
n—>oo

By (1.4), (1.7) and by Ol we infer that -div(<pk{-,\Vx{-)\n~1)\Vx{-)\n~2Vx(-)) is

bounded in L°°(fi). Hence it is weakly convergent in Z/m(f2), up to a subsequence, to a

certain d € Lm(f2). We obtain by monotonicity and proceeding considerations for any
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x e

,|Va:r-1) |Vx|n"2 Vx), xkj - x)

j (d(y) + div(v>*(v, IVxl"-1) |Vx|n-2 Vx), x - x).

Hence d(y) — - dh

Since a weak limit is equal to an almost everywhere limit we finally get (3). D
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