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Abstract. At optical and infrared wavelengths, imaging Fabry-Perot 
devices are used in three different ways: (i) to obtain a single spectrum of 
a diffuse source which fills a large fraction of the aperture, (ii) to obtain 
a monochromatic image within a field defined by the Jacquinot spot, and 
(iii) to obtain a spectrum at each pixel position over a wide field by tuning 
the etalon. We review the theoretical basis for Fabry-Perot photometry 
and summarize the calibration procedures for the different applications. 
We discuss methods for recognizing and dealing with artefacts (scattered 
light, atmospheric effects, etc.) which can seriously comprise the photo­
metric integrity of the data if left untreated. 

1. Introduction 

Imaging Fabry-Perot interferometers are now in common use at several major 
observatories and operate at both optical and infrared wavelengths. Tradition­
ally, Fabry-Perots are employed to perform studies of extended gaseous nebulae. 
Examples include outflow sources (starburst and active galaxies, Herbig-Haro 
systems) and normal disk galaxies. Some groups have utilised the angular spec­
tral coverage to detect diffuse sources (HI/Lya clouds in optical emission). More 
recently, scanning Fabry-Perots have been used to construct spectral line profiles 
at many pixel positions across a large format CCD. In many instances, these 
spectra are used simply to obtain kinematic information (line widths, radial ve­
locities) in a strong emission line. It is less common to see these instruments 
employed as spectrophotometers where the observed signal is calibrated to exoat-
mospheric flux units. This may be due, in part, to a perception that the nature 
of the Airy function makes Fabry-Perots unreliable photometers. 

In this review, we describe reliable methods for flux-calibrating Fabry-Perot 
data with the aid of worked examples. We start by comparing the Airy function 
to other well known functional forms in order to emphasize its distinct properties. 
This leads to the concept of the 'effective photometric band-pass' which has 
important implications for the photometric calibration procedure. Accurate 
photometry does require that the monochromatic and whitelight response of the 
system are well understood, with the aid of simple numerical simulations if need 
be. There are many potential pitfalls in the analysis: we illustrate a few of these 
with data from instruments in Australia, Chile and Hawaii. 
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Figure 1. A Fabry-Perot etalon comprising two glass plates with 
highly reflective interior surfaces, IZi and 72-2, and anti-reflective ex­
terior coatings, ATZ\ and .4.72.2-

2. Airy function 

The most direct route to the Airy function, the instrumental response of the 
Fabry-Perot, is to use complex exponential notation. In Fig. 1, an incoming 
plane wave with wavelength A at an angle 9 to the optical axis enters the etalon 
cavity and performs a series of internal reflections. If the highly reflective in­
ner surfaces have reflectivities of 721 and 722, we can sum over the complex 
amplitudes of the outgoing plane waves such that 

2iS j2.r,2„4i« I = 1 + 1lx1l2eil° + ft^e4'0 + 
1 - KxK2e

2is (1) 

in which 28 is the phase difference between successive rays. The tota l t ransmit ted 
intensity is proportional to the squared modulus of the complex amplitude or 

A = IT = 
1 + ^-sin22rrfil\-1 cos 9 

(2) 

where the refractive index and the plate separation of the cavity are /x and / 
respectively, and M — ir^72i722(l - \fR-{R-2)~l • Clearly, the Airy function has 
a series of periodic maxima whenever 

mX = 2(il cos 9 (3) 

which is the well known equation of constructive interference in the m t h order. 
The quantity J\f is called the reflective finesse and depends only on the 

values of TZ\ and 7^2 • It is normal procedure to manufacture an etalon with 
two identical coatings such that TZi = 7^2- However, in Section 8, we illustrate 
an important manifestation of a resonating cavity with very different reflection 
coefficients. 
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Figure 2. Three cyclic functions listed in Table 1 (column 2) shown 
at low finesse to emphasize their differences. 
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Figure 3. The integral of the Airy curve as a function of finesse 
normalized with respect to the Gaussian and Lorentzian integrals. The 
asymptotic limit of the upper curve is \/ir In 2. 
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Ta6/e / : Cyclic functions which are periodic over Asc with FWHM Sx. The 
(G)aussian, (L)orentzian and (A)iry functions are illustrated in Fig. 2. The 
mod function is the modulo function and a — (^-ff )2- Note that for large a, 
( f* ) « ( Y ) - The gap scanning variable x is offset by ^ in practice. 

In order to arrive at the correct calibration procedure, it is important to 
understand the nature of the Airy function. Fig. 2 illustrates the three cyclic 
functions in Table 1 and shows that the area of the Airy function always exceeds 
the integral of the other functions for a given spectroscopic resolution. By anal­
ogy with the Lorentzian profile, the coefficient of the sin2 factor in equation (2) 
determines the width of the function. The quantity Ax/Sx is called the effective 
finesse and Ax is the periodic free spectral range. 

In Fig. 3, we illustrate how the Airy function, when normalized to the 
Gaussian and Lorentzian functions, depends on A/*. In practice, there are fac­
tors other than coating reflectivities which contribute to the effective finesse — 
aperture effects, imperfections within the plate coatings, etc. — some of which 
can serve to make the instrumental response more Gaussian than Lorentzian in 
form (Atherton et al 1981). 

Beyond a finesse of roughly 40, the Airy function is highly Lorentzian. The 
reason for this is clear when looking at how the Airy profile has been written 
in Table 1. At high finesse (Ax >> Sx), if we expand x about the peak of 
the profile, the small angle formula reduces the Airy function to the Lorentzian 
form. The normalized Airy integral depends only weakly on finesse at large 
finesse values. 

3. Jacquinot advantage 

There are several approaches to deriving the Jacquinot advantage (Roesler 1974; 
Thome 1988), i.e. the throughput advantage of the Fabry-Perot interferometer. 
By considering the solid angle subtended by the innermost ring and using the 
small angle formula with equation (3), we arrive at the important relation 

which leads to the more familiar form 

Rtl - 2T (5) 
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This equation has been used to demonstrate that Fabry-Perot interferometers, 
at a given spectroscopic resolution, have a much higher throughput than more 
conventional techniques (Jacquinot 1954; 1960). But the Jacquinot relation has 
another important consequence. The solid angle of a ring defined by its FWHM 
intensity points can also be written 

0 = 2 T 0 50 = TA(A/ - /XO" 1 (6) 

For a fixed etalon spacing, the solid angle, and hence the spectroscopic resolu­
tion, of all rings is a constant. This allows us to write down a simple equation 
valid for all rings for the signal-to-noise ratio in a monochromatic unresolved 
line, viz. 

SNR = s(erVr ( ^ ) ° ' 5 ( " ) 0 ' \ - + b+ f SX(5X'er)-l^R)-^ (7) 

where s and b are the source and background flux (cts p i x - 1 s _ 1 ) , e and r are 
the efficiency and exposure times respectively, u> is the solid angle subtended by 
a pixel. The quantity SX' is the wavelength dispersion (A p i x - 1 ) and / is the 
number of CCD exposures combined to form the deep spectrum. The factor rj 
is discussed below. We normally choose to place the ring center at one corner of 
the field for two reasons. First, it is always necessary to tilt the etalon in order 
to throw ghost light out of the field (Section 8). Secondly, the factor (fi/w)0 '5 

in equation (2) now ensures that the spectroscopic sensitivity is constant over 
most of the field. There will be an almost linear drop-off in sensitivity at large 
off-axis angles (far corner from the optical axis) where the rings become seriously 
incomplete. 

An important characteristic of a spectrometer is its 'spectral purity ' SX, i.e. 
the smallest measurable wavelength difference at a given wavelength (Thome 
1988). This is usually defined as the intensity FWHM of the instrumental profile. 
When considering the amount of light t ransmitted by a spectrometer, we need 
to consider the total area under the instrumental function. This issue is rarely 
mentioned in the context of long-slit spectrometers partly because their response 
is highly Gaussian,1 in which case the 'effective photometric band-pass ' (total 
area divided by peak height) is very close to the F W H M of the instrumental 
profile (see Table 1). 

At moderate finesse, the Airy function allows through 50% more light than a 
Gaussian profile with equal spectroscopic resolution (Fig. 3). Thus, the effective 
photometric band-pass S\ is almost 60% larger than the band-pass defined by 
the profile FWHM SX. The factor rj in equation (7) corrects for a calculation 
based on the FWHM of a ring and is defined as SA./5X. Technically, SA. should be 
adopted as the spectral resolution of the Airy instrumental profile, otherwise we 
are forced to a serious inconsistency when comparing Fabry-Perot spectrometers 
to other devices (Bland-Hawthorn & Jones 1994). 

The theoretical sine3 response of slit-aperture devices ia rarely achieved in practice. 
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beam 

etalon 

CCD 

telescope diameter 
central hole diameter 
pupil size 
pupil stop diameter 
telescope area 

free spectral range 
effective finesse 
spectral purity 
spectral sampling 
effective band-pass 

gain 
read noise 
pixel size 
pixel field 

3910 mm 
1610 mm 
59.9 mm 
45.0 mm 
4.74 X 106 mm2 

57.0A 
50 
1.15A 
0.34A 
1.80A 

2.7e"/dn 
2.3 e~ 
24.0 fim. 
0.594" 

Table 2: TAURUS-2 instrumental parameters for a recent observing run at the 
AAT 3.9m using a 50mm diameter etalon. The effective telescope area is reduced 
by the aperture stop. 

4. P h o t o m e t r i c cal ibration procedures 

When we build up a data cube or take a series of observations, it is essential 
to think of the scan variable as the etalon gap I rather than wavelength. These 
two variables should never be confused? The wavelength range is moderated by 
the filter; the etalon gap is not. The physical plate scanning range is /o ± 2A/ 
= /o ± 2(Ao/2) where /0 is the zeropoint gap and A/ is the free spectral range 
in physical gap units. With this important distinction in mind, for the flux in a 
standard star observation, we are able to write 

5(/) = JFs(X)A(X,l) dX (8) 

where .Fs(A) is the product of the stellar spectrum and the filter response. We 
can write down related expressions for the calibrations. The limits of the integral 
in equation (9) are defined by the band-pass of the entrance filter. The transform 
is some form of a convolution equation in that A(X, 1) broadens Fs(X) although, 
technically, the term 'convolution' should be reserved for integrals of the form 

5(/) = J FS(X)A(X - I) dX (9) 

but note that this is a special case of equation (8). Suffice it to say, a spectral line 
broadened by a spectrometer arises from a convolution and not from a product3 . 

'The scan axis of a data cube becomes the A dimension only very late in the reduction process. 

'This is easy to verify analytically with two Gaussian functions. 
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4 .1 . Narrowband imaging 

The Jacquinot spot is defined as the field about the optical axis within which the 
peak wavelength variation with field angle does not exceed \pi of the etalon band­
pass (Jacquinot 1954; Taylor & Atherton 1980). This angular field can be used 
to perform close to monochromatic imaging. In this section, we demonstrate 
how to convert the observed counts to true flux units. We shall assume that the 
entrance filter selects a band-pass which is a fraction of the free spectral range 
such that there is no pollution from neighbouring orders. 

We determine the TAURUS-2 system efficiency by comparing the observed 
counts for the flux standard rj Hyades with the expected counts (Hayes 1970) 
for which, at Ha , we expect f\ = 2.65 X 1 0 ~ u erg c m - 2 s _ 1 A - 1 or equivalently 
n\ = 8.69 phot c m - 2 s _ 1 A - 1 . For the system parameters listed in Table 2, we 
observed 3.50 X 104 counts for the flux standard in a one second exposure. The 
efficiency calculation involves corrections for (A) effective photometric band-pass 
(measured from the calibration data) , (B) exposure t ime, (C) CCD gain, (D) 
reduced telescope area, and (E) airmass. We now quantify these stages: 

A. 3.50 x 104 / 1.80 = 1.94 x 104 cts A" 1 

B. / 1.00 = 1.94 x 104 cts s - 1 A" 1 

C. * 2.70 = 5.25 X 104 elec s"1 A" 1 

D. / 4.74 X 104 = 1.11 elec cm" 2 s"1 A " 1 

E. * 1.03 = 1.14 elec cm""2 s"1 A" 1 

It follows that the TAURUS-2 instrumental efficiency is 13.1% or about 
15.0±0.5% in the absence of the entrance filter. Thus, we are now able to 
convert each recorded electron to exoatmospheric flux units. 

4 .2 . Spectral data cubes 

The important point to realize here is that , with long-slit spectrometers, the 
instrumental profile is projected onto the detector. In contrast, with scanning 
Fabry-Perot interferometers, we have the freedom to sample the spectral line 
of interest however we wish in the scanning dimension. We demonstrate the 
flux calibration of a spectral scan using the planetary nebula flux standard IC 
2165 (Lang 1980). With TAURUS-2, a total of 1.50 X 106 counts was obtained 
from integrating over the Ha line. The various stages are as before with three 
additional steps to correct for (F) system efficiency, (G) sampling interval (the 
same filter was used as before), (H) photon energy at Ha . 

A. 1.50 x 106 / 1.80 = 8.33 X 105 cts A""1 

B. / 10.0 = 8.33 x 104 cts s"1 A" 1 

C. * 2.70 = 2.25 X 105 elec s"1 A - 1 

D. / 4.74 x 10" = 4.75 elec cm" 2 s"1 A - 1 

E. * 1.03 = 4.89 elec cm" 2 s"1 A" 1 

F . / 0.131 = 37.3 phot cm" 2 s"1 A" 1 

G. * 0.34 = 12.7 phot cm~2 s"1 

H. * 3.03 X 10"1 2 = 3.85 x 1 0 ~ n erg cm" 2 s"1 

Our nebular flux 3.85±0.17x 1 0 - 1 1 erg cm" 2 s _ 1 compares remarkably well 
with Lang's value of 3.86 X 1 0 ~ u erg c m - 2 s"1 where we have assumed Case B 
recombination to convert from H/3 to Ha . 
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Figure 4. Ghost families arising from internal reflections within a 
Fabry-Perot spectrometer (see text), (i) Diametric ghosts. Rays from 
the object 0 form an inverted image I and an out-of-focus image at 
R3. The reflection at Rj produces an out-of-focus image at R2. The 
images at R2 and R3 appear as a ghost image G at the detector, (ii) 
Exponential ghosts. The images at R2 and R4 appear as ghost images 
Gi and G2 respectively. 

4.3. Diffuse source detection 

A number of authors have exploited the Jacquinot advantage of the Fabry-Perot 
to obtain extremely deep spectra of extended, diffuse objects. For a fixed gap 
spacing, A oc cos 9, such that the spectrum in a narrow band is dispersed radially 
from the optical axis across the field. When the data are binned azimuthally 
about the optical axis, a single deep spectrum is obtained. Like long-slit spec­
trometers, the instrumental profile is projected onto the detector but varies 
across the field according to SX <x 9~l. At the AAT, we have already achieved 
Ha emission measures of 0.2 cm- 6 pc (2 x 10- 1 9 erg cm - 2 s_ 1 arcsec-2) at 
the Zcr level in about 90 minutes. In principle, we are able to reach 0.02 cm - 6 

pc (3a-) in about six hours using 3" optics. The raw spectrum has quadratic 
sampling and needs to be resampled to a linear axis where the original number 
of bins is preserved. As is evident from equation (7), each pixel defines both a 
spectral interval (applied in step G) and a projected solid angle. We include an 
additional step (I) to correct for the latter, at which point the final spectrum 
has units of erg cm- 2 s - 1 A - 1 arcsec-2. This procedure is to be discussed in 
more detail elsewhere. 
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5. Whitelight calibration 

It is hard to overstate the importance of the whitelight cube. This is obtained 
by observing a whitelight source over the same range of etalon spacings used 
in the actual observations. The whitelight cube maps the response of the filter 
as a function of position and etalon spacing. There are three effects that we 
wish to divide out from the data. First, the narrowband filter response, when 
convolved with the instrumental response, leads to a modulation in the observed 
spectrum. Secondly, it is well known that filters have variable responses in 
both collimated and converging beams (Lissberger & Wilcock 1959). Thirdly, 
we seek to remove any inhomogeneities in the filter structure as a function 
of position. Finally, when the whitelight cube is compressed in the spectral 
dimension, it provides a very high signal-to-noise flatfield for removing pixel-to-
pixel sensitivity variations. 

Since it would be impractical to observe a flux standard at every pixel 
position, we can only flux calibrate the spectral response at each point in the 
field through the whitelight cube. Thus, we effectively calibrate the whitelight 
response at the position of the flux standard and thereafter the data cube. It is 
important to note that a twilight observation provides a better model of uneven 
illumination across the field. Thus, we replace the low frequency structure in 
each frame of the whitelight cube with a single high signal-to-noise twilight 
observation. 

6. Low-level background effects 

Besides the vignette problem, other important low-level effects are CCD fringes 
and the 'extraneous etalon' Airy pattern (see Section 8). The high-frequency 
Airy pattern can have a similar amplitude to the CCD fringes. When using 
narrowband entrance filters, we find that the fringe pattern for some chips can 
show noticeable variations over a baseline as small as 10A. This may require 
co-adding several whitelight cubes to divide out the fringe pattern properly. 

7. Atmospheric attenuation and seeing 

An obvious limitation to good spectrophotometry is the degree of atmospheric 
stability. The PEPSIOS system made use of a reference channel in order to 
assess this (Hobbs 1969). With modern day imaging Fabry-Perot systems, we 
use stars in the field. In good photometric conditions, we find that the stellar 
intensities, and for that matter, the sky background, map the filter structure 
rather well. Under these conditions, the CCD always outperforms a photon-
counting device (Bland & Tully 1989). In the presence of cirrus, we often find 
that the sky continuum follows the Alter structure while the stellar response 
does not, and the stellar FWHM can be highly variable. Such data are of 
limited use. In certain instances, it may be possible to recover some measure of 
photometric integrity by spatially filtering the data, particularly in conditions 
of variable seeing. In the early days, TAURUS used the Image Proportional 
Photon Counting System to scan rapidly and repeatedly to beat down these 

https://doi.org/10.1017/S0252921100022697 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100022697


PHOTOMETRY WITH F.P. SPECTROMETERS 81 

Figure 5. Left.- Two ghost families are seen in this image of NGC 
1068 taken with the Rutgers Fabry-Perot on the CTIO 4.0m telescope. 
The optical axis is indicated by the cross. lN' is placed slightly to 
the north of the Seyfert nucleus. 'DGl ' is the diametric ghost of the 
active nucleus; 'EG1' is an exponential ghost of the Seyfert nucleus. 
'DG2' is the diametric ghost of 'EG1' and 'EG2' is the exponential 
ghost of 'EG1'. Right.- The 'extraneous etalon' ghost pattern from the 
downstream etalon plate (lower right quadrant) and from an air gap 
in the MOSFP camera (central). The data were taken at the CFHT 
by illuminating the dome with an Ha lamp. The fringe pattern of the 
Loral # 3 CCD has a similar peak to trough amplitude. 

variations (Taylor & Atherton 1980). To our knowledge, however, these data 
were never flux calibrated so it is difficult to assess the possible gains. 

8. Ghost families 

Even a minimal Fabry-Perot arrangement can have eight or more optically flat 
surfaces. At some level, all of these surfaces interact separately to generate 
spurious reflections. The periodic behavior of the etalon requires that we use 
a narrowband filter somewhere in the optical path. Typically, the narrowband 
filter is placed in the converging beam before the collimator or after the camera 
lens, or in the collimated beam. The filter introduces ghost reflections within the 
Fabry-Perot optics. The pattern of ghosts imaged at the detector is different in 
both arrangements, as illustrated in Fig. 4. Examples of these ghosts are shown 
in Fig. 5. A good way to track these down is to place a regular grid of holes 
in focus at the focal plane and illuminate the optical system with a whitelight 
source. We tilt the etalon in such a way that the ghost images of the grid pattern 
avoid the detector area. 

A more difficult problem arises from the optical blanks which form the basis 
of the etalon. These can act as internally reflecting cavities since, from Section 2, 
if we let %y = 0.96 and V.2 ~ AW-i = 0.04 (air-glass), we see that this generates 
a ripple pattern with a finesse close to unity. The large optical gap of the outer 
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plates produces a high-order Airy pat tern at the detector (Fig. 5). Traditionally, 
the outer surfaces have been wedge-shaped to deflect this spurious signal out of 
the beam. Even curved lens surfaces occasionally produce 'halation' around 
point source images which may require experimenting with both bi-convex and 
plano-convex lenses when designing a focal reducer. At the risk of belabouring 
the point, it is foolhardy to be using a Fabry-Perot device unless the influence 
of scattered light is well understood. 

9. Conclus ions 

In this review, we have outlined the main principles behind Fabry-Perot spec­
trophotometry. We have also described issues which need to be addressed if the 
photometric calibration is to be reliable. The imaging Fabry-Perot interferome­
ter has the capability to provide superior spectrophotometry since slit-aperture 
devices suffer seeing losses and narrowband filters are tacitly assumed to have 
constant transmission properties as a function of bo th position and wavelength. 
Fabry-Perot interferometers are still not common-user instruments at any obser­
vatory for a variety of reasons, most notably because of the restricted wavelength 
coverage. But for studying extended emission from a few bright lines, the ca­
pabilities of the Fabry-Perot are unmatched by any other technique, with the 
exception of the imaging Fourier Transform spectrometer (e.g., Maillard, this 
conference). Arguably, the best results have been obtained when Fabry-Perot 
data are combined with complementary data from narrowband and long-slit 
devices (see the contributions of Cecil, Hippelein, Pogge, Tully and Veilleux). 

It is noteworthy that , in contrast to optical etalons, gap-scanning infrared 
etalons (e.g. Reay, this conference) have preceded the tremendous on-going 
advances in infrared detector technology. At optical wavelengths, CCDs continue 
to improve their performance although there are outstanding areas for future 
development (e.g., read noise, read-out time). Thus, it would seem that Fabry-
Perot studies, particularly at infrared wavelengths, hold great promise for the 
future. We only hope that future observing programmes make full use of the 
spectrophotometry capabilities of the imaging Fabry-Perot interferometer with 
proper attention to the issues discussed in this review. 

A c k n o w l e d g m e n t s . I would like to thank the Marseilles Observatory for 
their excellent hospitality. As always, I am indebted to my HIFI colleagues 
for their inspiration, encouragement and friendship. Gerald Cecil assisted with 
Figure 4. 

Discuss ion 

Dr. Jockers: Can you explain how you do the whitelight calibration? 

/ . Bland-Hawthorn: The whitelight calibration is an essential step in the flux 
calibration. It measures the variation of the Alter response (peak transmission, 
broadening, band-pass shift) as a function of position over the field. To this 
end, we use the dome flats over a range of etalon gap spacings. We And this 
approach divides out the wavelength structure fairly well. However, the dome 
flat illumination does not divide out the vignetting induced by the optical train. 
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We sidestep this problem by replacing the low frequency spatial structure within 
the whitelight cube by a single observation of the twilight sky. 

Dr. Boulesteix: Even if we had no idea of the instrumental function, the spectra 
that you show at the beginning of your talk seemed to be oversampled. Is that 
true? 

J. Bland-Hawthorn: Yes, greatly oversampled in some parts of the spectrum. 
You are referring to the spectrum obtained from azimuthal binning (or annular 
summing, in the vernacular of Dr. Roesler). In this instant, the instrumental 
profile is projected onto the areal detector, analogous to the long-slit case. Once 
the optics have been chosen, we have no control over this. The heavy over-
sampling occurs at small ofF-axis angles. Towards the detector edge, we start 
to undersample the Airy rings once the quantity pAtanfl approaches the spec­
tral purity of the etalon (where p and 9 are the pixel size and off-axis angle in 
radians). 

Dr. Boulesteix: What is the influence of the sampling interval, and what is the 
best choice for photometry? 

/ . Bland-Hawthorn: The core of the Airy profile determines the kinematic sam­
pling interval (ideally, half the FWHM of the Airy function). In studies of AGNs, 
the lines can be so broad that it is possible to increase the sampling interval by at 
least 50%. The 'effective band-pass' measured from the calibration cube defines 
the photometric sampling interval which is larger than the kinematic sampling 
interval. 

Dr. Atherton: An imaging Fabry-Perot system designed for high photometric 
accuracy would have a small field and probably pre-filters of less than half an 
FSR. 

J. Bland-Hawthorn: I agree on both points; the HIFI group tries to ensure the 
latter condition but the necessary filters are not always at hand. 

Dr. Reay: There are two competing ways of minimizing the impact of ghost 
images formed within the Fabry-Perot plates. Either wedge the plates by 5°-10° 
to ensure that the ghost is thrown off the detector, or polish the plates optically 
parallel to ensure that the ghost superimposes exactly on the main image. Such 
a large wedge angle may have its own problems for the optical designer, but it 
does ensure that ghosts formed within the plates are eliminated. Polishing the 
plates optically parallel is easy to do but imposes a high-frequency low amplitude 
spectral modulation on the signal. Have you considered the trade-offs and, if so, 
can you comment on your conclusions? 

J. Bland-Hawthorn: I have always been of the view that wedging (e.g. Her­
nandez' text on Fabry-Perot interferometers) is not so difficult to achieve since 
the outer surfaces do not need to be optically flat. Making the plates optically 
parallel doesn't help matters. I think the most practical solution is to AR coat 
the outer surface of the downstream plate so as to beat down the geometric 
mean of the reflectivities on both surfaces. An overall finesse much less than 
unity suppresses the amplitude of the fringing. However, the AR coatings with 
lowest reflectivity (<0.25%) tend to have only a narrow band-pass. 
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