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ON FIXED POINT THEOREMS FOR MAPPINGS IN
A SEPARATED LOCALLY CONVEX SPACE

BY
CHENG-MING LEE

The Banach contraction principle has been generalized by Tan [6] to the mappings
in separated locally convex spaces. We show that the result of Sehgal [5] and also
of Holmes [3] can be generalized in the same way.

Throughout this note, we let X be a separated locally convex space, U a base for
the closed absolutely convex neighborhoods of the origin O in X, K a nonempty
subset of X, and T a mapping from K to K. For each u € U, we denote P, the gauge
of u defined by

P, =inf{A > 0:x € Au} foreach x € X.
We refer to [4] for the concept of gauge functions.

Theorem 1 is similar to the result in [5] but we do not assume the continuity of

T (cf. [2]). This is due to the referee, to whom the author expresses many thanks.

THEOREM 1. Let K be sequentially complete. Suppose that for each x € K there is
a positive integer N(x), and for each u € U there is a constant A, with0< 1, <1 such
that
PTV(x)—TV®(3) < 4Py (x—)
for all x, ye K and for all uec U. Then T has a unique fixed point & (in K) and
lim,, T"(x)=¢ for each x € K.

Proof. Let x, € K and x, ;= N(”"’(xn) for n>0. Then since P, is a seminorm,
it follows as in [5] that {x,} is a Cauchy sequence in the seminormed space (X, P,),
u e U, and hence {x,} is Cauchy in K. As K is sequentially complete, x,—& € K.
Then by the hypothesis, 7" (x,)—~T"*'(£). Since for any u, P, is continuous,

P(TY®®)—8) = lim, P,(T"®(x,)—x,) =0,
ie. TN(g)(£)= &. It follows that & is the unique fixed point for T' N(g), and therefore
T(&)=¢£ is unique fixed point of T. The proof of T"(x,)—¢ follows again as in [5].

In case that K is not sequentially complete, following Holmes [3] using a modified
condition due to Bailey [1], one can prove

THEOREM 2. Let T be continuous. Suppose that for each pair x, y € K, thereis a
positive integer N(x, y) and for each u € U, there is a constant A, with0< 2, <1 such
that

Pu(TN(a:.th(x)_TN(a:.v)+t(y)) < )“u Pu(x— )
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for each pair x, y € K and for each t=0,1,2,3,.... Furthermore, suppose that
there is an x, € K such that the sequence {T"(x,)} contains a subsequence converging
to & € K. Then & is the unique fixed point (in K) of T, and {T"(y)} converges to & for
eachy e K.
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