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TRANSLATION COMPLEMENTS OF C-PLANES : (I)

M.L. NARAYANA RAO, K. KUPPUSWAMY RAO

AND G.V. SUBBA RAO

Narayana Rao, Rodabaugh, Wilke and Zenuner constructed a new

class of finite translation planes from exceptional near-fields

described by Dickson and Zassenhaus. These planes referred

to as C-planes are not coordinatized by the generalized Andre

systems. In this paper we compute the translation complement

of the C-plane corresponding to the C-system III-l. It is

found that the translation complement is of order 6912 and it

divides the set of ideal points into two orbits of lengths 2

and 48.

1. Introduction.

Examples of finite near-fields were given by Dickson in 1905.

Zassenhaus [J2] constructed an infinite class of near-fields that can be

constructed from GF(p ) , p a prime and r a positive integer. Apart

from these, Zassenhaus had shown that there exist exactly seven other

2 2 2 2 2
near-fields. These seven near-fields of order 5 , 11 , 7 , 23 } 11 ,
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2 2
29 and 59 are referred to as the exceptional near-fields. Narayana

Rao, Rodabaugh, Wilke and Zemmer [6] constructed quasifields from these

exceptional near-fields and showed that these quasifields give rise to

nine non-isomorphic translation planes which are not coordinatised by the

generalized Andre systems of Foulser (A-systems) .

The nine C-systems are denoted by 1-1, 1-2, II-l, III-l, III-S,

III-4, V-l, V-2 and VI-1 . The reader is referred to [6] for the

notation and nomenclature used in this paper. Ostrom [9] remarked that

the translation complements of these C-planes and their actions on the

sets of ideal points of these planes have not so far been completely

determined. However Lueder [4] has determined the action of the translat-

ion complements of the C-planes corresponding to the two of the C-

systems namely 1-1 and III-4 . Narayana Rao and Satyanarayana LSI

have also determined the translation complement of the plane correspond-

ing to the C-system 1-2 and established that one of the planes of

Walker [ TJ] is isomorphic to the C-plane. The translation complements

of the remaining six planes are yet to be investigated. In this paper we

investigate the translation complement of the plane corresponding to the

C-system III-l . The translation complements of the remaining planes

are under investigation and the results will be reported in due course.

2. Construction of the C-plane corresponding to the C-system III-l.

Zassenhaus [72] described the structure of the exceptional near-

o
field III of order 7 in terms of 2 x 2 matrices over GF(7) . The

reader is referred to Marshall Hall [ 3] for the description of all the

exceptional near-fields. The group of non-zero elements of the exceptional

near-field III is generated by the 2*2 matrices {( ) , ( 5 ) }.

An examination of the non-zero matrices of the exceptional near-field

reveals that they are of the following type:

( 0 a] (a 0 \ (a a "j (a 2a \
\- 6 a 1 0 >' i- 0 or1 > ' I 2CT1 3a-1 > > I cT1 Zee1*

f a 3a "I f a 4a ] f a 5a 1 (a 6a

I 6a-1 So-1'* I 4a-1 Sa^' I ScT1 5a'1 J > U
a =1,2, 3, 4, 5 and 6
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The set of these 48 matrices together with the zero matrix forms a 1-

spread set [2] over GF(?) defining the near-field (F, +, .) where

F = {(x,y)\x,y e GF(7)} . Addition is defined as vector addition.

Multiplication is defined by (x,y). (a,b) = (a,b) D(x,y) where D(x,y)

is the unique matrix in the J-spread set associated with (x,y) in the

near-field.

The C-system III-l is constructed from the exceptional near-field

(F, +, •) in the following way. In what follows, the C-system means the

C-system III-l and C-plane is the plane TT coordinatized by the C-

system.

Let T be the additive automorphism given by T = [„ „) . Let

G = <xT.x~ > where x e F - {0} . Let (F, +, o) be the structure

defined by

i) (a,b) + (a,d) = (a + c, b + d) for all a,bse,d e GF(7) .

ii) (x,y)o(a,b) = (x,y).(a1b)T
K(x'y) where

= (0 if (x,y) e G
\1 d1 if (x,y) d G t (x,y) + (0,0)

iii) (0,0)o(a,b) = (0,0) .

This is the C-system III-l described in [6]. The structure of the C-

system as a i-spread set is obtained in the following way:

Let Z)( ^ } be the unique matrix associated with (x,y) in the near-

field. Let M(x,y) be the unique matrix associated with (x,y) in the

C-system. Since

(x,y)o(a,b) = (x,y).(a,b) T
X(x'y)

= (a,b) Tk(x'y) D(x,y) for all a,b e GF(?)

we obtain that

M(x,y) = TUx'y) D(x,y) . That is

D(x,y) if (x,y) e G
M(x,y) = 4)

Narayana Rao, Rodabaugh, Wilke and Zemmer [6] have established that

G is generated by the two elements { ( c) > (/> 4) J a n d obtained the
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r e s u l t t h a t G ac t s as both l e f t nucleus N- and middle nucleus N [5]
I m

for F . The element (0,1) / G and the associated matrix in the near-

field for (0,1) is („ Sj . Then the associated matrix for (0,1) in

the C-system is (s „) . Hence the 3-spread set C for the C-system

can be written as

For the sake of elegance we give the general forms of the matrices in

( )They are, apart from ( ) ,

a 0 \ t a Za \ t a 5a 1 t a 6a

0 a'1) ' [6a-1 5a-1)' [5a-1 5a'1)' [Sa'1 5a'1

0 a\ t a a •> t a 2a •> ta 4a \

a'1 o) ' [4a-1 6a'1)' [2a-1 6a'1)' [a'1 6a'1) '

a = 1, 2, 3, 4, 5 and 6 .

It may not be out of place to mention here that G consists of

elements of the first four forms and (. .) G consists of the elements

of the next four forms. The matrices of C along with their character-

istic polynomials are listed in Table 1. Here the entry (a,b) under

2
the heading C.P indicates that X + a\ + b is the characteristic

polynomial of the corresponding matrix.

3. Some Collineations of the C-plane.

Let V. = {(a,b,a,d)\a,b e GF(7), (o,d) = (a,b)M., M. e C} ,

0 <, i < 48 and V.o = V = {(0, 0, a, d)\ o,d e GF(7)} be subspaces of

V(4j7) j the four dimensional vector space over GF(7) . The incidence

s t ruc tu re V^0<-i^49j and i t s cosets in the addit ive group of

%

V(4,7) as lines and the vectors of V(4,7) as points with the inclusion

as incidence relation is the C-plane TT whose translation complement we

will be determining. It is customary to denote the ideal point

corresponding to V. by (i) . The ideal point corresponding to V.g
is denoted by (49) or (=>) . It is known that
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a nonsingular l i nea r transformation on V(4}7) induces a col l ineat ion of

TT belonging to the t r ans l a t i on complement i f i t permutes the subspaces

V.j 0 £ i £ 49 among themselves [9 ] . From now on we mean by a
1s

collineation a collineation from the translation complement. Equivalently

i t is also known that a nonsingular transformation in the block matrix

form (_ _) where A, B, C and D are 2 x 2 matrices over GF(7)

induces a collineation on TT if and only if for each M. £ C , the

following conditions are satisfied:

i) (A + M. C)'1 (B + M. V) £ C ̂  if (A + M. C) is nonsingular. If
% Is Is

(A + M. C) is singular then (A + M, C) is the zero matrix and
Is Is

(B + M. D) is nonsingular.
Is

ii) C~ D e C , if C is nonsingular. If C is singular then C is

the zero matrix and D is nonsingular.

Every matrix of the form ( „ _} where a e GF(7), a 4 0 , and J is

the 2 x 2 identity matrix trivially satisfies conditions (i) and (ii) and

hence induces a collineation of v called a scalar collineation. A

scalar collineation fixes the ideal points in all cases and moves the

affine points in cases when a ̂  1 . The group of scalar collineations

is of order 6.

3 .1 . Collineations induced by the l e f t nucleus N- and the middle

nucleus Nm

Since M A e C for each M e C and A e N. = G , the mappings

M > M A satisfy conditions (i) and (ii) mentioned above and hence

induce collineations for all A £ N. = G . These collineations form a

group N. which acts transitively on the ideal points corresponding to

G and (5 .) G separately. Similarly the mappings M > B M for all

B e. N induce collineations for all B £ N = G . These collineations
m m

form a group N which acts transitively on the ideal points correspond-

ing to matrices in G and (5 .) G separately.
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DEFINITION 3.2. Two ideal points (i) and (j) are said to be

companions under a oollineation group if whenever a collineation fixes

(i) it also fixes (j) and vice versa. In other words any collineation

either fixes both (i) and (j) or moves both (i) and (j). The significance

of the companions is that any collineation must map companions onto

companions only.

LEMMA 3 . 3 . There is no collineation of IT which

i) fixes (0) and moves (<*>) onto (i),

ii) fixes (<*>) and moves (0) onto (j),

Hi) moves (0) onto f^) and (<*>) onto (i), i 4 0 and

iv) moves (<*>) onto (0) and (0) onto j , (j) 4 (m) •

Proof. An examination of Table 1 reveals that if M. c C, then

-M. £ C . Then the necessary condition for the existence of a collineation
Is

satisfying (i) or (ii) is that there is a matrix M, e C such that

M + Af, £ C for all M e C[7]. This condition is not satisfied by C .

Hence the lemma.
It follows from the above lemma that (0) and (<*•) are companions.

3.4. Conjugation collineations

A mapping M > A~ MA , for A e GL (2,7) such that for each

M £ C j A MA also is in C , satisfies the sufficient conditions (i)

and (ii) of Section 3 for the existence of a collineation and hence

induces a collineation called a conjugation collineation. The conjugation

collineations obviously fix (0) and (<») . Since N~ = N , any mapping

M —-> A MA is a conjugation collineation if A e N~ = N = G . Since

any collineation preserves ilL and N , the conjugation collineation

also must act invariantly on G and hence on I. .\G separately. The

group G contains exactly 6 matrices, •( ̂ 4 •» \c 31 •> 4 4] '

\3 31 ' \l 4l ' 5 3\I w i t^ t h e s a m e characteristic polynomial \ + 1.

We denote the set of these 6 matrices by H . The conjugation collineation
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must permute the matrices of H among themselves. Let A = „ A,

-1
\ . Since these matr ices are in N. a the mappings M > A

are co l l inea t ions of ir . From the r e l a t i o n s :

MA

1 3\-l \3 2
6 5 \2 4

[1 A m[4 3] .
[6 3) [6 3) >

[I l\ [i I) [I l\ = [I I) ' [I 1} [4 I] [e 1)
 =[l

(1 3]-1 (3 4) (1 3] (4 6). (1 3]-1 U 6\ \l 3] _ f 4
[6 5) [l 4) [6 5) \3 3) > [6 5] [3 3) [6 5) [ 3

[l 3}-1 \4 S\ [1 3} [3 4} [2 OY1 [s l\ (2 o) [ 3 4)

U 4 [' Ĵ [6 Sj = [l 4) ' [o 4\ [4 4\ [o 4) = [ 1 4\
We conclude that the group of conjugation collineations acts transitively

on the set of ideal points corresponding to the matrices in H .

We now determine all the conjugation collineations which fix the

ideal point corresponding to one matrix namely . in H . Since

2
the characteristic polynomial X + 1 of the matrix

irreducible over GF(7) , the matrix L J belongs to the field

( a b \ (3l)

F = { ̂ 2, a+i\ I
 a>b e GF(7)} . By Schur's lemma the normaliser of \. A

consists of nonzero elements of a field contained in GL (2,7) and

containing .I , which is F itself. Thus the normaliser of .

is

F - {0} .

In order to show that A MA induces a collineation on TT we

have to verify that A~2 \{ SAA ; A'1 \2Q °}A ; A~
2 1° 2AA are all in

C . This is because and . generate G and C

= \[0 oil " ° U (s I] G • Zt i s e a s i l v verified that if A =

\p SI1 \6 61' \0 l\ an<^ t n e i - r scalar mul t ip les , the above mentioned

conditions are satisfied. However if A = ^ j L A~1\l 5 A = \2 4
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This implies that I, ,1 and its scalar multiples do not induce
[o 1 \

f "\ c °\

collineations on v . Further the products of _I with _I ,

(3 2) {6 b)

[n . \ , c „ and their scalar multiples also do not induce collineations

on it . Thus the set of all conjugation collineations fixing the ideal

point corresponding to . .1 is the group K consisting of L. A ,

(a c » L / » J C n\ a n d their scalar multiples. The order of the

group K is 24.

Let J be the group of all conjugation collineations of ir . Then

J is transitive on the 6 ideal points corresponding to the matrices in

H . Since the group of all conjugation collineations fixing the ideal

(3 l)
point corresponding to . . is K , a coset decomposition of J by K

gives J = u K a , where the union extends over some six conjugation

collineations a which map . A onto each of the elements of H .

These collineations a exist since J is transitive on the ideal points

corresponding to matrices in H . Clearly the order of J is the product

of the size of H and the order of K . Thus \j\ = 6 *• 24 = 144 .

Obviously J contains the subgroup of all scalar collineations.

3.5. Coliineations fixing (0) and ("«,;

It is known that any collineation fixing (0) and (°>) corresponds

to the mapping M > A MB , such that for each M eC , A~ MB e C

where A, B e GL (2,7) . The conjugation collineations are obtained as a

special case when A = B ; they have already been accounted for. Further

-1 -1 -1
a collineation M > A MB can also be expressed as M > A M, MA

for some M, e C . An examination of Table 1 reveals that C has apart

from the zero matrix, 24 matrices with determinant 1 and 24 matrices

with determinant 2 , which forces the choice of M, to be a matrix with

determinant 1 . But all the matrices with determinant 1 are in G

which is the same as tf, = N . Thus the mapping M > A~ M7 MA is
u 771 K
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a combination of a conjugation collineation and a collineation induced by

an element of Nm . Thus the group L of all collineations fixing (0)

and (">) is generated by J and N . Since the subgroup N of £ is

transitive on the 24 ideal points corresponding to matrices in G, L is

transitive on these 24 ideal points. Further all the collineations of L

fix (0) and (•*>) . The subgroup J consists of all collineations

(">) and the ideal point corresponding to the identity

Then a coset decomposition of L by J is given by

which f i x

m a t r i x i n

(0),

G .

L = u J a
a e N

a n d

\L\ = 24 \J\ = 24 x 144 = 3456 .

Obviously L contains N~ also.

3.6. Collineations flipping (0) and (<*>)

Consider the mapping 3 M
0 1
5 0 M

-1
for M e I f

M e G , then M

then M = P

G and hence
0 1
5 0

for some P in G

M-1 e

Then

I f M e G

I}*1
0 1) to 1
5 0} [5 0

-1
n-l

Thus the mapping M

e G .

0 1)
5 0) induces a collineation on ir in ter-

changing (0) and (<») and interchanging the ideal points corresponding

to matrices in G and the ideal points corresponding to matrices in

(0 1]
[s o]

G . Let G' - <L, 8 > . The group G' divides the ideal points
\5

of IT into two orbits one containing (0) and (<*>) and the other

containing the remaining 48 ideal points.

Let G be the group of all collineations which either fixes both

(0) and (<*>) or flips (0) and (°°) . Then G' is contained in G

and is therefore transitive on the set of ideal points consisting of (0)

and (<*>) . Further, since (0) and (<*>) are companions, any collineat-

ion that fixes (0) must also fix (<°) . Thus the subgroup of G consist-

ing of all collineations that fix (0) is L itself. A coset decomposit-

ion of G by L is given by
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G = L u Lo which is G' i t self,
p

then
\G\ = \G'\ = 2 x 3456 = 6912 .

4. Translation complement of IT

In this section we prove that G is in fact the translation

complement of ir .

LEMMA 4.1. The ideal points corresponding to matrices I and 61

are ccmpanicns.

[2 o\ (2 o\
Proof. The mapping v : M > . A M _ . is a collineation

f a 2b)
[4c d\ •

belonging to J . This collineation maps an ideal point corresponding to

[a b)
the matrix , onto an ideal point corresponding to the matrix

This implies that v fixes ideal points corresponding to

l 0) [2 O) (3 0) [4 0) (5 0) [6 0) c ,n, , , ,
O l\> [0 4)> [0 5)' \0 2)' [0 3)' [0 6} apart fraa (0) ̂  ^

and moves all other ideal points. The mapping & : M > I . c| ML, A
\6 b) [6 5)

is a collineation belonging to J . This collineation fixes ideal points

corresponding to „ . and „ J and moves the ideal points\° 1) \P °\
[2 0) (3 O) [4 O) „ (5 0}

corresponding to L, ^1, \Q A, \Q J and \Q J . From the actions

of v and 6 we conclude that the ideal points corresponding to I. -1
6 O)
. . are companions-

THEOREM 4.2. There is no collineation of IT which moves (0) and

(<") onto (r) and (s) where r,s / 0, •*> .

Proof. Since (0) and (">) are companions, if a collineation maps

(0) onto (r)j r ̂  0, *>, then the collineation must map f°°J onto (s)

s / 0, <*> and (s) the companion of (r) . Since the group G is

transitive on the 48 ideal points other than (0) and (°>) , it suffices

to consider a collineation n which maps (•*>) onto the ideal point

corresponding to J and (0) onto the ideal point corresponding to 61 .

Any collineation which sends (<*>) onto (s) and (0) onto (r) will

be a combination of n and a collineation from G .
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Let T(r,s) = < ^ - V ~ J " (Ms - V 1 I MeC} >
with the usual understanding that whenever (0) and (<*>) occur in the

above expression their inverses are to be taken as (<*>) and (0) . It

is known that if a collineation exists which sends (<*>) onto (s) and

(0) onto (r) , then there must exist two matrices A, B e GL(2,7) such

that A~ I1, . B = C . Taking M = I and M = 61 , we get
(Ij Q J 2"1 S

(r s) = {(^ + 6I)~1 + 4I I W e C}

since C has the property that M e. C implies -M e C , the set T. ,

must also inherit this property. Thus for each M e C , there must exist

N e C such that

(M + 61f1 + 41 = - {(N + 6I)'1 + 41} .

Taking M = . . and solving the above equation for N , we get
\b 0)

N = - „ | C . Thus (W and (<*) cannot be moved onto i" and 61

respectively. Hence the theorem.

Conclusion

The translation complement of u is G itself and it is of order

6912 . Further G divides the ideal points into two orbits of lengths

2 and 48 . it may be mentioned here that the translation complement of

a near-field plane of order 49 also divides the set of ideal points into

two orbits of lengths 2 and 48. However the order of the translation

complement of the nearfield plane is very much bigger.
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