Simple permutations with order a power of two

CHRIS BERNHARDT
Department of Mathematics, Lafayette College, Easton, Pennsylvania 18042, USA

(Received 13 June 1983 and revised 12 January 1984)

Abstract. Continuous maps from the real line to itself give, in a natural way, a partial ordering of permutations. This paper studies the structure of simple permutations which have order a power of two, where simple permutations are permutations corresponding to the simple orbits of Block.

0. Introduction

Šarkovskiǐ [9] proved the following theorem:
Theorem. Let \triangleleft be the ordering of the positive integers

$$
3 \triangleleft 5 \triangleleft 7 \triangleleft \cdots \triangleleft 2 \cdot 3 \triangleleft 2 \cdot 5 \triangleleft 2 \cdot 7 \triangleleft \cdots \triangleleft 2^{2} \cdot 3 \triangleleft 2^{2} \cdot 5 \triangleleft \cdots \triangleleft 2^{2} \triangleleft 1 .
$$

Let f be a continuous map from the real line to itself. Iff has a periodic point of period n and if m satisfies $n \triangleleft m$ then f also has a periodic point of period m.

Elegant proofs of this theorem using Markov graphs have been given in [3] and [4]. If the order in which points are permuted by a function is known then Markov graphs can give more information about the existence of other periodic points. For example, suppose f is a continuous map from the real line to itself such that there exist real numbers $x_{1}<x_{2}<x_{3}<x_{4}$ and $f\left(x_{i}\right)=x_{\theta(i)}$, where θ is the permutation (1234). Šarkovskiĭ's theorem shows the existence of periodic points of periods one and two; but by looking at the Markov graph it is seen that f has periodic points of all periods. Further analysis of the graph shows that there exists points $y_{1}<y_{2}<y_{3}$ such that $f\left(y_{i}\right)=y_{\eta(i)}$, where $\eta=(123)$. This conclusion can also be drawn from the fact that there is no division for ($x_{1}, x_{2}, x_{3}, x_{4}$), see [7].

The important elements in the above example are the permutations. Continuous maps from the real line to itself induce a partial ordering on the set of permutations.
In this paper, the structure of simple permutations which have order a power of two is studied, where simple permutations denote permutations corresponding to the simple orbits of Block (see [1], [2], [4], [5]).

In the first section the basic concepts and notation is introduced. The second section shows that the partial ordering restricted to the above permutations gives rise to a tree. It shows what a permutation's immediate successors and predecessors are.

In the third section the number of critical points associated to a permutation is studied. This is of interest because there have been many papers considering
unimodal maps (see for example [2], [6]) and because of theorem 1.5. It is shown that in the unimodal case there are only two simple permutations with order 2^{n} for each n; one corresponding to a map with a maximum and the other to a map with a minimum.

1. Basics

Throughout this paper ($S_{n},{ }^{\circ}$) will denote the group of permutations on n objects. All functions will be assumed to be continuous maps from the real line to itself.
Definition 1.1. Given a function, f, its set of permutations denoted Perm (f) is defined by the following. A permutation, θ, belongs to Perm (f) if there exist real $x_{1}<x_{2}<$ $\cdots<x_{n}$ such that $f\left(x_{i}\right)=x_{\theta(i)}$.
Definition 1.2. Let θ and η be permutations. Say θ dominates η, denoted by $\theta \triangleleft \eta$, if $\{f \mid \theta \in \operatorname{Perm}(f)\}$ is contained in $\{f \mid \eta \in \operatorname{Perm}(f)\}$.

Definition 1.3. Suppose that θ belongs to Perm (f) and that x_{1}, \ldots, x_{n} represent the reals such that $f\left(x_{i}\right)=x_{\theta(i)}$. Then a directed graph can be associated to θ and f in the following way. The graph has $n-1$ vertices J_{1}, \ldots, J_{n-1}, and an arrow is drawn from J_{k} to J_{l} if and only if $f\left(\left[x_{k}, x_{k+1}\right]\right) \supseteq\left[x_{l}, x_{l+1}\right]$. This graph will be called the Markov graph associated to f and θ.

For basic facts about Markov graphs see [8], [4] (or [3], where they are called A-graphs).

Definition 1.4. The set which contains permutations consisting of exactly one cycle of order n will be denoted C_{n}.
Definition 1.5. Given a permutation θ belonging to S_{n} the primitive function, \bar{f}, associated to θ is defined by the following:
(1) $\bar{f}(k)=\theta(k)$;
(2) $\bar{f}(t k+(1-t)(k+1))=t \theta(k)+(1-t) \theta(k+1)$;
(3) $\bar{f}(x)=\theta(1)$ if $x<1$;
(4) $\bar{f}(x)=\theta(n) \quad$ if $x>n$;
where $k=1, \ldots, n$ and $0 \leq t \leq 1$.
Definition 1.6. The Markov graph associated to θ and its primitive function will be called the Markov graph of θ.

The following lemma follows from the definition of primitive function.
Lemma 1.7. Let θ belong to C_{n} and let \bar{f} be its primitive function. If η belongs to $C_{m} \cap \operatorname{Perm}(\bar{f})$ and if $\eta \neq \theta$ then the Markov graph of θ has a non-repetitive loop of length m corresponding to η.

If θ belongs to Perm (f) then the Markov graph associated to θ and f contains, in a natural way, the Markov graph of θ, (see [4]). Thus an easy consequence of the above lemma is the following.

Lemma 1.8. Let θ belong to C_{n} and η to C_{m} and $\theta \neq \eta$. Then θ dominates η if and only if the Markov graph of η has a non-repetitive loop of length m corresponding to η.

The following is an extension of Šarkovskiî's theorem.
Šarkovskil̆'s Extended Theorem. If θ belongs to C_{n} then for any integer m, satisfying $m \triangleright n$ there exists an $\eta \in C_{m}$ such that $\eta \triangleright \theta$.
Proof. From θ construct its primitive function \bar{f}. Since \bar{f} has a periodic point of period n, Šarkovskiî's theorem shows that \bar{f} has a periodic point of period m, and so there exists an η belonging to Perm $(\bar{f}) \cap C_{m}$. Lemma 1.7 shows that the Markov graph of θ has a loop corresponding to η and Lemma 1.8 completes the proof.

Block has strengthened Šarkovskiǐ's theorem by considering simple orbits, see [1], [2]. Ho has also studied simple orbits see [4] and [5].
Definition 1.9. Let m and n be positive integers. Let S denote the set $\{x \in \mathbb{Z} \mid 1 \leq x \leq$ $m n\}$. Then there is a natural way of partitioning S into subsets each of size n by choosing the first n elements, then the second n elements and so on. Define

$$
P(m n, m, k):=\{x \in \mathbb{Z} \mid(k-1) n<x \leq k n\},
$$

where k is an integer satisfying $1 \leq k \leq m$.
Definition 1.10. A permutation belonging to $C_{2 k-1}$ is simple if when expressed in cycle notation it is equal to either

$$
[k(k-1)(k+1)(k-2)(k+2) \cdots(k-j)(k+j) \cdots 1(2 k-1)]
$$

or

$$
[k(k+1)(k-1)(k+2) \cdots(k+j)(k-j) \cdots(2 k-1) 1] .
$$

Definition 1.11. An element θ of $C_{2} n$ is simple if for every k satisfying $0 \leq k \leq n-1$ it satisfies the following two conditions:
(i) $\left.\theta^{2^{k}}\left[P\left(2^{n}, 2^{k}, j\right)\right]=P\left(2^{n}, 2^{k}, j\right)\right)$;
(ii) $\boldsymbol{\theta}^{2^{k}}\left[P\left(2^{n}, 2^{k+1}, j\right)\right]$ has empty intersection with $P\left(2^{n}, 2^{k+1}, j\right)$.

Definition 1.12. An element θ of $C_{r 2^{m}}$ is simple if it satisfies the following conditions:
(i) $\theta\left[P\left(r 2^{m}, 2^{m}, j\right)\right]=P\left(r 2^{m}, 2^{m}, \sigma(j)\right)$, where σ is a simple element of $C_{2^{r}}$;
(ii) $\theta^{2^{m}}$ restricted to $P\left(r 2^{n}, 2^{m}, j\right)$ is simple for every j.

Definition 1.13. The set of simple elements of C_{k} will be denoted $\operatorname{Sim}(k)$.
Example 1.14. Let

$$
\alpha=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 1 & 3 & 2
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
7 & 8 & 10 & 6 & 9 & 2 & 3 & 5 & 1 & 4
\end{array}\right) .
$$

Then it is easily checked that α belongs to $\operatorname{Sim}(6)$ and β to $\operatorname{Sim}(10)$.
Block and Hart [2] have shown that if a function has a periodic point of period n then it has a simple periodic point of period n. By an argument analogous to the proof of Šarkovskiř's Extended Theorem the following can be proved.

Block and Harts Extended Theorem. If θ belongs to C_{n} then for any integer m satisfying $m \triangleright n$ or $m=n$ there exists η an element of $\operatorname{Sim}(m)$ such that $\eta \triangleright \theta$.

Definition 1.15. Let θ belong to C_{n}. Say θ has a relative maximum at k if both $\theta(k-1)$ and $\theta(k+1)$ are defined and $\theta(k-1)<\theta(k)$ and $\theta(k+1)<\theta(k)$.

Similarly, θ has a relative minimum at k if both $\theta(k-1)$ and $\theta(k+1)$ are defined and both $\theta(k+1)$ and $\theta(k-1)$ are greater than $\theta(k)$.
Definition 1.16. The number of relative maxima of a permutation θ or a function f will be denoted $\gamma_{\max }(\theta), \gamma_{\text {max }}(f)$ respectively. The number of relative minima of a permutation θ, or a function f, will be denoted $\gamma_{\text {min }}(\theta), \gamma_{\text {min }}(f)$ respectively. Let $\gamma(\theta)=\gamma_{\text {max }}(\theta)+\gamma_{\text {min }}(\theta)$.

The following lemma follows easily from the definitions
Lemma 1.17. Let f be a function and θ an element of $\operatorname{Perm}(f)$. Then
(i) $\gamma_{\max }(f) \geq \gamma_{\text {max }}(\theta)$;
(ii) $\gamma_{\text {min }}(f) \geq \gamma_{\text {min }}(\theta)$;
(iii) $\gamma(f) \geq \gamma(\theta)$.

Lemma 1.18. If θ is a permutation there exists a function f such that $\gamma(f)=\gamma(\theta)$.
Proof. Clearly the primitive function of θ is such a map.
The following lemma follows trivially from the above lemmas and definitions.
Lemma 1.19. If θ and η are two permutations with $\theta \triangleleft \eta$ then
(i) $\gamma_{\max }(\theta) \geq \gamma_{\text {max }}(\eta)$;
(ii) $\gamma_{\text {min }}(\theta) \geq \gamma_{\text {min }}(\eta)$;
(iii) $\gamma(\theta) \geq \gamma(\eta)$.

Remark. It is easily checked that if θ belongs to $\operatorname{Sim}(2 k+1)$ then $\gamma(\theta)=1$. This observation combined with Block and Hart's theorem shows the following.
Theorem 1.20. If θ belongs to $C_{2 k+1}$ then for any m with $m \triangleright(2 k+1)$ there exists η an element of $\operatorname{Sim}(m)$ such that
(i) $\eta \triangleright \theta$; and
(ii) $\gamma(\eta)=1$.

Remarks. Notice that $\gamma(\alpha)=4$ and $\gamma(\beta)=6$ where α and β are as in example 1.14.
Clearly if θ belongs to C_{k} then $\gamma(\theta) \leq k-2$, because 1 and k cannot be critical points. The simple permutation α is an example where $\gamma(\alpha)$ equals 6-2. However, it will be shown in $\S 3$ that if θ belongs to $\operatorname{Sim}\left(2^{n}\right)$, for $n \geq 2$, then $\gamma(\theta) \leq 2^{n}-3$.

It is interesting to note that both α and β are maximal, in the sense that no simple permutation dominates α other than itself and no simple permutation dominates β other than itself. Thus if the intersection of Perm (f) and C_{10} contains only β the function f has periodic points only for periods m where $m>10$.

2. Partial ordering

In this section it is shown that the partial ordering restricted to $\bigcup_{n} \operatorname{Sim}\left(2^{n}\right)$ gives rise to a tree. Theorem 2.10 shows what are the immediate predecessors and successors of a given permutation.

The following lemma was proved by C. Ho in [4].

Lemma 2.1. There exist $2^{2^{n-(n+1)}}$ simple permutations of period 2^{n}.
Lemma 2.2. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$, then for any integer $m, \theta^{2^{m}+1}$ belongs to $\operatorname{Sim}\left(2^{n}\right)$. Proof. This follows directly from definition 1.11.
Definition 2.3. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ then θ^{*}, an element of $S_{2^{n+1}}$, is defined by

$$
\theta^{*}(2 k)=2 \theta(k), \quad \theta^{*}(2 k-1)=2 \theta(k)-1 .
$$

Remarks. The permutation θ^{*} consists of two 2^{n}-cycles. It is clear that θ^{*} dominates θ.

Definition 2.4. Let ρ_{s} denote the transposition

$$
\left(\begin{array}{cc}
2 s-1 & 2 s \\
2 s & 2 s-1
\end{array}\right)
$$

Lemma 2.5. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ then

$$
\theta^{*} \circ \rho_{i_{1}} \circ \rho_{i_{2}} \circ \cdots \circ \rho_{i_{2 m-1}}
$$

belongs to $\operatorname{Sim}\left(2^{n+1}\right)$ for any positive integers m, i_{j} where $1 \leq i_{j} \leq 2^{n}$ for $1 \leq j \leq 2 m-1$.
Proof. Let η denote $\theta^{*} \circ \rho_{i_{1}} \circ \rho_{i_{2}} \circ \cdots \circ \rho_{i_{2 m-1}}$. First, it will be shown that η belongs to $C_{2^{n+1}}$. Since θ belongs to $C_{2^{n}}$ the set $\eta^{k}(\{1,2\})$ has empty intersections with $\{1,2\}$ for $1 \leq k<2^{n}$ and $\eta^{2^{n}}(\{1,2\})=\{1,2\}$. So, either $\eta^{2^{n}}(1)=1$ or $\eta^{2^{n+1}}(1)=1$. Now $\left.\eta^{2^{n}}\right|_{\{1,2\}}=\left.\rho_{1}^{2 m-1}\right|_{\{1,2\}}$, thus $\eta^{2^{n}}(1)=2$ and consequently η belongs to $C_{2^{n+1}}$. Next it will be shown that η satisfies the conditions given in definition 1.11. Since θ is simple it follows from the construction of η that for every k satisfying $0 \leq k \leq n-1$,
(i) $\eta^{2^{k}}\left[P\left(2^{n+1}, 2^{k}, j\right)\right]=P\left(2^{n+1}, 2^{k}, j\right)$;
(ii) $\left.\eta^{2^{k}} P\left(2^{n+1}, 2^{k+1}, j\right)\right]$ has empty intersection with $P\left(2^{n+1}, 2^{k+1}, j\right)$.

Putting $k=n-1$ in both of the above conditions shows that

$$
\eta^{2^{n}}\left[P\left(2^{n+1}, 2^{n}, j\right)\right]=P\left(2^{n+1}, 2^{n}, j\right),
$$

and because η belongs to $C_{2^{n+1}}$ it is clear that $\eta^{2^{n}}\left[P\left(2^{n+1}, 2^{n+1}, j\right)\right]$ has empty intersection with $P\left(2^{n+1}, 2^{n+1}, j\right)$.
Lemma 2.6. If η belongs to $\operatorname{Sim}\left(2^{n+1}\right)$ then there exists θ belonging to $\operatorname{Sim}\left(2^{n}\right)$ and transpositions $\rho_{i_{1}}, \ldots, \rho_{i_{2 k-1}}$ such that $\eta=\theta^{*} \circ \rho_{i_{1}} \circ \cdots \circ \rho_{i_{2 k-1}}$.
Proof. First notice that if $\theta_{1}^{*} \circ \rho_{i_{1}} \circ \cdots \circ \rho_{i_{2 k-1}}=\theta_{2}^{*} \circ \rho_{j_{1}} \circ \cdots \circ \rho_{j_{2_{m-1}}}$ then $\theta_{1}^{*}=\theta_{2}^{*}$, and if the strings of transpositions contain no repetitions $\left\{\rho_{i_{1}}, \ldots, \rho_{i_{2 k-1}}\right\}=\left\{\rho_{j_{1}}, \ldots, \rho_{j_{2 m-1}}\right\}$.

Lemma 2.1 shows that there are $2^{2^{n-(n+1)}}$ elements in $\operatorname{Sim}\left(2^{n}\right)$. The number of ways of choosing an odd length string of transpositions is $2^{2^{n-1}}$, if all the transpositions in the string are distinct. Thus there are $\left(2^{2^{n}-(n+1)}\right)\left(2^{2^{n-1}}\right)$ ways of choosing η, by lemma 2.5 each of the choices corresponds to an element of $\operatorname{Sim}\left(2^{n+1}\right)$ and lemma 2.1 completes the proof.
Definition 2.7. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ define θ_{*} an element of $S_{2^{n-1}}$ by

$$
\theta_{*}(k)=\operatorname{Int}\left[\frac{1}{2} \theta(2 k)\right]
$$

where Int [] means round up to the nearest integer.
Remark. It is clear that if θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ then $\left(\theta^{*} \circ \rho_{i_{1}} \cdots \cdots \rho_{i_{2 k-1}}\right)_{*}=\theta$, and so the following is obtained trivially.

Lemma 2.8. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ then
(i) $\theta_{*} \in \operatorname{Sim}\left(2^{n-1}\right)$;
(ii) $\boldsymbol{\theta} \triangleleft \boldsymbol{\theta}_{\boldsymbol{*}}$.

Lemma 2.9. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ and θ dominates both η_{1} and η_{2}, where η_{1} and η_{2} are elements of $\operatorname{Sim}\left(2^{n-1}\right)$, then $\eta_{1}=\eta_{2}$.
Proof. Consider the Markov graph associated to θ. It has $2^{n}-1$ vertices. It will be shown that there exists only one loop of length 2^{n-1}.

In the graph there exists at least one loop of 2^{n-k} vertices corresponding to a periodic point of period 2^{n-k} for each $k, 1 \leq k \leq n$. These loops must be distinct or else η would dominate an infinite number of permutations. However, $\sum_{k=1}^{n} 2^{n-k}=$ $2^{n}-1$ and so there exists exactly one loop of length 2^{n-k} for each k.

The following theorem has now been proved.
Theorem 2.10. Suppose θ belongs to $\operatorname{Sim}\left(2^{n}\right)$.
(i) If $\eta \triangleleft \theta$ and η belongs to $\operatorname{Sim}\left(2^{n}+1\right)$ then there exist transpositions $\rho_{i_{1}}, \ldots, \rho_{i_{2 k-1}}$ such that $\eta=\theta^{*} \circ \rho_{i_{1}} \cdots \circ \rho_{i_{2 k-1}}$.
(ii) If $\phi \triangleright \theta$ and ϕ belongs to $C_{2^{n-1}}$ then $\phi=\theta_{*}$.

3. Critical points

In this section the following theorem will be proved.
Theorem 3. For $n \geq 2$ the following hold.
(1) If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ and m is an integer satisfying $\gamma(\theta) \leq m \leq$ $2^{n+1}-2-\gamma(\theta)$, then there exists η belonging to $\operatorname{Sim}\left(2^{n+1}\right)$ such that η dominates θ and $\gamma(\eta)=m$.
(2) If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ then $\theta^{2^{n-1}+1}$ belongs to $\operatorname{Sim}\left(2^{n}\right)$ and

$$
\gamma(\theta)+\gamma\left(\theta^{2^{n-1}+1}\right)=2^{n}-2 .
$$

(3) There are exactly two elements of $\operatorname{Sim}\left(2^{n}\right)$ that have only one critical point.

Lemma 3.1. Let θ belong to $\operatorname{Sim}\left(2^{n}\right)$.
(i) If k is a critical point of θ_{*} then one of $2 k$ or $2 k-1$ is a critical point of θ, but not both.
(ii) If k is not a critical point of θ_{*}, where $1<k<2^{n}$, then either
(a) both $2 k$ and $2 k-1$ are critical points of θ; or
(b) neither $2 k$ nor $2 k-1$ are critical points of θ.

Proof. The case when θ_{*} has a maximum at k will be proved, the other cases can be proved similarly.

If $\theta_{*}(k)>\theta_{*}(k-1)$ and $\theta_{*}(k)>\theta_{*}(k+1)$ then $\theta(2 k-1)>\theta(2 k-2)$ and $\theta(2 k)>$ $\theta(2 k+1)$. If $\theta(2 k-1)>\theta(2 k)$ then θ has a maximum at $2 k-1$ and $2 k$ is not a critical point. Similarly, if $\theta(2 k-1)<\theta(2 k)$ then θ has a maximum at $2 k$ and $2 k-1$ is not a critical point.

Lemma 3.2. Suppose θ belongs to $\operatorname{Sim}\left(2^{n}\right), n \geq 2$. Let m be an integer satisfying $\gamma(\theta) \leq m \leq 2^{n+1}-2-\gamma(\theta)$. Then there exists η belonging to $\operatorname{Sim}\left(2^{n+1}\right)$ such that $\eta \triangleleft \theta$ and $\gamma(\eta)=m$.

Proof. Denote the set of integers where θ has critical points by C. Denote the set of non-critical integers by R, i.e. $R=\left\{1,2,3, \ldots, 2^{n}\right\} \backslash C$. Let $\eta=$ $\theta^{*} \circ \rho_{i_{1}} \circ \rho_{i_{2}} \circ \cdots{ }^{\circ} \rho_{i_{2 k-1}}$. If c belongs to C then η has exactly one critical point in $\{2 c, 2 c-1\}$. If r, where $1<r<2^{n}$, belongs to R then one of η or $\eta^{\circ} \rho_{r} \circ \rho_{c}$ has exactly two critical points in $\{2 r, 2 r-1\}$ and the other permutation has none. Notice that both η and $\eta \circ \rho_{r} \circ \rho_{c}$ belong to $\operatorname{Sim}\left(2^{n+1}\right)$.

If s is either 1 or 2^{n}, then one of $\eta, \eta \circ \rho_{s}{ }^{\circ} \rho_{c}$ has exactly one critical point in $\{2 s, 2 s-1\}$ and the other permutation has none. Again, both η and $\eta \circ \rho_{s}{ }^{\circ} \rho_{c}$ belong to $\operatorname{Sim}\left(2^{n+1}\right)$.

Thus it can be seen that given any subset S of R it is possible to construct an element η_{s} of $\operatorname{Sim}\left(2^{n+1}\right)$ such that the following hold:
(i) η_{s} has two critical points in $\{2 k, 2 k-1\}$ if k belongs to S and $1<k<2^{n}$;
(ii) η_{s} has one critical point in $\{2 k, 2 k-1\}$ if k belongs to S and k is either 1 or 2^{n};
(iii) η_{s} has 1 critical point in $\{2 k, 2 k-1\}$ if k belongs to C;
(iv) η_{s} has no other critical points.

In general a subset S does not define a unique element.
Let \varnothing denote the empty set then η_{\varnothing} has $\gamma(\theta)$ critical points. Choosing $S=R$ gives an element η_{R} that has $2^{n+1}-2-\gamma(\theta)$ critical points. Given m satisfying $\gamma(\theta) \leq m \leq 2^{n+1}-2-\gamma(\theta)$ it is clear that there exists an element η_{s} with $\gamma\left(\eta_{s}\right)=m$ for some S contained in R

An immediate corollary is the following.
Lemma 3.3. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ then $\gamma\left(\theta_{*}\right) \leq \gamma(\theta) \leq 2^{n}-2-\gamma\left(\theta_{*}\right)$.
Lemma 3.4. If θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ then $\theta^{2^{n-1}+1}$ is simple and

$$
\gamma(\theta)+\gamma\left(\theta^{2^{n-1}+1}\right)=2^{n}-2 .
$$

Proof. The proof follows from lemma 2.2 and the proof of lemma 3.2 after noting the following fact. If $\theta=\phi^{*} \circ \rho_{i_{1}} \cdots \cdots \rho_{i_{2 k-1}}$ then

$$
\theta^{2^{n-1}+1}=\phi^{*} \circ \rho_{j_{1}} \circ \cdots \circ \rho_{j_{2 m-1}},
$$

where the two sets $\left\{i_{1}, \ldots i_{2 k-1}\right\}$ and $\left\{j_{1}, \ldots, j_{2 m-1}\right\}$ have empty intersection and their union is $\left\{n \in \mathbb{Z} \mid 1 \leq n \leq 2^{n}\right\}$.
Lemma 3.5. There exist only two elements of $\operatorname{Sim}\left(2^{n}\right)$ that have only one critical point, for $n \geq 2$
Proof. This will be proved by induction.
When $n=2$ there are only two elements of $\operatorname{Sim}\left(2^{2}\right)$; these are

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{array}\right) \text { and }\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right)
$$

both of which only have one critical point.
Suppose θ belongs to $\operatorname{Sim}\left(2^{r}\right)$ and $\gamma(\theta)=1$. Then there exists a unique permutation η belonging to $\operatorname{Sim}\left(2^{r+1}\right)$ with $\gamma(\eta)=1$ such that $\eta \triangleleft \theta$. This is the unique permutation defined by taking S to be the empty set, where S is defined in the proof of lemma 3.2. It is unique because C contains a single element.

Remark. Of these two permuations that have only one critical point one has a relative maximum and the other has a relative minimum.

Corollary 3.6. There exist exactly two elements of $\operatorname{Sim}\left(2^{n}\right), n \geq 2$ that have $2^{n}-3$ critical points.
Proof. The proof is an immediate consequence of lemmas 3.4 and 3.5.
Remark. It is interesting to note that if θ belongs to $\operatorname{Sim}\left(2^{n}\right)$ and $\gamma(\theta)=2^{n}-3$ then $\gamma\left(\theta_{*}\right)=1$.

REFERENCES

[1] L. Block. Simple periodic orbits or mappings of the interval. Trans. Amer. Math Soc. 254 (1979), 391-398.
[2] L. Block \& D. Hart. Stratification of the space of unimodal maps. Preprint.
[3] L. Block, J. Guckenheimer, M. Misiurewicz \& L. S. Young. Periodic points and topological entropy of one dimensional maps. Springer Lect. Notes in Maths. 819 (1980), 18-34.
[4] C. W. Ho. On the structure of minimum orbits of periodic points for maps of the real line. Preprint.
[5] C. W. Ho. On Block's condition for simple periodic orbits of functions on an interval. To appear.
[6] L. Jonker \& D. Rand. Bifurcations of unimodal maps of the interval. C. R. Math. Rep. Acad. Sci. Canada 1 (1978/9), 179-181.
[7] T.-Y. Li, M. Misiurewicz, G. Pianigiani \& J. Yorke. No division implies chaos. Trans. Amer. Math. Soc. 273 (1982), 191-199.
[8] Z. Nitecki. Topological dynamics on the interval. In Ergodic Theory and Dynamical Systems, Vol. II. Progress in Math. Birkhäuser: Boston 1981.
[9] A. N. Šarkovskiǐ. Coexistence of cycles of a continuous map of the line onto itself. Ukrain. Mat. \check{Z} 16 (1964), 61-71.

