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1. Introduction and basic concepts

Let <G, + > be a group with identity 0 and let S be a semigroup of endomorphisms of
G. The set Afs(G) = {/:G->G;/(0) = 0, fa = af for all asS) with the operations of
function addition and composition is a zero-symmetric near-ring with identity called the
centralizer near-ring determined by the pair (S,G). Centralizer near-rings have been
studied for many classes of semigroups of endomorphisms. (See [8] and the references
given there.) In this paper we continue these investigations into the structure of
centralizer near-rings via our study of the relationship between distributive elements
in M^G) and endomorphisms in M^G). More specifically, let N = M^G) and let
Nd = {feN; f(gl+g2) = fgl+fg2}, the set of distributive elements in N. Under the
operation of function composition, Nd is a semigroup containing the identity map, id.
Moreover, Nd contains as a submonoid S = {aeEndG;acr = aa for all aeS}. Here we
determine for certain semigroups S, whether or not S = Nd.

Betsch, [1], studied the distributive elements in MA(G) where A is a group of
automorphisms of G. If we denote MA(G) by N then in this case Betsch showed that
A = Nd if G is a monogenic iV-subgroup, i.e. G = Nx — {f(x); f e N} for some xeG. For
completeness we include this result, whose proof follows very closely that of Betsch's.

Theorem 1.1. Let G be a group, S a semigroup of endomorphisms ofG and let N = Mg{G).
If G is a monogenic N-group then S = Nd.

Proof. Let fsNd, u,veG. It suffices to show f(u + v) = f(u) + f(v). Since G is
monogenic, there exists XEG such that G = Nx. Hence u=gx(x), v=g2(x) for suitable
gltg2 e N. Thereforef(u + v) = f(gl(x)+g2(x)) = f(gl +g2)(x)=(fgl + fg2)(x) = f(u) + f(v).

Thus, some of our work in this paper may be viewed as an extension of Betsch's work
to the non-monogenic case. More generally, our work is related to the very general
problem of obtaining information about a group G from centralizer near-rings on G.

We now give two results which are useful in constructing distributive elements in
MA(G) when A is a group of automorphisms of G. The first result is known as Betsch's
Lemma and can be found in [8]. Note further that for notations and concepts relative
to near-rings not defined in this paper, we refer the reader to the book [8] by Piltz.
Also for a general reference on group theory we mention the book [9] by Robinson.

Theorem 1.2. (Betsch's Lemma). Let G be a group, A a group of automorphisms of G
and let x,yeG. There exists a function feMA(G) with f{x) = y if and only if st(x)^st(y)
where for ueG, st(u) = {<xeA; a(w) = u).
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Theorem 1.3. Let G be a group and S a semigroup of endomorphisms of G. Then
is a distributive element if and only if f e End (Ms(G)x) for all xeG.

Proof. Let gl,g2eM^G). Then f(gl+g2) = fgi + fg2 if and only if f(gi+g2)(x) =
(fSi + fg2)(x) f°r aU xe G. Hence the result.

We conclude this section with a brief summary of the paper. In the next section we
consider N = MS(G) where S = InnG. In Theorem 2.4 we characterize the elements in S
in terms of twisted homomorphisms. We also show that for a large class of nilpotent
groups, Nd^=S. In Section 3 we let G be a free group and show that when Se{InnG,
Aut G, End G} then Nd = S if and only if G is cyclic. In Section 4 we let S be a ring, V a
faithful unitary S-module and determine for several classes of rings when the distributive
elements in MR(V) are endomorphisms.

2. Distributive elements in MS(G), S= Inn G

We first set the notation for this section. Let (G, +) be a group and denote by S the
group of inner automorphisms of G together with the zero endomorphism. Let t denote
the homomorphism from G to Inn G with kernel Z(G), the centre of G. We write N for
M^G), E for EndG and S for the centralizer of S in E, i.e., S = {cteE; oca = ace, for all
aeS}. ForgeG we let Co{g) = {heG;hg=gh}.

We list some observations.

Lemma 2.1. (i) Nd^S,
(ii) st(g) = t(CG(g)) forgeG,
(iii) Ng=CG(CG(g)).

Proof. We prove only (iii). From Betsch's Lemma, h e Ng if and only if st(h) ^ st(g).
So, h e Ng if and only if CG(h) ^ CG(g) which in turn is equivalent to h e CG(CG(g)).

As a consequence we show if G is non-abelian then it cannot be a monogenic
N-module.

Lemma 2.2. Let G be a group. Then G is a monogenic N-module if and only if G is
abelian.

Proof. Assume that G is non-abelian. If there is some geG such that Ng=G then
CG(CG(g)) = G. Hence CG(g)^Z(G). Thus geZ(G) so CG(g) = G. Hence CG(CG(g)) =
CG(G) < G since G is non-abelian. This contradiction gives one part of the result. If G
is abelian, then S = {1} and the rest follows immediately.

We now determine the elements of S. To do this we use the concept of a twisted
homomorphism.

Definition 23. Let G be a group, H a subgroup of G, $ a map from G to End H. A
map 0 from G to H is called a twisted homomorphism from G to H with twist given by <f>
if 0(gi +g2) = O(gl) + <t>(gl)0(g2) for all gug2eG. We write 0eHorn*(G,H).
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Theorem 2.4. Let a:G-*G. Then txeS if and only if a.(g) = 9x(g)+g for all geG where
0aeHom'(G,CG(a(G))).

Proof. Let a e £ Then Sa(G) = a(SG) = a(G). Hence a(G) and thus CG(<x(G)) are normal
in G. Thus t can indeed be considered as a homorphism from G to Aut(CG(a(G))). Let
heG. Then <xt(h) = t(h)a. so <xt(h)g = t{h)a(g) for all geG, hence <x(/i+g — h) = h + a.{g) — h
for all geG, i.e., a(h) + a(g)-ct(h) = h + <x(g)-h. Thus -h + a.(h)eCG{a{g)) for all geG so
-h + a(h) e CG(a(G)). Therefore a(/i) = h + <f>x(h) where (j>x(h) e CG(a(G)). Then a(/i) = 0a(/i) + A
where 9x(h) = t(h)<l>x(h). We now show 0aeHom'(G, CG(a(G))). For gug2eG, <x(gl+g2) =

From this we obtain 9x(gi+g2)+gi+g2 = 0x{gi)+gi + 9x(g2)+g2 =
,(g2) +gi +g2, i c , 0x(gl +g2) = 9a(gl) + t(gi)0x(g2).

Conversely let <x(g) = 6x(g)+g where 9X e Hom'(G, CG(<x(G))). Then <x(gl+g2) =
0*(gi +gi) +gi+g2 = 0«tei) + t(g i)ex(g2)+gi +g2 = ex(gl) +gl + 0x(g2)+g2 = <x(gl) + a(g2).
Hence aeEndG. Now tx(g) = dx(g)+g so - 0a(g) + <x(g) = g. But 0x(g) e CG(a(G)) so g=
«(g) ~ 0*{g) and <x{g)=g + 0x(g). Thus -g + *(g) e CG(a(G)). Consequently, <x(g) + a(A) - a(g) =
g + a ( / i ) - g for all fieG, i.e., at(g)ft = t(g)a(/i) for all /ieG. Thus <xt(g) = t(g)a holds for all
geG, hence a e S .

We look now for conditions which force Nd>S. Although the conditions may look
rather restrictive, a closer examination reveals that this is not the case.

Theorem 2.5. Let G be a group in which the following conditions are satisfied for
suitable h,keG.

(i) / / xe{h,k,h + k} then there exists 9xeEnd(Nx) and 6x{Nx) is cyclic with
Nx = Ker 0x + <x> «x> is the group generated by x.)

(ii) We write Kxfor Ker 9X and Lxfor Nx\Kx where xs{h,k,h + k}. Then Lh, Lk and
Lh+k are disjoint, no two distinct elements of Lh<oLk<jLh+k are conjugate nor is
any element of LhvLk<jLh+k conjugate to any element in KhuKkuKh+k.

(iii) For each xe{h,k,h + k}, CG(9x(y)) ^ CG(y) for all y e Nx.

(vi) For each xe{h,k,h + k}, NxnNy<LKxfor all yeG such that Ny^Nx.

(v) 9h+k(h + k)t9h(h) + 9k(k).

ThenNd>S.

Proof. We construct an element feN by extending the maps 9X. By Betsch's
Lemma, an element feN is defined uniquely if its image is given for a set of conjugacy
class representatives {g} provided CG(f(g)) ^ CG(g).

From hypothesis (ii) it follows that LhuLkuLk+k consists of part of a set of
conjugacy class representatives and none of the associated conjugacy classes intersect
KhvKkvKh+k. Let yeLhvLkvLh+k. Then ysLx for some xe{h,k,h + k} and 9x(y) =
nOx(x) for some n^N by hypothesis (i). So CG(9x(y)) = CG(n9x{x))Z:CG(9x(x)). Since 9X

maps Nx^Nx, it follows from hypothesis (iii) that CG{9x(y)) ^ CG(y) for all yeNx. So
we can define feN by specifying that f(y) = 9x(y) for all yeNx, extending in the unique
way allowed to all conjugacy classes intersecting NhvjNk*uN(h + k) and defining / as
mapping the rest of G to zero.
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From hypothesis (v),9h+k(h + k)£9h(h) + 6k(k) we see that /£EndG and so f $S. We
complete by showing /eEnd( iv» for all yeG and applying Theorem 1.3. This is
obvious if ye{h, k,h + k} or to a conjugacy class not intersecting Nh u Me u N(h + k). If
y= — g + x+g for some xe{h,k,h + k}, then it is easy to check that / is an endo-
morphism of Ny since f(ny)=f(ns(x))=f(s(nx)) = sf(nx) where seS is conjugation by g,
for all neJV. Finally, if Ny£Nx and y is not of the form -g + x+g for xe{h,k,h + k},
then NxnNy^Kx by hypothesis (iv) and so / is the zero map on Ny. Thus / induces
an isomorphism on Ny and the proof is complete.

The groups which satisfy the hypotheses of the above theorem are those in which one
can choose subgroups of the form Nx such that a large part of the subgroup intersects
conjugacy classes in at most a one element subset. For examples of such groups, see
Theorem 3.1. Another class of examples follows.

Let B be a group in which we can choose elements b and c of infinite order, such that
b + c has infinite order and no two elements in <b>u<c>u<6 + c> are conjugate in B.
This is a very easy condition to satisfy. If A is any non-trivial group, construct A wr B,
the wreath product of A by B. By Meldrum [7], we can easily choose h and k in A wr B
of the form h = flb,k = f2c, with fteAB, for i = 1,2, and such that CXwrB(x) = <x> for
xe{h,k, h + k}. Take 9X to be the identity map for x = h, h + k, 9k(k) = — k. Then the
hypotheses of Theorem 2.5 are satisfied.

Theorem 2.6. Let G be a group in which the following conditions are satisfied for some
h,keG. (Here <5j(G) denotes the derived group of G).

(i) If xe{h,k,h + k} then there exists a homomorphism 9x:Nx-*Z(G) such that 9x(Nx)
is cyclic, non-trivial and Nx = Kx + <x>, where Kx = Ker 9X.

(ii) Let L = Kh + Kk + Kk + h + 81(G). Then L is normal in G. In the factor group G/L
the images of </i> and </c> must intersect trivially, and so L + </i> + <fc> =

(iii) For each xe{h,k,h + k}, NxnNy^Kxfor all yeG such that Ny£Nx.

(iv) Ifxe{h,k,h + k} then Kx^dx{G)nNx.

Then Nd>S.

Proof. We follow a pattern similar to that in the proof of Theorem 2.5. We define
feN by specifying that f(y) = 9x{y) if yeNx for some xe{h,k,h + k}, extending to the
conjugacy classes which intersect Nh\jNkuN(h + k) in the usual way, and we let / be
zero on the rest of G. The process of checking the various properties of / is somewhat
different from what was used earlier. First we show / is well-defined, then that feN
and finally that / e Nd\S.

Suppose that some conjugate of nx + kt is equal to some conjugate of my + k2, where
{x,y}e{h,k,h + k}, k^Kx, k2eKy. Then nx + L = my + L. Note that if r,seG then
— r + s + r = s + [s,r~\ and so conjugates determine the same coset of S^G). By hypotheses
(ii) and (iv), it follows that either x = y, { — m + n)xeL and hence (—m + ri)xeKx so
0x(nx + kl) = 9x(mx + k2) or x^y, in which case nxeL, myeL and so nxeKx, myeKy

and 9x(nx + kt) = 0=9y(my + k2). Therefore / is well-defined.
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Since CG(z) = G for all zeZ(G), Betsch's Lemma is automatically satisfied. Note also
that seS implies sz = z and so / maps an entire conjugacy class to the same element. If
Ny£Nx and y is not of the form — g+x+g for xe{h,k,h + k} then Nyr\Nx^Kx by
(iii), so / is the zero map on Ny and hence / induces an endomorphism on Ny. For all
other Ny, f induces an endomorphism by definition so feNd by Theorem 1.3.

It remains to show f$S. If 9h+k(h + k)=/=9h(h) + 9k(k) we are finished. So we assume
0h(h) + 9k(k) = 0h+k(h + k). Suppose first that one of 9^{Nh), 0k(Nk) or 9h+k(N(h + k)) is not
cyclic of order 2, say 9h(Nh) without loss of generality. Then 9h(Nh) has a non-identity
automorphism a, say. Define 0J, as ix9h. Then 6'h(h) + 9k(k)j=9h+k(h + k) and so by using ffh

in place of 9k we obtain the required result. Finally suppose 9h(Nh), Ok(Nk) and
eh+t(h + k) are all of order 2. Define &h by ffk(h) = Ok(k). Then ffh(h) + Ok(k)feh+k(h + k)
and we can extend 9'h to a homomorphism from Nh-*Z{G). Again replacing 6h by &h

gives the desired result. This completes the proof.

We complete this section by applying Theorem 2.6 to the class of nilpotent groups. If
G is a nilpotent group then we immediately have that Sl(G)<G and Z(G)>{0}. Further
each subgroup of G is also nilpotent. We first look more closely at hypotheses (ii) and
(iii) in relation to nilpotent groups.

Lemma 2.7. If G is a non-abelian nilpotent group then there exist h, keGXd^G) such
that we have [h, fc] ̂  0.

Proof. Since G is non-abelian 51(G)>{0}. If \_h,k] = 0 for all h, k in G^^G) then the
only non-trivial commutators are of the form [x,y] with at least one of x,y in ^ ( G ) .
But then [x,y~\ey3{G), where (y,(G)} is the lower central series of G. Hence all
commutators are in y3(G) and dl{G) = y2(G)<Ly3(G). Thus y2(G) = y3(G)=/={0} which is
impossible in a nilpotent group.

Corollary 2.8. Let G be a non-abelian nilpotent group and let h, k be as in Lemma 2.7.
Then we have h $ Nk and k $ Nh.

Proof. If h e Nk then h e CG(CG(k)) and so \h, k] = 0.

From Lemma 3.10 of [6], exp(y,{G)/yi+l(G)) divides exp(y/G)/yJ+1(G)) for all i^j
where exp G is the exponent of the group G and {y,(G)} is the lower central series of G.
Let the nilpotency class of G be c. Then exp(yc(G)) divides exp(G/y2(G)), since y1(G) = G,
yc+1(G) = {0} and yc(G)^Z(G). Thus for any x in G\y2(G) we can establish a
homomorphism from <x> + y2(G) to yc(G)^Z(G) whose kernel contains y2(G). Thus for
all heG\y2(G) there is a homomorphism Qh:</j> + y2(G)->Z(G) which is non-trivial and
with cyclic image. However this is not sufficient for hypotheses (i) of Theorem 2.6 since
for instance, x may be part of a quasi-cyclic group.

To avoid this possibility we assume that G/y2(G) = H/y2(G)©K/y2(G) where ©
indicates the direct sum, and H/y2(G) is the direct sum of at least two cyclic groups
and H is non-abelian. Then we can choose h,keG\y2(G) such that </i> + y2(G) and
<k}+y2{G) generate distinct cyclic factors and [h,k]±0. Then Cc(Cc(/i)) £CG{CG(k))
and CG{CG{k)) £CG(CG(h)), i.e., Nh £Nk and Nk £Nh.
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We have now covered hypothesis (i), (ii) and (iv) of Theorem 2.6. The following result
now follows easily.

Theorem 2.9. Let G be a non-abelian, nilpotent group such that G/y2(G) =
H/y2(G)®K/y2(G) and H/y2(G) is a direct sum of at least two cyclic subgroups, H non-
abelian. For each xe{huh2,/JX + h2} suppose Nxn>Ny^KeT6x for all yeG such that
Ny£Nx, where hl,h2eH\y2(G),[hl,h2]£O, and 9X is the homomorphism described above.
ThenNd>S.

Take G to be any nilpotent group such that G/y2(G) is an abelian group of exponent
a prime. Choose h1,h2 such that (hiy + y2(G) and (h2} + y2(G) are distinct subgroups
of G/y2(G) and CG(Ji,) ^ </i,-> + y2(G). It is easy to construct G satisfying these conditions.
We can ensure that Ker0x = y2(G)nNx. Then G is an example of a group satisfying
Theorem 2.9.

3. Distributive elements in M^G), G a free group

We start this section by noting that free groups are just free products of infinite cyclic
groups. Hence our initial results concern free products. Since the free product of a
singleton set of groups may be any group, we exclude this case.

Theorem 3.1. Let G be the free product of at least two groups and let S = InnG,
N = MS(G). ThenNd>S.

Proof. Without loss of generality we may take G to be the free product of A and B.
Let as A , beB, a^e^b a n d pu t g = a + b. We consider kg = a + b + --- + a + b. Suppose
heCG(kg). Every element of G has a unique expression of the form al + bl + -- - + am + bm

with a(eA, b^B, m ^ l and at most ax or bm may be zero. Then —h + kg + h — kg
becomes —bm — am— •• — b1— at+a + b + - • - + a + b + al + -- + bm = a + b-\ \-a + b. In
each case cancellation must eliminate either at-\— + bm or — bm — ••• — a, in order to get
equality. From this it is straightforward, but lengthy, to determine that h is a multiple of
g or -g. Hence Cc(/cg) = <^> and so CG(CG(g)) = <g>.

Further if NynNg=fc{0} then [a(£),y]=O for some aeJV, and y must be in <g>
making Ny = Ng. Now apply Theorem 2.5 as follows. Take a,b,a + b, 0a = 8b to be the
zero map, 6a+b to be the identity. It is straightforward to check that all the hypotheses
are satisfied and hence Nd > S.

Corollary 3.2. Let G be a free group, S = I n n G and N = Ms(G). Then Nd = S if and
only if G is the infinite cyclic group.

Proof. If G is not the infinite cyclic group then by the above theorem Nd >S. If G is
the infinite cyclic group, S = {id} which means N = M0(G). But then Nd = S from a
standard result in near-ring theory ([8]).

We now restrict ourselves to free groups.
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Theorem 3.3. Let G be a free group, let S e {InnG,AutG, EndG} and let N = Ms(G).
Then Nd = S if and only if G is the infinite cyclic group.

Proof. The case S = Inn G is Corollary 3.2. Now take S = Aut G and let G be free on
at least two generators. We first show that if x is a free generator and f eN then
/(x)e<x>. Assume the contrary. Then f(x) involves at least one other free generator,
say y. Let a e Aut G map x to x, y to y + mx and all other generators in a free basis to
themselves. Then /a(x) = /(x) but a/(x) replaces y by y + mx whenever it occurs in the
expression for /(x). By choosing m suitably, we can ensure that <x/(x) =/= f(x), contrary to
feN. Hence we must have /(x)e<x>. Thus any element of 5 must map every free
generator to a multiple of itself and as G is free, non-abelian we see that S= {id}. Let
M = MlnnG(G). Since Inn G^S, N^M so Nx^Mx. On the other hand, Nx^<x> and
so yVx = <x>, using the fact that for a free generator CG(x) = <x> and so Mx = <x). As in
the proof of Theorem 3.1 we deduce that Nd > {id} = S.

Conversely, if G is infinite cyclic then S = {id, — id} and G = Nx where x is a free
generator. But from Theorem 1.1, Nd = S.

Finally we take S = End G and suppose G is free on at least two generators. Since
EndG>AutG, EndG ^ Aut G = {id}, so in this case we again have £={id}. As above we
obtain Nx = <x> and Nd>{id} = S. When G is the infinite cyclic group, G is again
Af-monogenic and hence by Theorem 1.1, Nd = S.

4. Distributive elements in MR( V), R a ring, V an /7-module

In this section we turn to the situation in which our semigroup of endomorphisms is
a ring and our group is an K-module. Thus to fix the notation we let R be a ring with
identity and V a unital /^-module. If we let R' = R/Ann V then it is easy to see that
MR{V) = MR{V) SO without loss of generality we assume V is a faithful R-module and R
acts as a ring of endomorphisms of V. As usual we let N = MR( V) and we are interested
in the relation between Nd and R = EndRV. Since V is abelian, Nd is a ring and we
always have Nd ̂  EndR V.

We say the pair (R, V) is finite if R is a finite ring with identity and V a finite, unital,
faithful /^-module. For finite {R, V) the structure of N = MR( V) has been the object of
several investigations, e.g. see [2, 3 and 4]. We first apply some of these established
structure results to obtain information about Nd.

Theorem 4.1. If R is a simple ring and (R, V) is finite then Nd = R.

Proof. If R is not a field then from [2], N = R, hence Nd = R. If R is a field then for
each veV* = V\{0}, st(t?) = {id}. From this we see for each veV*, Nv=V. Using
Theorem 1.1 we complete the proof. —

Theorem 4.2. If R is a semisimple ring and (R, V) is finite, then Nd = R.

Proof. Let R = S(l)@-@S(i), a direct sum of simple rings S(i), with identity c(. Let
V{ = e-y. Then V=VX®---®V, and N^MS(l){Vl)®---®MSi,{\Q (see [4]). It is straight-
forward to verify that [MS(1)(K1)©-©MS(()(K)]d = [Ms(i,(^i)]d©--e[MS(,)(K)L and
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so by Theorem 4.1, IMS(1)(V,)®- •• ®MS{l)(VX}d = EndS{l)Vl®-®EndS(t)Vl. Under the
above isomorphism we obtain Ends^jKiS-QEnds^VJ^EndjjK Thus Nd = R.

For a finite ring R we have R = S + T, as additive groups, where S = ̂ | = l®MB(1) (S(0),
a direct sum of n(i) x n(i) matrix rings over local rings S(i) and T is an additive
subgroup of the Jacobson radical, J(R) of R (see [5].) Recall from [4] that R is strongly
non-commutative if w(i)>l for each i, 1^/^t. Further MR(V) = EndRV for each faithful
unitary finite module V. Thus for our interests in this work we have the following result.

Theorem 43. If R is a strongly non-commutative ring and (R, V) is finite, then Nd = R.

We now turn to a class of rings which are not strongly non-commutative, namely
local rings R of the form R = K+J where J is again the Jacobson radical of R, R/J^tK,
a field. We will find necessary and sufficient conditions for Nd = R.

For the remainder of this paper R is a ring with identity of the above form R = K+J
and V is a faithful, unitary /^-module which is finite dimensional as a vector space over
K. Moreover we assume that J is nilpotent of index t, i.e., J ' + 1 = {0} but J'=fc{0}. Recall
also that Ker J = {ME V; Ju = {0}}, an K-submodule of V.

Lemma 4.4. Let u e Ker J and w $ Ker J. Then there exists heN with h(w) = u.

Proof. Let {ci,...,cn(1)} be a basis for KerJ and extend this to a basis
{cu...,cnW,...,cn(2^ for KerJ2. Continue until a basis {ci,...,cn(t)} for KerJ' is
obtained. Now extend this to a basis {cu...,cn(f), ...,cn(( + 1)} of Ker J '+ 1 = K

Let ueKer J and veV, V=YJ1=^1)^JCJ- F° r keK we define a function fi:V-*V by

~ fO if fc, = 0 foralli>n(l)
\fcfcsu iffe.^0 for some i>n(\) and s is the maximal.index for which ks=/=Q.

If 1 denotes the identity element of R (hence of K), then for Cj,j>n(l), T(C,) = M. We
have also for w^Ker J, w = Yjt\1)kJ-cj with some kj^O, j>n(l). Let s be maximal such
that fej^O. Then we have k^l(w) = k~1ksu = u. To complete the proof we must show
(eJV.

Let UE K If ueKerJ'+ 1\Ker J1' for some i such that Ogigt , then for qeJ, qveKerf,
i.e., if v=YjiV)kjCj with some fc;=£0, j>n(l), then 9» = Xj(i)1fc}ci. For r = h~+qeR,
rv = YJfikfij + qv. Again let s be maximal such that ksj=O but k, = 0 for ;>s . If s^n(l)
then ueKerJ so £/TfcjC,-eKer./ and qv = 0. Thus £(ri?) = 0. On the other hand, since
ueKer J, k\v) = 0 so rtc(v)=O. Now, if s>n(l) then 1 ? = ^ = ^ ^ , say cseKer7i + 1\Ker/ .
Then we have rv = Yj=iKkjCj + qv and since ^ueKerJ', k\rv) = kRksu. Also, rk\v) =

since /f(t>) is in Ker./. Hence k\rv) = rk\v), so

Now let W be an arbitrary #C-complement of Ker J. Thus V = Ker J @W as X-vector
spaces.

Corollary 43. Let / e Nd.

(i) For UL^eKer J , / ( U 1 + M2) = / (U 1 ) + / ( U 2 ) .

(ii) For t; = M + w e Ker J + PK /(») = /(«) + /(w).
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Proof. Using the above lemma, there exist huh2eN such that Mcn(r+u) = u i
and /i2(cn(, + i)) = M2- But feNd implies f(hl + h2) = fhl + fh2 so f{hl + h2)cn(l+1) =
fhi(cnll+l)) + fh2(cnlt+l)), i.e., f{u1+u2) = f(u1) + f(u2).

For (ii), since w $ Ker J from the above lemma there exists £& e /V such that g"w{w) = u.
Then from f(gl + id) = fg"w + f the result follows.

Consider now KerJ + <7K> where (JV) denotes the X-space generated by JV. Since
K e r J < K e r J ' and < J F > ^ K e r J ' we have Ker ./ + <./F> < F Therefore without loss of
generality we assume the basis element cn(,+1)£Ker./ + <./F>.

Recall that KerJ is a hyper plane if dim^Ker J) = dimK(F) —1.

Lemma 4.6. / / Ker J is a hyper plane then Nd = R.

Proof. In this situation we have F = Ker7®Kc for vl,v2eVvi = ui + kic, u.eKerJ,
ki £ K for i = 1,2. Then for de TV,, d(vt + v2) = d(uY + kyc + u2 + k2c) = d{u^ + u2 + (fcx + k2)c) =

using the above corollary. But
). Hence d{vl + v2) = d{ul) +

d{k1c) + d(u2)+d(k2c) = d(ul + k1c) + d(u2 + k2c) again from Corollary 4.5. Thus deR and
the proof is complete.

We use Lemma 4.6 in the next example to give an example of a near-ring N such that

Example 4.7. Let R be the ring of matrices

;a,beZ2

and let F = (Z2)3. Each veV has a unique representation v = klel + k2e2 + k3e3 where as
usual {ei,e2,e3} is the natural basis of V over Z2. The function g defined by

v + k2e2,

is in MR(V) and g(e2 + e3) = e3=g{e3)£e3 + e2=g{e3)+g(e2). Thus g$R = EndRV. On the
other hand, since Ker J = (eue2}, from Lemma 4.6, [MR(V)']d=EndRF Now if MR(V)
were a ring then MR( V) = [MR( F)]d which is impossible in this example since
gGMfi(F)\EndfiF

We also note that the condition of Lemma 4.6 is not a necessary condition for Nd=R.
For if one takes as R the ring of matrices.

a b c
0 a d
0 0a

;a,b,c,deZ2
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and K=(Z2)3 then it is easily checked that Re3 = V so from Theorem 1.1, R = [MR(V)~\d

while Ker J = <e,>.

We will now assume that Ker J is not a hyperplane. We already have that the basis
element cn(I+1)^KerJ + <JK> and since Ker J is not a hyperplane, we also have another
basis element, say cn(l + l)-u not in Ker./. But then cn((+1) + cn(I+1)_1^KerJ + <JF> so
without loss of generality we take c ^ + D - ^ K

Notation. For ease of exposition we henceforth denote cnit+1) by cn and cnU + 1)-l by
cn-v We also denote coefficients of cn_ t and cn with subscripts n—l and n respectively.

Let v = Xkfj6v- D e f i n e d-V^Vby

Let r = k + qeR, keK, qeJ. Then

while on the other hand, rv = YJkkfJ + qv where que<JF>. Thus in the representation of
rv cn has coefficient kkn and cn_t has coefficient fcfcn_j. If k=0, since CjeKerJ we have
rd(y) = d(rv) while if fc^=0 then kkn = kkn-t if and only if fen = fen_1 which also implies
rd[v) = d(rv). Hence d 6 N.

Further, for M1,u2eKer7, d(ul+U2) = 0=d(ul)=d(u2). For we Ker./ and
w = Y,k'jCj where for some s>n(l), fes^= 0. We have d(u)=0 and

Moreover, it is easy to see that d(u + w) = d{w) = d(u) + d(w) and d$R since d(cn-1+cn) =
cx =f= diCn-J + dicJ. We have established the following result.

Lemma 4.8. / / Ker J is not a hyperplane then there exists deN with the following
properties:

(i) d(w1+u2) = d(u1) + d(u2) for all uuu2eKeTJ;
(ii) d(u + w) = d(u) + d(w), u e Ker J, w $ Ker J;
(iii) d$R.

We now show deNd. To this end let fuf2eN and xeV. Then /{x) = u&x) + w£x)
where ut{x)eKerJ and wt{x)eW, an arbitrary but fixed complement of KerJ, i=l ,2.
Using the previous lemma we have d(ft + /2)(x) = d(/i(x) + /2(x))=d(ui(x) + wt(x) + u2(x) +
w2(x)) = d(Ul(x) + u2(x)) + d(Wl(x) + w2(x))=d(Ul(x)) + d(u2(x))+d(Wl(x) + w2(x)). Therefore
to show that deNd it suffices to show d(wl(x) + w2(x)) = d(w1(x)) + d(w2(x)).

Case 1. Suppose none of wx{x), w2(x), wl(x) + w2(x) is of the form kfcn + Cn
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Let wi(x)=£&/,- and w2(x) = £Afo. Then we have knj=kn-u Kn±K-i and kn + kn-t±
*; + *£_!. Hence d(wl(x) + w2(x)) = (kn + k'n + kn.1 + k'n.1)cl = d(w1(x)) + d(w2(x)).

Case 2. Suppose two of wt(x), w2(x), wl(x) + w2(x) have the form k(cn + cn-i) + w.
Then all three have this form and again we obtain d(wi(x) + w2(x)) = d(wl(x)) + d(w2(x)).

Case 3. Suppose exactly one of w x (x), w2(x), w j (x) + w2(x) has the form k(cn + cn _ j) + w.
Without loss of generality we take wl(x) = k*(cn + cn-l) + w' with k*eK (otherwise we
consider the functions f2 and ft+f2). Thus we have f1(x) = ul(x) + k*(cn + cn-1) + w',
W '=Zn(l)<J<n-lVj a n d W' = £•<!)<;<„- l with

-v Note that we have x £ Ker ./ + <./K> for if this were the case then xeKerJ'.
But cn£Ker./' so there exists qeJ' with qx = 0 and qk*cnj=O. This implies /i(0)^0, a
contradiction.

Now suppose {reR; r(x) = 0} = (0:x) is not {0} for x$KeTJ + (JV}. Then for re(O:x),
0 = /(rx) = r/(x) = rM1(x) + rw1(x). If r = k + q' then from the form of wt(x) we see that
k = 0 and so r(w1(x)) = 0. Similarly we have r(vv2(x)) = 0. Assume further that the left
ideals (0:w) of R for w£KerJ + <./F> are minimal as annihilator ideals. Since we have
just shown that (0:x)^(0:w1(x)) and (0:x)g(0:w2(x)), the minimality implies (O:w1(x)) =
(0: w2(x)). Finally we assume that unless Kw = Kw' mod J for w, w' not in Ker J + < JK> then
(0: w) =̂ (0: w'). Since we do not have w^x) —Jfw2(x) in KerJ for any k~eK, we
cannot have (0:w!(x)) = (0:w2(x)). But this then implies that there is no xeV* such
that exactly one of wx(x), w2(x), w^x) + w2(x) is of the form k*(cn + cn-l) + w, i.e., under
the above assumptions this case cannot occur.

Let us say that the pair (R, V) satisfies the annihilator property modulo Ker J (APMJ) if

, (0:w) is a non-zero left ideal, minimal as an annihilator left

^ =/Cw2modKer J.

(Al) for all
ideal;

(A2) for wuw2$Ker J + (JV), (0:w1) = (0:w2) implies

We have established.

Lemma 4.9. If(R, V) satisfies (APMJ) and Ker./ is not a hyperplane then R = Nd.

Combining Lemma 4.9 with Lemma 4.6 gives our characterization result.

Theorem 4.10. Let (R,V) satisfy (APMJ). Then R = Nd if and only if KerJ is a
hyperplane.

We conclude with an example of a near-ring in which R =j= Nd.

Example 4.11. Let R be the ring of matrices

a b 0 c
0 a 0 d
0 0 a 0
0 0 0a

; a,b,c,deZ2

and let K=(Z2)4 with the natural basis {eue2,ez,e^. Then KerJ = <e,,e3>,
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(,eue2y so KerJ + (JVy = (eue2,e3). Note also that KerJ is not a hyperplane. Via
calculations one obtains

0

0
0

0

1

0
0

0

0
0
0

0

0~
0
0
0

,[0]

while

0
0
0
0

1

0
0
0

0
0
0
0

1

0
0
0

,[0]

Thus we see that (R, V) satisfies (APMJ), so from Theorem 4.10, Ndi=R. That N is not
a ring follows from the next result.

Theorem 4.12. If there exists w ^ ( J F ) such that Rw £ Ker J then N is not a ring.

Proof. Choose wo$(JV) with /?wo^KerJ and choose ueKerJ\Rw0. Define
g:V-+V by g(v) = v + ru if v = rwoeRwo and g(v) = v otherwise. Suppose v$Rw0 but
sveRw0 for some seR, say sv = rowo. Then sg(v)=sv. On the other hand, sv = rw0

implies seJ since v$Rw0. Therefore roeJ since wo$(JV). But then g(sv) = sv + rou = si;
since ueKer J and roeJ. From this one easily verifies that geN. Now g(g + id)(wo) =
g(wo + u + wo) = 2wo + u since we have u$Rw0. Further gg(wo)+g(wo)=g(wo

+ u. It follows that g$Nd so N is not a ring.
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