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SNOW STABILITY INDEX

By H. CoNway and J. ABRAHAMSON

(Department of Chemical and Process Engineering, University of Canterbury, Private Bag, Christchurch, New Zealand)

AssTrACT. Field tests have been developed to measure the shear and
tensile strengths of large volumes of snow. Basal shear strengths were mea-
sured across and down some slabs of snow, giving highly variable strengths.
These measurements support the idea that the basal region of an avalanche
may contain zones where the basal shear strength exceeded the gravi-
tational shear stress (i.e. pinning areas) with weak zones between (deficit
areas) where the shear strength was less than the gravitational shear stress.
The slab tensile stresses induced by these deficit areas would become high
if either the deficit length (down-slope) was large, or the deficit itself was
large. Measurements of tensile strengths of slabs above weak layers, together
with the down-slope gravitational stress of a snow slab, suggest that deficit
lengths of only several metres are often sufficient to cause a local tensile
failure. In some cases, this local failure may propagate across the remainder
of the slope (depending on the pinning distribution) and cause an ava-
lanche. We propose that the maximum local deficit, rather than the mean
slope deficit of basal shear stress, and the maximum length of the local deficit,
are the first important parameters to consider when evaluating slope sta-
bility in the field, since the magnitude of these factors determine the proba-
bility of a local tensile failure.

RisuME. Indicateur de stabilité de la neige. Des tests de terrain ont été dévelo-
ppés pour la mesure des limites de cisaillement et de tension pour de grands
volumes de neige. Des limites de cisaillement a la base ont été mesurés
transversalement et longitudinalement pour des couvertures de neige, con-
duisant a des efforts hautement variables. Ces mesures confortent I'idée que
la région basale d’une avalanche peut contenir des zones ot effort limite
de cisaillement a la base dépasse la contrainte de cisaillement de gravité
(c’est-a-dire les zones en butée) intercalées avec des zones de faiblesse (zones
de déficit) ou 'effort de cisaillement limite est inférieur a la contrainte de
cisaillement due au poids. Les contraintes de traction dans la couche, créées
par ces zones dé déficit, peuvent prendre des valeurs élevées soit parce que
les longueurs (selon la pente) ol s'exerce ce déficit sont étendues, soit parce
que le déficit lui-méme est important. Des mesures de limite de rupture en
traction pour des plaques au-dessus de couches faibles, en méme temps que

INTRODUCTION

Most slab failure models assume a weak basal layer

{Perla, 1980), and a shear frame first used by Roch
1966) has been used by many to study this layer.
Variations of a "shear index" (i.e. the ratio of the
shear strength of a snow layer, measured with a shear
frame, to the gravitational shear stress) in the basal
zones of avalanches have been previously documented
and mainly attributed to either the small size of the
shear frame used (Sommerfeld, 1973, 1980; Perla, 1977;
Sommerfeld and King, 1979) or test-rate effects
(McClung, 1977, 1979; Perla and others, 1982;
Montmollin, 1982). In this paper, we report on basal
shear measurements made with larger basal test areas,
and series of measurements made across slopes and
down slopes.

Perla and LaChapelle (1970) derive equations to
estimate the tensile stress tyx induced by a shear
perturbation (superimposed on the infinite slab situ-
ation) in the basal zone:

txx = (X/Z)"xz (1)

where tyy is the order of magnitude of the induced
tensile stress in the x direction (down-slope), my,
is the basal perturbation of shear stress, 2X is the
length of the perturbation, and Z is the depth of the
slab.

Equation (1) shows that an index relating basal
weakness to tensile failure should include not only
the magnitude of the weakness, but also the length

des mesures de contraintes de pesanteur pour une plaque de neige, sug-
gerent que les longueurs de déficit de quelques métres seulement sont
suffisantes pour créer une rupture locale en traction. Dans certains cas, cette
rupture locale peut se propager a travers le reste de la pente (suivant la
concentration des contraintes) et étre la cause d’une avalanche. Nous pro-
posons que le maximum du déficit local, plutét que la moyenne du déficit de
la contrainte de cisaillement pour toute la pente, et que le maximum de
longueur du déficit local, soient les premiers des paramétres importants i
prendre en considération pour évaluer la stabilité de la pente puisque
P'amplitude de ces facteurs détermine la probabilité d’une rupture locale en
traction.

ZUSAMMENFASSUNG. Index fiir die Schnee-Stabilitit. Zur Messung der Scher-
und Zugfestigkeit grosser Schneepakete wurden Feldpriifverfahren ent-
wickelt. Die Scherfestigkeit am Untergrund wurde an einigen Schneeplat-
ten quer und lings gemessen, wobei sich sehr unterschiedliche Werte
ergaben, Diese Messungen stiitzen die Annahme, dass der untere Teil einer
Lawine Zonen enthalten diirfte, wo die Scherfestigkeit die Scherspannung
infolge der Schwerkraft {ibertrifft (sog. Haftgebiete), mit Schwichezonen
(Defizitgebieten) dazwischen, wo die Scherfestigkeit geringer ist als die
Scherspannung infolge der Schwerkraft. Die Zugspannungen in der Platte,
verursacht durch diese Defizitgebiete, wiirden hoch werden, wenn entweder
die Defizitlinge (hangabwiirts) oder das Defizit selbst gross ist. Messungen
der Zugfestigkeit von Platten iiber schwachen Schichten, kombiniert mit
der hangabwiirts gerichteten Schwerkraftspannung einer Schneeplatte, las-
sen vermuten, dass Defizitlingen von nur einigen Metern oft geniigen, um
lokal einen Bruch infolge des Zuges zu verursachen. In einigen Fiillen kann
sich dieser lokale Bruch iiber den ganzen Hang fortpflanzen (in Ab-
hingigkeit von der Verteilung der Haftkrifte) und eine Lawine auslésen.
Wir schlagen vor, dass anstelle des mittleren Defizits der basalen Scher-
spannung am Hang das maximale lokale Defizit und die maxvimale Linge
desselben als Hauptparameter bei der Abschatzung der Hangstabilitit im
Feld herangezogen werden, da die Grosse dieser Faktoren die Wahr-
scheinlichkeit eine lokalen Zugbruches bestimmen.

over which the perturbation exists (2X), the slab
thickness (Z) and the tensile strength of the slab.
When a weak zone is large, or the shear strength is
small, high stresses are induced in the slab which
could promote Tocal failure.

Once a slope has failed locally, propagation of
the failure would depend upon the distribution of
stresses and strengths at the boundaries of the local
failure. Zones of high strength (pinning areas) may
inhibit propagation, but conditions may effectively
cause the removal of the pinning areas and result in
widespread failure.

In a similar model, Stuiver and others (1981) pro-
pose that the West Antarctic ice sheet is pinned at
various boundary zones, and they use. a computer model
to consider the effects of removal of various pinning
areas. Chowdhury and A-Grivas (1982) deal with this
problem using a probabilistic model. For a soil slope,
they consider the probable distribution of the shear-
strength/shear-stress ratio, and the interaction be-
tween adjacent elements, to determine the probability
of crack progression.

FIELD STUDIES

To study local shear strengths at basal zones, we
embedded a large shear frame (which had dimensions
300 mm x 300 mm x 50 mm and weighed 1 kg) on the snow
surface. With a saw, we cut out a column around the
frame to isolate the block from effects of side shear
and compressive and tensile hold-up, to a depth great-
er than the suspected fracture plane. It was found
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that embedding the frame before isolating the column
reduced disturbance of the sample. A slope-parallel
pull was applied to the frame with a calibrated spring
until failure occurred somewhere down the column. We
noted the surface area of the fracture, the depth of
the fracture, slab density, and the bed surface angle.
These measurements made it possible for us to calcul-
ate the gravity component of stress parallel to the
slope. The sum of this and the measured force to
failure, divided by the shear area, gave the shear
strength (see Figure 1).

300x 300x50 mm
frame

pull weak

basal layer

Fig. 1. Shear-test measurements at the weakest basal
layer. The weak layer was at a depth z from the sur-
face and the average density p of the snow above
the weak layer wae measured. The bed surface angle ©
and the force Fg in the down-slope x direction re-
quired to fracture the column were measured. Typical
ghear areas Az over which the force was applied
were about 0.15 m*.

In cases where the shear strength of the basal
layer was small compared with the "ploughing strength"
of the surface snow from which the frame was being
pulled, the column sheared before the frame ploughed
through the surface snow. In situations where the
surface snow was weak, we re-embedded the frame in a
lower layer and repeated the test.

This test has several advantages over the trad-
jtional shear-frame test:

(1) The weakest sliding layer did not need to be pre-
cisely located before the test and detajled analysis
of the snow stratigraphy above the shear layer was
not necessary.

(2) The normal loading over the shear layer was re-
tained during the test.

(3) Disturbance of the weak layer when placing the
frame was minimized.

The disadvantage of this test was the possibility
of a bending mode of failure, and we noticed this
especially with deep columns (depth greater than about
1.5 m) with no well-defined, low-strength sliding
layer. In these cases, applied stresses were high
(about 4000 N/m) and the yield surface was often
stepped. To eliminate some of the bending moment,
we built a frame which could be inserted just above
the suspected shear layer. This shear frame was simi-
lar to our other frame, but had one side which could
be detached, which enabled it to be inserted from one
side of the column just above the suspect layer. The
other (detachable) side could then be attached to
the frame and a force applied to the column. This
frame was not as easy nor as fast to use as the frame
placed on the snow surface.

Testing times for the application of load were of
the order of 0 to 5 s to failure, but our control of
the instantaneous rate of loading was poor. However,
a simple local basal shear stability index a could
be computed from the ratio of the local shear strength
to the gravitational shear stress
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a = (Fg/Ag + p'gz' sim)/(pgz sino) (2)

where F¢ is the applied force required to shear the
column, Ag the shear area over which the force is
applied, $ the mean slab density, g the gravitational
acceleration, z' the depth of snow above the fracture
plane when the test was made (with a corresponding

p' as the mean snow density of the snow to depth z'),
z the depth to the fracture plane from the snow sur-
face, and © the bed surface angle. By weighing a
small column and dividing by the shear area, we could
often measure the product of the mean slab density
(p) and depth (z) directly. Columns that slid before
they could be completely isolated were assigned an
index (a) of less than 1.

Once the weak layer had been identified, we made
tensile tests of the slab above this layer, We iso-
lated a column from effects of side shear and com-
pressive hold-up with a saw, and inserted one of the
frames described above on each side of the sample (as
shown in Figure 2). The frames were linked to a rod
which also had a calibrated spring attached. We then
slid a stiff and essentially frictionless stainless-
steel plate up the weak layer to remove basal shear

tensile
,zone

frame
each side

.

frictionless
plate in

weak layer

Fig. 2. Tensile tests of a slab above a weak layer.
The scooped shape in the tensile zone helped relieve
stress concentration in that area (Ap) which was
typieally about 0.1 m?* in these tests. The
frietionless plate had been inserted at a depth z
from the surface at an angle of © to the hori-
zontal in the up-slope direction. The pull Fp re-
quired in the down-glope (x) direction was measured.

pull

support, and used a scoop at the tensile zone to re-
duce the cross-sectional area and hence the force
required to fracture the sample. Also, rounding off
the cut @ the scoop relieved stress concentrations.
Again rate control was poor but tests were generally
over a time of 0 to'l5 s to fracture., The area of
fracture was usually about 0.1 m®. The force applied
to fracture the column, together with measurements
of slab density, bed surface angle, and area of frac-
ture, enabled us to calculate a tensile strengthoT
of the slab:

o1 = (Fy + pgzab sim)/Ay i

where Fy is the applied force required to fracture
the column in tension, AT the area of tensile failure,
and abz is the snow column volume.

If the shear stress on the weakest basal layer in
a snow pack exceeds its shear strength (locally) we
have a deficit, or lack of support m,,. Ignoring
side-shear support, my; is taken here to be the dif-
ference between the gravitational shear stress and
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the lTocal shear strength. By combining Equation (1)
and Equation (2) and substituting for m,, (assuming
p =p' and z = z'), the induced tensile stress is
given by

tyx = X(1 -a)pg sim. (4)

This stress approaches or exceeds the tensile strength
as a approaches zero and/or X becomes larger. In fact,
for zero shear strength over a slab length of 2X, (in
which case o = 0), and where X is sufficiently large
(Xc) so that the induced tensile stress equals or ex-
ceeds the tensile strength (tyyx 3 o7), then

Xe =o1/pg sim (5)

Brown and others (1972) also use this simple model
(considering the influence of Poisson effects to be
small) to give a measure of the critical deficit
length 2X. in the direction of the slope. We have used
Equation ?5) to calculate appropriate values of X
from our o1 measurements.

FIELD AREA

We made the field measurements reported below on
slopes around the upper Tasman Glacier (2100 m) in
the Mount Cook National Park over the New Zealand
1981 and 1982 winters. This is a region of high snow-
fall, where storm cycles may typically deposit 0.3 -
1.5 m of dry snow with a density range of 40 to 250
kg/m . Winter snow-pack temperatures may vary from
-2°C to -25°C, and most slopes have a glacial base.
The area is noted for considerable wind strength
and most snow-falls are associated with wind.

SUMMARY OF FIELD MEASUREMENTS

Shear indices measured on the crown walls of
eight avalanched slopes yielded a total of 93 values
of a, which had a mean and standard deviation of
1.57 and 1.29 respectively, with a range of
6.82 » « » 0. For comparison, 18 slopes which had not
fractured (63 measurements) gave values for a mean
and standard deviation of 4.25 and 2,78 respectively
with a range of 13.3 > a > 0.

Figure 3 shows, for all the above slopes, a plot
of the smallest measured a against the longest length
over which this smallest a was found. Where multiple

Conway and Abrahamson: Snow stability index
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Fig. 3. Plot of the minimum shear index measured on

each slope against the mazimum length of this weakest
sone measured on each slope. The total number of
tests on each slope is listed beside each point,

(+ denotes measurements made on slopes that had ava-
lanched, ® denotes measurements made on elopes that
had not avalanched).

tests (about 0.5 to 1 m apart) were made across,
rather than down slopes, we included these in our plot
also. Figure 3 shows a distinction between fractured
and unfractured slopes, in that for all the fractured
slopes, at least one value of the index o was less
than 1. Most slabs that had not avalanched had a mini-
mum shear index greater than 1. One unfractured slope
did have an index less than 1. Slopes adjacent to
this particular slope, and of similar aspect, had
avalanched,

Table I Tists tensile-type measurements made on
various slopes, including the minimum and mean Xe
evaluated from Equation (5) (using tensile strengths

TABLE I. TENSILE-TYPE MEASUREMENTS FOR SNOW SLOPES

State of  Bed surface Mean slab No. of Mean tensile Minimum Mean Minimun o Minimum shear Maximum
slope angle denaity tensile strength X, X, measured strength when
deg kg/m measurements N/ e m m N/ me @ <1
nf 28 185 4 1342 113 1.58 2.70 780
nf 35 236 i ! 3450 2.60 2.60 3.46 1100
nf 43 160 2 1965 1.46 1.80 LiT 635
nf 33 200 2 8770 5.94 8.22 < 1 <1110 D.75
nf 33 244 2 2670 1.95 2.05 2.85 1675
nf 43 224 2 2937 1.93 1.96 2,33 1400
nf 38 227 4 5386 2.34 3.93 7.8 3220
1s 30 90 2 84 017 0.21 - 114
1s 29 160 2 370 0.36 0.49 - 380
1s 35 60 3 318 0.63 0.94 - 213
1s 40 60 2 113 0.25 0.30 - 10
s 47 140 3 1073 0.68 1:07 <1 <320 1.0
$S 30 212 1 2320 2423 223 <1 <620 1.0
hs 35 250 Z 15050 10525 10,71 <1 <1320 075
where: nf = not fractured
1s = loose slide
ss = soft slab
hs = hard slab
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calculated from Equation (3). On slopes wherea < 1, the northern flank wall, and Figure 4 shows that the
half the maximum length (maximum X) containing this fracture propagated across the slope through a pin-
weakness is also listed in Table I. ned zone (7.5 m to 13 m), into another weak zone.
Our shear tests across this crown wall were made at
1 m spacings and covered the entire width of the
e avalanche, The avalanche was classified as a soft
Two examples of basal strength variations found slab (slab density of 140 kg/m) and had sheared with-
on fractured slopes are shown in Figure 4 (across a in a very soft layer of new snow.
crown wall) and Figure 5 (down a flank wall). The fracture of 19 September 1982 released natur-
The fracture of 13 July 1982 (Figure 4) shows a ally, sliding on a layer of buried faceted crystals
variable crown-wall depth, ranging from 0.32 to 0.54 m. (radiation recrystallized snow that had been buried
In some places, we observed a second shear layer by a new snow-fall), Shear measurements were made
above the bed surface, and this also is plotted in down parts of the northern flank wall of this ava-
Figure 4. The avalanche had been ski-released near lanche (lack of time prevented us from covering the

whole fracture flank). Distances between measurements
could be as small as 0.5 m, but often they were
DEPTH spaced further apart.

N /15m
" 4m ClggWN DISCUSSION

3m The average number of shear-strength measure-

: ments made on each fracture in thi's study was about
12m twelve, and distances between measurements varied
from 0.5 m to 10 m. On non-fractured slopes which had
higher values of o, fewer measurements and a lTower
frequency of tests were made, unless we found a Tow
value of a (a < 2.0). In these instances, the tests
were clustered around that area to determine the ex-
tent of the weakness.

On avalanched slopes, we tried to make the measure-
ments soon after the event to minimize effects of
metamorphism of the snow. Although this was not pos-
g mln mom G wun B G sible at all times, most tests were made witr_n'n 24 h
0 5 10 15 of the event, The cold snow temperatures typical of

the area (generally less than -5°C at the shear layer),

also would inhibit sintering.
DISTANCE IN METRES We suspect that our measurements of the shear in-
ACROSS THE CROWNWALL dex o could be in error by up to 20%. Most of this
error originated in the measurements of the gravita-
tional force down the slope, but other errors arose
from measurements of the shear area, and the extra
force required to fracture the sample.

By measuring shear strengths at closely similar
stress rates (test times of 0 to 5 s to failure), we
hoped to avoid major variations within our measure-
ments due to rate effects. McClung (1977) and de
Montmollin (1982) showed that shear strengths depend
strongly on test rates and their results suggest
that our shear tests would be within the "brittle"

SHEAR™“[

INDEX
3

Fig. 4. Fracture depth and basal shear index across the
eroun wall of a fracture on the cornice wall, 13
July 1982. Average slab density: 140 kg/m .

Bed surface angle: 47°. Sliding layer: very soft,
0.5-1 mm new snow, including columns, capped colums,
stellars, needles, and plates at -8.4°C. The ava-
lanche was ski-released near the northern flank wall,
and the total number of teste made was 18.

1.25m range.
1 DEPTH Not all the variability in the shear index can be
Lt OF FLANK attributed to experimental accuracy. Some of the
] columns failed before they could be completely iso-
SHEAR SRR N0m lated from tensile, compressive, and side-shear sup-
INDEX 3 S port, while columns just 0.5 m away required up to
A 1500 N/m? extra shear stress in the down-slope direc-
" o tion (an increase of a by about 300%). In view of
this, we have accepted that much of the measured
2F 475m strength variability was due to actual variability

of snow properties at the shear layer.
Sommerfeld and King (1979) and Sommerfeld (1980)
m1L_no tests have proposed that much of the variability and high
<1t made values of the shear indices may be due to the sample
size. They used Daniels (1945) parallel-element the-
ory to provide an explanation of the size and stress

T L . " relationships of snow in limited areas to those over
0 5 30 35 40 45 50 unlimited areas, and suggested a”;trength ratio of
0.81 for an area ratio of =:0.1 . The measurements
DISTANCE IN METRES of the shear index described in this paper have not
DOWN THE FLANKWALL been modified by this ratio.
If we regard the local shear index o as a random
Fig. 5. Fracture depth and basal shear index down a variable, we can plot a probability-density function
flank wall of a fracture on the cornice wall, 19 Sept- of the index, and the risk of local shear failure
ember 1982. Average slab denaity: 200 kg/m . (ignoring other means of support) is, by definition,
Bed surface angle: 30-35°. Sliding layer: 30 mm of the probability that the actual factor of safety will

soft 1 mm faceted crystals (radiation recrystallized) be less than one, For slopes in our study that had
at -7.0°C. The avalanche released naturally from new- avalanched, the average probability of shear failure

snow loading and the total number of tests made was determined in this manner was about 33%, and for non-
23. failed slopes about 12%. These results compare with
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the data from Perla (1977) where he summarized, for
80 avalanches, the mean and standard deviations of o
to be 1.66 and 0,98 respectively, which indicates a
failure probability of about 25%. Vanmarcke (1977)
dealt with earth slope-stability problems using a
three-dimensional probability model. He considered the
spatial variability of shear strengths and a charac-
teristic correlation distance for the shear strengths,
Adjustments to his model could also be made to con-
sider slow variations of average shear strength,

which may be useful for considering sintering or
weakening processes in a basal layer.

The two examples in Figures 4 and 5 showing basal
shear-index variation along extended distances sug-
gest that the shear index a may not be distributed
about a single maximum (especially in Figure 4 where
data were collected across a crown wall), and so a
straight-forward statistical approach may be decep-
tive.

The examples also show that even though the slope
had failed, pinning areas (with local basal shear
strength greater than the gravitational shear stress)
occurred over about 45% of the total area tested,
This suggests that the mean index may not be as crit-
ical as the smallest index, and the size of the
zone over which it is small (the shear deficit area),
when assessing a slope stability. Figure 3 suggests
that if any zones of weakness (x < 1) are detected
with a minimum number of tests, then the slope should
be considered unstable.

We investigated the critical size of the shear
deficit (2X.) by considering the tensile strengths of
the slabs and making a calcutation using Equation (5).
Tensile-strength measurements of slabs above weak
layers were not made on all the slopes studied, but
the tests made are listed in Table I. We suspect er-
rors in the calculated tensile strengths of up to 20%
due to errors in measuring the down-slope gravity
force, the extra force required to fracture the sample,
and the tensile fracture area. The variation in times
to failure in our test (2 s to 15 s) are in the brit-
tle range of tests suggested by Narita (1980) and
again we infer that the error due to different rates
between our tests would not have a large effect on
the yield strength o that we have estimated.

The calculation of 2X. listed in Table I shows
values small compared with the full slab length
(2X. = 0.34 m to 21 m). In most cases where we had
made shear tests over extended distances, the lengths
of the shear deficit zones were smaller than 2X o
This suggests that in most cases, we did not locate
the primary fracture area during our limited number
of field tests.

We are as yet unclear about the relationship be-
tween our measured Jocal indices ( and 2X.) and the
prediction of total slab failure. Boundary conditions
and geometric effects have been suggested as import-
ant by Perla and others (1982). Little is known about
the rate of strain during avalanche fractures, and
this rate may differ significantly from that during
the field tests. Narita (1980) demonstrated a strong
dependence of the tensile yield strength on the test
rate (yield strengths for ductile failures were up to
40% higher than yield strengths for brittle failures).
McClung (1979), showed that some snow strain-softened
during shear, depending on the snow type and rate of
shear. Some snows also exhibited a residual shear
strength of only half that of the peak shear strength.
Furthermore, our calculations do not consider support
from side shear (and also partial basal pinning when
calculating 2X.).

Despite these uncertainties in interpretation of
the tests, from a purely empirical point of view,
there is one basis for a practical assessment of slope
stability. As shown in Figure 3, we found a basal de-
ficit with at Teast one test on each slope that had
avalanched. We also note that, in most cases, we had
located this deficit with less than ten tests, al-
though on large slopes more than ten tests may be

Conway and Abrahamson: Snow stability index

required to locate a pocket of weakness (see Fig. 3).

It is interesting to note that (from Table I) in
four surface snows where low tensile strengths (80 to
370 N/m ) combined with Tow shear strengths (10 to
380 N/m ) were measured, loose avalanches occurred on
nearby slopes. Perla (1980) mentions that this sort
of avalanche starts in loose cohesionless surface
layers and these measurements support this concept.

We think that the variations of strength of the
shear layer often originate from local air-flow pat-
terns during deposition of snow. The deposited snow
itself often shows significant local variation in its
bulk properties, especially that property sensitive
to texture (permeability). We recorded air permea-
bility variations of up to 300% in otherwise closely
similar new snow which had been deposited by wind down
a slope (Conway and Abrahamson, 1984).

Bagnold (1941) observed drifts of sand caused by
wind channelling through irregularities in a cliff
top. Depending on the wind direction and the shape of
the cliff top, drifting was more concentrated in some
places than others. He described the formation of
longitudinal (down the slope) dunes from the lee ed-
dies. Tabler (1980) summarized such drift observations
behind snow fences, and found that the lee drift geo-
metry was characterized by a length proportional to
the fence height H, and a cross-sectional area pro-
portional to H . He also noted an increase in snow
density behind the fence (due to increased densifica-
tion with snow depth). These observations may be ap-
plicable to variations in geometry at ridge tops, and
a complex series of drift distributions could be ex-
pected behind an irregular-shaped ridge crest (see

Fids 6)s
Lo

windflow over
ridge_ crest

eight
h“above
crest

K'h’

|

6. Longitudinal drift patterms behind an idealized
erest showing formation of drift bands across a slope
(similar to Tabler's (1980) drift behind snow Fences).
The arrows indicate local air veloecities.

Bagnold (1941) also observed transverse ripples
or dunes-normal to the local wind direction, and sug-
gested that these may have a periodic distribution or
may be short and irregular (depending on the particle
density of the transported medium). Dyunin (1967) and
Kobayashi (1979) recorded periodic fluctuations of
snow transport rates (thought to be due to turbulence)
and suggested that these may be associated with ripp-
ling or duning of depositing snow.

We argue below that these two types of deposition -
large longitudinal drifting and small-scale duning -
may be superimposed on some slopes, and may account
for observed snow property patterns. In particular,
our measurements across the crown wall of an ava-
lanche (Fig. 4) show an uneven distribution of snow
depth above the bed surface which appears to have been
caused by large-scale drifting past the irregularities
in the ridge crest. The uneven distribution of the
drifting snow would not only change the gravitational
loading at the shear layer, but also may have affected
the properties of the shear layer as it was being de-
posited, For example, in Figure 4, if the drifting
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proportions across the ridge were similar for the
deposition of the weak layer and the deposition of the
slab, we would expect the weak-layer thickness to vary
across a slope in similar proportions to the slab
thickness. The thickness of the weak layer may have a
strong influence on the shear strength (this is dealt
with later in this discussion). Whatever the mechanism,
the step change in shear index shown in Figure 4 (lo-
cated between 7 and 13 m) being a change over a larger
scale, is likely to be a step change across one of
these longitudinal lee drifts.

The characteristics of the o distribution on the
southern side of the crown wall (Fig. 4) and down the
flank wall of an avalanche (Fig. 5) show fluctuations
of much smaller period. These fluctions of strength
can be related to the irregular transverse-type rip-
ple described by Bagnold (1941) and in Figure 4,
these appear to be superimposed on the weak zone cre-
ated behind the ridge crest. On the slopes described
in Figure 5, we did not find large areas of high a,
which suggests we were sampling in a relatively weak
band up the slope with irregular duning causing ir-
regular shear variations.

Bridgewater (1980) determined the minimum width
of a failure zone in hard particulate powders, by
describing the shearing surface roughness in terms of
particle size, In this way, he estimated a minimum
shearing zone about ten particle diameters in thick-
ness within a much thicker particle layer. In many of
the shear layers we observed, the thickness of the
weak layer was less than ten particle diameters.
Although Bridgewater's approach may not be strictly
applicable to crystals that can deform, we expect for
these thin shear layers that the surface roughness
of the stronger adjacent layers will intrude into the
shearing zone. The shear strength can then be expected
to be sensitively dependent on the local thickness
of the weak layer. Both the streaming drifting and
the irregular or regular duning above could cause
variations in this thickness, and hence variations in
shear strength.

McClung (1977, 1979) has suggested strain-
softening as a possibility for basal weakening and
progressive failure of some slabs. If a deficit zone
is such that it can cause local straining in the sur-
rounding snow, then the shear softening in these
neighbouring areas may cause progressive failure
through a pinning area. This would be an effective
means of removing pinning areas and linking weak zones
under a slab.

Qur arguments above support Gubler's (1978) sug-
gestion (for some avalanche releases) of an initial
primary shear fracture which could then propagate
over a slope. This general mechanism is also support-
ed by field observations of artificially controlled
slopes where trigger zones for an avalanche may occur
at positions other than the crown wall. How pinning
areas and their distribution affect crack propagation
needs further study, but our tests suggest that if
any basal shear deficit is found, then propagation is
likely. Chowdhury and A-Grivas (1982) present a prob-
abilistic model for the progression of shear failure
in a soil slope. Although we do not think that the
shear layer can be treated as statistically homo-
geneous (at least in the horizontal direction), this
approach may prove useful in different sub-areas of a
slope.

CONCLUSIONS

We measured high variability of the basal shear
strength of snow under slabs over small distances
(0.5 m) and so we considered the potential sliding
plane for an avalanche to consist of weak basal zones
(deficit areas) between zones of higher strength (pin-
ning areas). A local failure would become more likely
as the basal shear strength became small, or the area
of the deficit became large.

Our measurements so far suggest that the critical
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length of reduced basal shear strength required to
cause a tensile failure in the slab may be small (1 m
or less) in many cases. This size is similar to frac-
ture sizes estimated by Sommerfeld and Gubler (1983)
who estimated fracture areas of 0.1 m to 1 m radius
using the frequency spectra of low-frequency acoustic
emissions. Because this critical length may be small,
we found that the primary concern when assessing
slope stability should be to determine whether a basal
shear deficit occurs at any position over the slope.

During our field tests over extended areas on un-
stable slopes, we generally found a deficit shear
area within ten tests, but these tests were time-
consuming when covering large areas. A shear test
which would enable a user to make a large number of
measurements in a short time would be useful for
assessing slope stability — especially for large
slopes.

Qur stability index a does not consider the pin-
ing-area distribution in relation to crack propaga-
tion after the initial primary fracture, but our
measurements to date suggest that a failure may prop-
agate through areas of high strength that are of simi-
lar size to the weak areas.

We found, as a general rule, that if (with a Timi-
ted number of tests) we found an area where the shear
index was less than one, then there were other larger
areas of deficit and the slope was unstable, Future
work may establish the probability of failure given
the number of tests and the distribution of the shear
indices found.
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