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ON A GENERALIZATION OF THE CATENOID 

DAVID E. BLAIR 

It is a classical result that the only surface of revolution in Euclidean space 
E3 which is minimal is the catenoid. Of course the surface is conformally flat, 
but if Mn

y n ^ 4, is a conformally flat hypersurface of Euclidean space En+1, 
then Mn admits a distinguished direction [2] ("tangent to the meridians"). 
Thus we seek to characterize conformally flat hypersurfaces of En+1 which 
are minimal. Specifically we prove the following 

THEOREM. Let Mn, w H , be a conformally flat, minimal hypersurface 
immersed in En+1. Then Mn is either a hypersurface of revolution Sn~l X M1 

where 5n~"1 is a Euclidean sphere and M1 is a plane curve whose curvature K as a 
function of arc length s is given by K = — (n — l)a, a — —\/vn and 

/
_ vn~ dv  

where A is a constant, or Mn is totally geodesic. 

In section 1 we give some preliminaries and in section 2 prove the theorem. 
The author expresses his appreciation to his colleague Professor B.-Y. Chen 

for many valuable conversations. 

1. Preliminaries. Let ( , ) denote the usual Riemannian metric on 
(n + 1)-dimensional Euclidean space Ew+1 and D its Riemannian connexion. 
Let L : Mn —» En+1 be an w-dimensional hypersurface immersed in En+1 and 
let g denote the induced metric and V its Riemannian connexion. Then the 
Gauss-Weingarten equations are 

D^xuY = L*VxY + h(X, Y)N 

where N is a unit normal, h the second fundamental form and H the corre
sponding Weingarten map. The hypersurface Mn is said to be quasi-umbilical 
[1; 2], if there exist on Mn two functions a, 0 and a unit vector field U with 
covariant form u such that 

(1.1) h = ag + fiu ® u. 

In [2], B.-Y. Chen and K. Yano showed that if Mn, n ^ 4 is a conformally 
flat hypersurface of a space form, then it is quasi-umbilical. If the space form 
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has constant curvature k, the curvature tensor of Mn is 

g(RXYZ, W) = (k + «2)(g(X, W)g(Y, Z) - g(X, Z)g(Y, Z)) 

+ Pa(g(X, W)u(Y)u(Z) -g(Y} W)u(X)u(Z) 

+ g(Y,Z)u(X)u{W) -g(X,Z)u(Y)u(W)) 

by virtue of (1.1) and the Gauss equation, where RXY denotes the curvature 
transformation [ V j , Vy] — V[x,r]- The Ricci tensor S and the scalar 
curvature p are then given by 

(1.2) 5 = ((n - l)(k + ot2) + a$)g + (n - 2)a0u ® u, 

p = n(n - l)(k + a2) + 2(w - l)aj8. 

Thus the tensor 

L = _ _A_ + m  
n - 2 T 2 ( « - l ) ( » - 2 ) 

becomes 

L = —%(k+ a2)g — aftu ® u. 

Now as Jlf is conformally flat, we have 

(VXL)(Y,Z) - (VrL)(X,Z) = 0 

and moreover we have the Codazzi equation 

(Vxh)(Y,Z) - (VYh)(X,Z) = 0. 

Thus, differentiating 

L + ah = i(«2 - *)* 
we find that 

(1.3) 0(da A u) = 0. 

We now discuss briefly a problem in the theory of submanifolds of codimen-
sion 2. Let D denote the Riemannian connexion of the ambient space, V ' the 
Riemannian connexion of the induced metric g', \p* the differential of the 
immersion, and C\, Ci unit normals orthogonal to each other with h'', k' the 
corresponding second fundamental forms and / the third fundamental form. 
Suppose hf = ag', k' = bg', I = 0 where a and b are constants on the sub-
manifold; in particular the submanifold is umbilical. The Gauss-Weingarten 
equations are 

2 W * F = f V ' . F + ag'(X, Y)d + bg'(X, F)C2, 
Df+xCi = —a\l/*X, D^+xCi = —b\(/*X. 

Then setting 

Cl ~ (a" + by u - (a2 + ty 
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we have 

Z W F = f V ' z F + (a2 + b*)k'(X, Y)&, 

as well as, of course, 

D*x& = - (a2 + &2) V**, ^ * x C 2 = 0. 

2. Proof of the Theorem. As pointed out in section 1, the conformai 
flatness of Mn, » H , implies that Mn is quasi-umbilical and so by (1.1) the 
Weingarten map is given by 

H = al + $u ® U, 

where / denotes the identity. Since Mn is minimal, we have trH = 0 and 
hence f$ = — na, that is 

H = al — nau ® U. 

Now by (1.3) we have either ft = 0 on Mn or da = 7^ for some function 7 
on Mw. 0 = 0 implies a = 0 and hence & = 0, that is Mn is totally geodesic 
in En+1, the exceptional case of the theorem (Mn is a hyperplane and could 
of course, be thought of as Mn~l X M1 where M1 is a line and Mn~l a space 
of constant curvature zero). Thus we consider the case da = yu. 

Differentiating H we have 

(VXH)Y = Vx(aY -nau(Y)U) - aVXY + nau(VXY)U 

= (Xa)Y - n(Xa)u(Y)U - na(Vxu)(Y)U 

- nau(Y)VxU 

and so using da = yu, the Codazzi equation becomes 

(2.1) 0 = C7XH)Y - (VYH)X = (Xa)Y - n(Xa)u(Y)U 

- na(Vxu)(Y)U - nau(Y)VxU - (Ya)X + n(Ya)u(X)U 

+ na(VYu)(X)U + nau(X)VYU 

= yu{X)Y - 2nadu(X, Y)U - nau(Y)VxU - yu(Y)X 

+ nau(X)VYU. 

Taking the inner product of (2.1) with U we have du = 0; thus the distribu
tion defined by u = 0 is integrable and so Mn is locally the product in the sense 
of separating coordinate systems of Mn~l and Ml where U is tangent to M1 

and Mn~1 is an integral submanifold of the distribution orthogonal to U. 
Note that da = yu implies that 7 = Ua and Xa = 0 for X orthogonal to U. 

Moreover since du = 0 we have dy A u = 0 giving dy = (Uy)u and Xy = 0 
for X orthogonal to U. 

Now since du = 0 and U is unit we have 

g(VvU,X) = g(VxlI, U) = 0 , 
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that is the integral curves of U are geodesies on Mn. Setting Y = U in (2.1) 
we have 

(2.2) naVxU = -yX + yu{X)U. 

We have already noted the case a = 0 everywhere on Mn. We now show 
that if a does not vanish identically, then a is nowhere zero. Suppose a = 0 
at a point P £ M but not identically zero on any neighborhood of P. Taking 
X to be any vector orthogonal to U at P in (2.2) we have that y — 0 at P. 
On the other hand differentiating (2.2) with respect to Y with X orthogonal 
to U we have 

n{Ya)VXU + naVyVxU = - (Yy)X - yVYX 

and hence Y y — 0 at P. Differentiating successively we find that all derivatives 
of a vanish at P. Now as Mn is minimal in En+1, the coordinate functions are 
harmonic and hence a is real analytic on Mn. Thus if a = 0 at P , a = 0 every
where, and for the non-totally geodesic case we have 

(2.3) VXU= - ^ X + JL u(X)U. 
na na 

We now focus our attention on the manifold Mn~1. Consider Mn~l as a 
submanifold of codimension 2 in En+1 immersed first in Mn, that is 

Let V ' denote the induced connexion and h' the second fundamental for <p 
corresponding to the unit normal U, that is 

V„X<P*Y = <p*V'xY + h'(X, Y)U 

for X, Y tangent to Mn~\ Now by (2.3) 

V<p*xU = — — <p*X, 

and hence 

y y 
Dwtxi*U — L*(p*X + h(<p*X, U)N = — — L*cp*X. 

na na 
Also 

D I*<P*XN = —L*Hcp*X = —ai*<p*X. 

Thus the Weingarten maps for Mn~l in Ew+l are if' = (y/na)I and X ' = a/ . 
But as Xa = 0 and Xy = 0 for X orthogonal to U, a and y are constant on 
Mn_1, hence Mn~l is umbilical in En+1 and therefore a Euclidean sphere 5n~1. 

Next we show that M1 is a plane curve. Since VuU = 0 we have 

(2.4) D„vi*U = h(U, U)N = - ( » - l ) a # . 
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Similarly 

D»VN = -L*HU = (n - l)m*U. 

Now let X be any vector field in En+1 defined along an integral curve of U 
and orthogonal to both i* U and iV. Then 

(D^X, i*U) = (X, (n - l)aN) = 0, 

(D„uX, N) = -(X, (n - l)a*U) = 0, 

and therefore M1 is a plane curve in the plane spanned by t* U and iV which 
are normals to Mn~l in En+1. Hence the centers of the Mn~vs lie in this plane. 

Now two such planes will intersect in either a point (the Mn~vs would be 
concentric) or a line (giving Mn as a hypersurface of revolution). It remains 
to show that Mn is indeed a hypersurface of revolution and to identify the 
curve M1. For both tasks we will need a differential equation for the function a. 

For X a unit vector orthogonal to U we compute the sectional curvature 
of a plane section containing U. Using (2.3) we have 

g(VuVxU - VxVuU - V[U>X]U,X) 

na n a 

Now by (1.2) the Ricci curvature in the direction of U is — a2(n — l ) 2 and 
therefore 

(" ~ 1 ) \ r " ^ " 22 1 = - a (« - 1) . 

Thus letting 5 denote arc length along an integral curve of U we have 

( -v 1 ^2a (w + 1 ) / & V , , n 2 n 
(2.5) —-j-2 — 2~2— T + (n — l ) a = 0 

na as n a \ as I 
along the integral curve. 

We now show that Mv is a hypersurface of revolution. Let 

r — (y/na)L*U + <xN r _ aL*U — (y/na)N 
Cl — ( 2 . 2 / 2 2 ) J - » ^ 2 — r 2 | 2 / 2 2) J • 

{a + 7 /» a } [a + y /n a \ 
Then Ci is a unit normal to an Mn~l in a hyperplane En and Ci is a unit normal 
to En in £w+1. Now a straightforward computation using (2.5) shows that 

D»uCi = 0, 

that is the Ew's form a parallel family of hyperplanes and hence the planes of 
the integral curves of U intersect in a line. 
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Finally let F be a unit parallel vector field in Ew+1 in the direction of C2 (i.e. 
parallel to the line of centers) and let (V, i*U) = cos 6 choosing the orienta
tion such that (F, N) = — sin 0. Then 

rid 
»U(V,»U)= (V,N)fs 

and using (2.4), 

i*U(V,i*U)= -(n-l)a(V,N). 

Thus the curvature K = dO/ds of Ml is given by 

K = — (n — l)a, 

but a as a function of 5 is given by (2.5). Setting a = 1/V, (2.5) becomes 

dj , ,* l 
di • v 

2 - (n - l ) - j s n = 0. 

Integrating once we have 

where A is a constant. Hence the plane curve M1 is given by its curvature 
K(S) = — (n — l)a(^) where a = — 1/V and 

-h n-\, 
v av 

{Av2n~~2- 1}* 

completing the proof. 

Remark. For n — 3, the conformai flatness of Mn does not yield quasi-
umbilicity. If however we assume that Md is a minimal, quasi-umbilical 
hypersurface of E4, then the conclusion of the theorem also holds with the 
same proof. 
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