ON A GENERALIZATION OF THE CATENOID

DAVID E. BLAIR

It is a classical result that the only surface of revolution in Euclidean space E^3 which is minimal is the catenoid. Of course the surface is conformally flat, but if M^n , $n \ge 4$, is a conformally flat hypersurface of Euclidean space E^{n+1} , then M^n admits a distinguished direction [2] ("tangent to the meridians"). Thus we seek to characterize conformally flat hypersurfaces of E^{n+1} which are minimal. Specifically we prove the following

THEOREM. Let M^n , $n \ge 4$, be a conformally flat, minimal hypersurface immersed in \mathbf{E}^{n+1} . Then M^n is either a hypersurface of revolution $S^{n-1} \times M^1$ where S^{n-1} is a Euclidean sphere and M^1 is a plane curve whose curvature κ as a function of arc length s is given by $\kappa = -(n-1)\alpha$, $\alpha = -1/\nu^n$ and

$$s = \int \frac{\nu^{n-1} d\nu}{\{A\nu^{2n-2} - 1\}^{\frac{1}{2}}}$$

where A is a constant, or M^n is totally geodesic.

In section 1 we give some preliminaries and in section 2 prove the theorem. The author expresses his appreciation to his colleague Professor B.-Y. Chen for many valuable conversations.

1. Preliminaries. Let \langle , \rangle denote the usual Riemannian metric on (n + 1)-dimensional Euclidean space \mathbf{E}^{n+1} and D its Riemannian connexion. Let $\iota : M^n \to \mathbf{E}^{n+1}$ be an *n*-dimensional hypersurface immersed in \mathbf{E}^{n+1} and let g denote the induced metric and ∇ its Riemannian connexion. Then the Gauss-Weingarten equations are

$$D_{\iota * X} \iota_* Y = \iota_* \nabla_X Y + h(X, Y) N$$
$$D_{\iota * X} N = -\iota_* H X$$

where N is a unit normal, h the second fundamental form and H the corresponding Weingarten map. The hypersurface M^n is said to be *quasi-umbilical* [1; 2], if there exist on M^n two functions α , β and a unit vector field U with covariant form u such that

(1.1)
$$h = \alpha g + \beta u \otimes u$$
.

In [2], B.-Y. Chen and K. Yano showed that if M^n , $n \ge 4$ is a conformally flat hypersurface of a space form, then it is quasi-umbilical. If the space form

Received May 9, 1973.

has constant curvature k, the curvature tensor of M^n is

$$g(R_{XY}Z, W) = (k + \alpha^2)(g(X, W)g(Y, Z) - g(X, Z)g(Y, Z)) + \beta\alpha(g(X, W)u(Y)u(Z) - g(Y, W)u(X)u(Z) + g(Y, Z)u(X)u(W) - g(X, Z)u(Y)u(W))$$

by virtue of (1.1) and the Gauss equation, where R_{XY} denotes the curvature transformation $[\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$. The Ricci tensor S and the scalar curvature ρ are then given by

(1.2)
$$S = ((n-1)(k+\alpha^2) + \alpha\beta)g + (n-2)\alpha\beta u \otimes u,$$

 $\rho = n(n-1)(k+\alpha^2) + 2(n-1)\alpha\beta.$

Thus the tensor

$$L = -\frac{S}{n-2} + \frac{\rho g}{2(n-1)(n-2)}$$

becomes

 $L = -\frac{1}{2}(k + \alpha^2)g - \alpha\beta u \otimes u.$

Now as M^n is conformally flat, we have

$$(\nabla_X L)(Y,Z) - (\nabla_Y L)(X,Z) = 0$$

and moreover we have the Codazzi equation

 $(\nabla_X h)(Y,Z) - (\nabla_Y h)(X,Z) = 0.$

Thus, differentiating

 $L + \alpha h = \frac{1}{2}(\alpha^2 - k)g$

we find that

(1.3) $\beta(d\alpha \wedge u) = 0.$

We now discuss briefly a problem in the theory of submanifolds of codimension 2. Let D denote the Riemannian connexion of the ambient space, ∇' the Riemannian connexion of the induced metric g', ψ_* the differential of the immersion, and C_1 , C_2 unit normals orthogonal to each other with h', k' the corresponding second fundamental forms and l the third fundamental form. Suppose h' = ag', k' = bg', l = 0 where a and b are constants on the submanifold; in particular the submanifold is umbilical. The Gauss-Weingarten equations are

$$D_{\psi \bullet X} \psi \bullet Y = \psi \bullet \nabla'_X Y + ag'(X, Y)C_1 + bg'(X, Y)C_2,$$

$$D_{\psi \bullet X}C_1 = -a\psi \bullet X, D_{\psi \bullet X}C_2 = -b\psi \bullet X.$$

Then setting

$$\bar{C}_1 = \frac{aC_1 + bC_2}{(a^2 + b^2)^{\frac{1}{2}}}$$
 $\bar{C}_2 = \frac{bC_1 - aC_2}{(a^2 + b^2)^{\frac{1}{2}}}$

we have

$$D_{\psi_*X}\psi_*Y = \psi_* \nabla'_X Y + (a^2 + b^2)^{\frac{1}{2}}g'(X, Y)\bar{C}_1,$$

as well as, of course,

 $D_{\psi * X} \bar{C}_1 = -(a^2 + b^2)^{\frac{1}{2}} \psi * X, \qquad D_{\psi * X} \bar{C}_2 = 0.$

2. Proof of the Theorem. As pointed out in section 1, the conformal flatness of M^n , $n \ge 4$, implies that M^n is quasi-umbilical and so by (1.1) the Weingarten map is given by

 $H = \alpha I + \beta u \otimes U,$

where I denotes the identity. Since M^n is minimal, we have trH = 0 and hence $\beta = -n\alpha$, that is

 $H = \alpha I - n\alpha u \otimes U.$

Now by (1.3) we have either $\beta = 0$ on M^n or $d\alpha = \gamma u$ for some function γ on M^n . $\beta = 0$ implies $\alpha = 0$ and hence h = 0, that is M^n is totally geodesic in E^{n+1} , the exceptional case of the theorem $(M^n$ is a hyperplane and could of course, be thought of as $M^{n-1} \times M^1$ where M^1 is a line and M^{n-1} a space of constant curvature zero). Thus we consider the case $d\alpha = \gamma u$.

Differentiating H we have

$$(\nabla_{X}H)Y = \nabla_{X}(\alpha Y - n\alpha u(Y)U) - \alpha \nabla_{X}Y + n\alpha u(\nabla_{X}Y)U$$

= $(X\alpha)Y - n(X\alpha)u(Y)U - n\alpha(\nabla_{X}u)(Y)U$
 $- n\alpha u(Y)\nabla_{X}U$

and so using $d\alpha = \gamma u$, the Codazzi equation becomes

$$(2.1) \quad 0 = (\nabla_X H)Y - (\nabla_Y H)X = (X\alpha)Y - n(X\alpha)u(Y)U - n\alpha(\nabla_X u)(Y)U - n\alpha u(Y)\nabla_X U - (Y\alpha)X + n(Y\alpha)u(X)U + n\alpha(\nabla_Y u)(X)U + n\alpha u(X)\nabla_Y U = \gamma u(X)Y - 2 n\alpha du(X, Y)U - n\alpha u(Y)\nabla_X U - \gamma u(Y)X + n\alpha u(X)\nabla_Y U.$$

Taking the inner product of (2.1) with U we have du = 0; thus the distribution defined by u = 0 is integrable and so M^n is locally the product in the sense of separating coordinate systems of M^{n-1} and M^1 where U is tangent to M^1 and M^{n-1} is an integral submanifold of the distribution orthogonal to U.

Note that $d\alpha = \gamma u$ implies that $\gamma = U\alpha$ and $X\alpha = 0$ for X orthogonal to U. Moreover since du = 0 we have $d\gamma \wedge u = 0$ giving $d\gamma = (U\gamma)u$ and $X\gamma = 0$ for X orthogonal to U.

Now since du = 0 and U is unit we have

$$g(\nabla_U U, X) = g(\nabla_X U, U) = 0,$$

that is the integral curves of U are geodesics on M^n . Setting Y = U in (2.1) we have

(2.2)
$$n\alpha \nabla_X U = -\gamma X + \gamma u(X) U.$$

We have already noted the case $\alpha = 0$ everywhere on M^n . We now show that if α does not vanish identically, then α is nowhere zero. Suppose $\alpha = 0$ at a point $P \in M$ but not identically zero on any neighborhood of P. Taking X to be any vector orthogonal to U at P in (2.2) we have that $\gamma = 0$ at P. On the other hand differentiating (2.2) with respect to Y with X orthogonal to U we have

$$n(Y\alpha)\nabla_X U + n\alpha\nabla_Y\nabla_X U = -(Y\gamma)X - \gamma\nabla_Y X$$

and hence $Y_{\gamma} = 0$ at *P*. Differentiating successively we find that all derivatives of α vanish at *P*. Now as M^n is minimal in \mathbf{E}^{n+1} , the coordinate functions are harmonic and hence α is real analytic on M^n . Thus if $\alpha = 0$ at *P*, $\alpha = 0$ everywhere, and for the non-totally geodesic case we have

(2.3)
$$\nabla_X U = -\frac{\gamma}{n\alpha}X + \frac{\gamma}{n\alpha}u(X)U.$$

We now focus our attention on the manifold M^{n-1} . Consider M^{n-1} as a submanifold of codimension 2 in \mathbf{E}^{n+1} immersed first in M^n , that is

 $M^{n-1} \stackrel{\varphi}{\to} M^n \stackrel{\iota}{\to} \mathbf{E}^{n+1}.$

Let ∇' denote the induced connexion and h' the second fundamental for φ corresponding to the unit normal U, that is

$$\nabla_{\varphi * X} \varphi * Y = \varphi * \nabla'_X Y + h'(X, Y) U$$

for X, Y tangent to M^{n-1} . Now by (2.3)

$$\nabla \varphi_{*X} U = -\frac{\gamma}{n\alpha} \varphi_{*} X,$$

and hence

$$D_{\iota_{*\varphi^*X}\iota^*U} = -\frac{\gamma}{n\alpha}\iota_*\varphi^*X + h(\varphi^*X, U)N = -\frac{\gamma}{n\alpha}\iota_*\varphi^*X.$$

Also

$$D_{\iota*\varphi*X}N = -\iota*H\varphi*X = -\alpha\iota*\varphi*X.$$

Thus the Weingarten maps for M^{n-1} in \mathbf{E}^{n+1} are $H' = (\gamma/n\alpha)I$ and $K' = \alpha I$. But as $X\alpha = 0$ and $X\gamma = 0$ for X orthogonal to U, α and γ are constant on M^{n-1} , hence M^{n-1} is umbilical in \mathbf{E}^{n+1} and therefore a Euclidean sphere S^{n-1} .

Next we show that M^1 is a plane curve. Since $\nabla_U U = 0$ we have

$$(2.4) \quad D_{\iota * U^{\iota *}} U = h(U, U) N = -(n-1)\alpha N.$$

Similarly

$$D_{\iota * U}N = -\iota * HU = (n-1)\alpha\iota * U.$$

Now let X be any vector field in \mathbf{E}^{n+1} defined along an integral curve of U and orthogonal to both ι_*U and N. Then

and therefore M^1 is a plane curve in the plane spanned by ιU and N which are normals to M^{n-1} in \mathbf{E}^{n+1} . Hence the centers of the M^{n-1} 's lie in this plane.

Now two such planes will intersect in either a point (the M^{n-1} 's would be concentric) or a line (giving M^n as a hypersurface of revolution). It remains to show that M^n is indeed a hypersurface of revolution and to identify the curve M^1 . For both tasks we will need a differential equation for the function α .

For X a unit vector orthogonal to U we compute the sectional curvature of a plane section containing U. Using (2.3) we have

$$g(\nabla_U \nabla_X U - \nabla_X \nabla_U U - \nabla_{[U,X]} U, X)$$

= $g\left(\nabla_U \left(-\frac{\gamma}{n\alpha}X\right) + \frac{\gamma}{n\alpha}[U,X], X\right) = U\left(-\frac{\gamma}{n\alpha}\right) + \frac{\gamma^2}{n^2\alpha^2}$
= $-\frac{1}{n\alpha}U\gamma + \frac{(n+1)\gamma^2}{n^2\alpha^2}.$

Now by (1.2) the Ricci curvature in the direction of U is $-\alpha^2(n-1)^2$ and therefore

$$(n-1)\left(\frac{1}{n\alpha}U\gamma-\frac{(n+1)\gamma^2}{n^2\alpha^2}\right)=-\alpha^2(n-1)^2.$$

Thus letting s denote arc length along an integral curve of U we have

(2.5)
$$\frac{1}{n\alpha}\frac{d^2\alpha}{ds^2} - \frac{(n+1)}{n^2\alpha^2}\left(\frac{d\alpha}{ds}\right)^2 + (n-1)\alpha^2 = 0$$

along the integral curve.

We now show that M^n is a hypersurface of revolution. Let

$$\bar{C}_1 = \frac{(\gamma/n\alpha)\iota_*U + \alpha N}{\{\alpha^2 + \gamma^2/n^2\alpha^2\}^{\frac{1}{2}}}, \quad \bar{C}_2 = \frac{\alpha\iota_*U - (\gamma/n\alpha)N}{\{\alpha^2 + \gamma^2/n^2\alpha^2\}^{\frac{1}{2}}}.$$

Then \overline{C}_1 is a unit normal to an M^{n-1} in a hyperplane \mathbf{E}^n and \overline{C}_2 is a unit normal to E^n in E^{n+1} . Now a straightforward computation using (2.5) shows that

 $D_{\iota * U} \bar{C}_2 = 0,$

that is the E^n 's form a parallel family of hyperplanes and hence the planes of the integral curves of U intersect in a line.

DAVID E. BLAIR

Finally let V be a unit parallel vector field in \mathbf{E}^{n+1} in the direction of \overline{C}_2 (i.e. parallel to the line of centers) and let $\langle V, \iota_*U \rangle = \cos \theta$ choosing the orientation such that $\langle V, N \rangle = -\sin \theta$. Then

$$\iota * U \langle V, \iota * U \rangle = \langle V, N \rangle \frac{d\theta}{ds}$$

and using (2.4),

$$\iota * U \langle V, \iota * U \rangle = -(n-1)\alpha \langle V, N \rangle.$$

Thus the curvature $\kappa = d\theta/ds$ of M^1 is given by

$$\kappa = -(n-1)\alpha,$$

but α as a function of s is given by (2.5). Setting $\alpha = 1/\nu^n$, (2.5) becomes

$$\frac{d^2\nu}{ds^2} - (n-1)\frac{1}{\nu^{2n-1}} = 0.$$

Integrating once we have

$$\frac{d\nu}{ds} = \{-1/\nu^{2n-2} + A\}^{\frac{1}{2}}.$$

where A is a constant. Hence the plane curve M^1 is given by its curvature $\kappa(s) = -(n-1)\alpha(s)$ where $\alpha = -1/\nu^n$ and

$$s = \int \frac{\nu^{n-1} d\nu}{\{A\nu^{2n-2} - 1\}^{\frac{1}{2}}}$$

completing the proof.

Remark. For n = 3, the conformal flatness of M^n does not yield quasiumbilicity. If however we assume that M^3 is a minimal, quasi-umbilical hypersurface of \mathbf{E}^4 , then the conclusion of the theorem also holds with the same proof.

References

B.-Y. Chen, Geometry of submanifolds (Marcel-Dekker, Inc., New York, 1973).
 B.-Y. Chen and K. Yano, Conformally flat submanifolds (to appear).

Michigan State University, East Lansing, Michigan

236