ON A GENERALIZATION OF THE CATENOID

DAVID E. BLAIR

It is a classical result that the only surface of revolution in Euclidean space \mathbf{E}^{3} which is minimal is the catenoid. Of course the surface is conformally flat, but if $M^{n}, n \geqq 4$, is a conformally flat hypersurface of Euclidean space \mathbf{E}^{n+1}, then M^{n} admits a distinguished direction [2] ("tangent to the meridians"). Thus we seek to characterize conformally flat hypersurfaces of \mathbf{E}^{n+1} which are minimal. Specifically we prove the following

Theorem. Let $M^{n}, n \geqq 4$, be a conformally flat, minimal hypersurface immersed in \mathbf{E}^{n+1}. Then M^{n} is either a hypersurface of revolution $S^{n-1} \times M^{1}$ where S^{n-1} is a Euclidean sphere and M^{1} is a plane curve whose curvature к as a function of arc length s is given by $\kappa=-(n-1) \alpha, \alpha=-1 / \nu^{n}$ and

$$
s=\int \frac{\nu^{n-1} d \nu}{\left\{A \nu^{2 n-2}-1\right\}^{\frac{1}{2}}}
$$

where A is a constant, or M^{n} is totally geodesic.
In section 1 we give some preliminaries and in section 2 prove the theorem.
The author expresses his appreciation to his colleague Professor B.-Y. Chen for many valuable conversations.

1. Preliminaries. Let \langle,$\rangle denote the usual Riemannian metric on$ $(n+1)$-dimensional Euclidean space \mathbf{E}^{n+1} and D its Riemannian connexion. Let $\iota: M^{n} \rightarrow \mathbf{E}^{n+1}$ be an n-dimensional hypersurface immersed in \mathbf{E}^{n+1} and let g denote the induced metric and ∇ its Riemannian connexion. Then the Gauss-Weingarten equations are

$$
\begin{aligned}
D_{\iota * X}^{\iota_{*}} Y & =\iota_{*} \nabla_{X} Y+h(X, Y) N \\
D_{\iota *} N & =-\iota_{*} H X
\end{aligned}
$$

where N is a unit normal, h the second fundamental form and H the corresponding Weingarten map. The hypersurface M^{n} is said to be quasi-umbilical $\left[\mathbf{1 ; 2]}\right.$, if there exist on M^{n} two functions α, β and a unit vector field U with covariant form u such that
(1.1) $h=\alpha g+\beta u \otimes u$.

In [2], B.-Y. Chen and K. Yano showed that if $M^{n}, n \geqq 4$ is a conformally flat hypersurface of a space form, then it is quasi-umbilical. If the space form
has constant curvature k, the curvature tensor of M^{n} is

$$
\begin{aligned}
g\left(R_{X Y} Z, W\right)=\left(k+\alpha^{2}\right. & (g(X, W) g(Y, Z)-g(X, Z) g(Y, Z)) \\
& +\beta \alpha(g(X, W) u(Y) u(Z)-g(Y, W) u(X) u(Z) \\
& +g(Y, Z) u(X) u(W)-g(X, Z) u(Y) u(W))
\end{aligned}
$$

by virtue of (1.1) and the Gauss equation, where $R_{X Y}$ denotes the curvature transformation $\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$. The Ricci tensor S and the scalar curvature ρ are then given by

$$
\begin{align*}
S & =\left((n-1)\left(k+\alpha^{2}\right)+\alpha \beta\right) g+(n-2) \alpha \beta u \otimes u, \tag{1.2}\\
\rho & =n(n-1)\left(k+\alpha^{2}\right)+2(n-1) \alpha \beta .
\end{align*}
$$

Thus the tensor

$$
L=-\frac{S}{n-2}+\frac{\rho g}{2(n-1)(n-2)}
$$

becomes

$$
L=-\frac{1}{2}\left(k+\alpha^{2}\right) g-\alpha \beta u \otimes u .
$$

Now as M^{n} is conformally flat, we have

$$
\left(\nabla_{X} L\right)(Y, Z)-\left(\nabla_{Y} L\right)(X, Z)=0
$$

and moreover we have the Codazzi equation

$$
\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z)=0 .
$$

Thus, differentiating

$$
L+\alpha h=\frac{1}{2}\left(\alpha^{2}-k\right) g
$$

we find that
(1.3) $\beta(d \alpha \wedge u)=0$.

We now discuss briefly a problem in the theory of submanifolds of codimension 2. Let D denote the Riemannian connexion of the ambient space, ∇^{\prime} the Riemannian connexion of the induced metric $g^{\prime}, \psi *$ the differential of the immersion, and C_{1}, C_{2} unit normals orthogonal to each other with h^{\prime}, k^{\prime} the corresponding second fundamental forms and l the third fundamental form. Suppose $h^{\prime}=a g^{\prime}, k^{\prime}=b g^{\prime}, l=0$ where a and b are constants on the submanifold; in particular the submanifold is umbilical. The Gauss-Weingarten equations are

$$
\begin{aligned}
D_{\psi * X} \psi * Y & =\psi * \nabla^{\prime}{ }_{X} Y+a g^{\prime}(X, Y) C_{1}+b g^{\prime}(X, Y) C_{2}, \\
D_{\psi * X} C_{1} & =-a \psi * X, D_{\psi * X} C_{2}=-b \psi * X .
\end{aligned}
$$

Then setting

$$
\bar{C}_{1}=\frac{a C_{1}+b C_{2}}{\left(a^{2}+b^{2}\right)^{\frac{1}{4}} \quad \bar{C}_{2}=\frac{b C_{1}-a C_{2}}{\left(a^{2}+b^{2}\right)^{\frac{3}{2}}}, \text {. }}
$$

we have

$$
D_{\psi_{* X}} \psi_{*} Y=\psi_{*} \nabla^{\prime}{ }_{X} Y+\left(a^{2}+b^{2}\right)^{\frac{1}{2}} g^{\prime}(X, Y) \bar{C}_{1},
$$

as well as, of course,

$$
D_{\psi_{* X}} \bar{C}_{1}=-\left(a^{2}+b^{2}\right)^{\frac{1}{2}} \psi_{*} X, \quad D_{\psi * X} \bar{C}_{2}=0 .
$$

2. Proof of the Theorem. As pointed out in section 1, the conformal flatness of $M^{n}, n \geqq 4$, implies that M^{n} is quasi-umbilical and so by (1.1) the Weingarten map is given by

$$
H=\alpha I+\beta u \otimes U,
$$

where I denotes the identity. Since M^{n} is minimal, we have $\operatorname{tr} H=0$ and hence $\beta=-n \alpha$, that is

$$
H=\alpha I-n \alpha u \otimes U
$$

Now by (1.3) we have either $\beta=0$ on M^{n} or $d \alpha=\gamma u$ for some function γ on M^{n}. $\beta=0$ implies $\alpha=0$ and hence $h=0$, that is M^{n} is totally geodesic in E^{n+1}, the exceptional case of the theorem (M^{n} is a hyperplane and could of course, be thought of as $M^{n-1} \times M^{1}$ where M^{1} is a line and M^{n-1} a space of constant curvature zero). Thus we consider the case $d \alpha=\gamma u$.

Differentiating H we have

$$
\begin{aligned}
\left(\nabla_{X} H\right) Y & =\nabla_{X}(\alpha Y-n \alpha u(Y) U)-\alpha \nabla_{X} Y+n \alpha u\left(\nabla_{X} Y\right) U \\
& =(X \alpha) Y-n(X \alpha) u(Y) U-n \alpha\left(\nabla_{X} u\right)(Y) U
\end{aligned}
$$

$$
-n \alpha u(Y) \nabla_{X} U
$$

and so using $d \alpha=\gamma u$, the Codazzi equation becomes

$$
\begin{align*}
0= & \left(\nabla_{X} H\right) Y-\left(\nabla_{Y} H\right) X=(X \alpha) Y-n(X \alpha) u(Y) U \tag{2.1}\\
& -n \alpha\left(\nabla_{X} u\right)(Y) U-n \alpha u(Y) \nabla_{X} U-(Y \alpha) X+n(Y \alpha) u(X) U \\
& +n \alpha\left(\nabla_{Y} u\right)(X) U+n \alpha u(X) \nabla_{Y} U \\
= & \gamma u(X) Y-2 n \alpha d u(X, Y) U-n \alpha u(Y) \nabla_{X} U-\gamma u(Y) X \\
& \quad+n \alpha u(X) \nabla_{Y} U .
\end{align*}
$$

Taking the inner product of (2.1) with U we have $d u=0$; thus the distribution defined by $u=0$ is integrable and so M^{n} is locally the product in the sense of separating coordinate systems of M^{n-1} and M^{1} where U is tangent to M^{1} and M^{n-1} is an integral submanifold of the distribution orthogonal to U.

Note that $d \alpha=\gamma u$ implies that $\gamma=U \alpha$ and $X \alpha=0$ for X orthogonal to U. Moreover since $d u=0$ we have $d \gamma \wedge u=0$ giving $d \gamma=(U \gamma) u$ and $X \gamma=0$ for X orthogonal to U.

Now since $d u=0$ and U is unit we have

$$
g\left(\nabla_{U} U, X\right)=g\left(\nabla_{X} U, U\right)=0
$$

that is the integral curves of U are geodesics on M^{n}. Setting $Y=U$ in (2.1) we have

$$
\begin{equation*}
n \alpha \nabla_{X} U=-\gamma X+\gamma u(X) U \tag{2.2}
\end{equation*}
$$

We have already noted the case $\alpha=0$ everywhere on M^{n}. We now show that if α does not vanish identically, then α is nowhere zero. Suppose $\alpha=0$ at a point $P \in M$ but not identically zero on any neighborhood of P. Taking X to be any vector orthogonal to U at P in (2.2) we have that $\gamma=0$ at P. On the other hand differentiating (2.2) with respect to Y with X orthogonal to U we have

$$
n(Y \alpha) \nabla_{X} U+n \alpha \nabla_{Y} \nabla_{X} U=-(Y \gamma) X-\gamma \nabla_{Y} X
$$

and hence $Y_{\gamma}=0$ at P. Differentiating successively we find that all derivatives of α vanish at P. Now as M^{n} is minimal in \mathbf{E}^{n+1}, the coordinate functions are harmonic and hence α is real analytic on M^{n}. Thus if $\alpha=0$ at $P, \alpha=0$ everywhere, and for the non-totally geodesic case we have

$$
\begin{equation*}
\nabla_{X} U=-\frac{\gamma}{n \alpha} X+\frac{\gamma}{n \alpha} u(X) U \tag{2.3}
\end{equation*}
$$

We now focus our attention on the manifold M^{n-1}. Consider M^{n-1} as a submanifold of codimension 2 in \mathbf{E}^{n+1} immersed first in M^{n}, that is

$$
M^{n-1} \xrightarrow{\varphi} M^{n} \xrightarrow{\iota} \mathbf{E}^{n+1} .
$$

Let ∇^{\prime} denote the induced connexion and h^{\prime} the second fundamental for φ corresponding to the unit normal U, that is

$$
\nabla_{\varphi * X} \varphi * Y=\varphi_{*} \nabla^{\prime}{ }_{X} Y+h^{\prime}(X, Y) U
$$

for X, Y tangent to M^{n-1}. Now by (2.3)

$$
\nabla \varphi_{* X} U=-\frac{\gamma}{n \alpha} \varphi_{*} X
$$

and hence

$$
D_{\iota * * * X}{ }^{\star *} U=-\frac{\gamma}{n \alpha}{ }_{\imath * \varphi *} X+h(\varphi * X, U) N=-\frac{\gamma}{n \alpha}{ }_{\iota * \varphi * X} X
$$

Also

$$
D_{\iota * \varphi * X} N=-\iota * H \varphi_{*} X=-\alpha \iota * \varphi * X
$$

Thus the Weingarten maps for M^{n-1} in \mathbf{E}^{n+1} are $H^{\prime}=(\gamma / n \alpha) I$ and $K^{\prime}=\alpha I$. But as $X \alpha=0$ and $X \gamma=0$ for X orthogonal to U, α and γ are constant on M^{n-1}, hence M^{n-1} is umbilical in \mathbf{E}^{n+1} and therefore a Euclidean sphere S^{n-1}.

Next we show that M^{1} is a plane curve. Since $\nabla_{U} U=0$ we have

$$
\begin{equation*}
D_{\iota * U *} U=h(U, U) N=-(n-1) \alpha N . \tag{2.4}
\end{equation*}
$$

Similarly

$$
D_{\iota * U} N=-\iota * H U=(n-1) \alpha \iota * U .
$$

Now let X be any vector field in \mathbf{E}^{n+1} defined along an integral curve of U and orthogonal to both $\iota * U$ and N. Then

$$
\begin{aligned}
\left\langle D_{\iota * U} X, \iota * U\right\rangle & =\langle X,(n-1) \alpha N\rangle=0 \\
\left\langle D_{\iota * U} X, N\right\rangle & =-\langle X,(n-1) \alpha \iota U\rangle=0
\end{aligned}
$$

and therefore M^{1} is a plane curve in the plane spanned by $\iota * U$ and N which are normals to M^{n-1} in \mathbf{E}^{n+1}. Hence the centers of the M^{n-1} 's lie in this plane.

Now two such planes will intersect in either a point (the M^{n-1} 's would be concentric) or a line (giving M^{n} as a hypersurface of revolution). It remains to show that M^{n} is indeed a hypersurface of revolution and to identify the curve M^{1}. For both tasks we will need a differential equation for the function α.

For X a unit vector orthogonal to U we compute the sectional curvature of a plane section containing U. Using (2.3) we have

$$
\begin{aligned}
& g\left(\nabla_{U} \nabla_{X} U-\nabla_{X} \nabla_{U} U-\nabla_{[U, X]} U, X\right) \\
= & g\left(\nabla_{U}\left(-\frac{\gamma}{n \alpha} X\right)+\frac{\gamma}{n \alpha}[U, X], X\right)=U\left(-\frac{\gamma}{n \alpha}\right)+\frac{\gamma^{2}}{n^{2} \alpha^{2}} \\
= & -\frac{1}{n \alpha} U \gamma+\frac{(n+1) \gamma^{2}}{n^{2} \alpha^{2}} .
\end{aligned}
$$

Now by (1.2) the Ricci curvature in the direction of U is $-\alpha^{2}(n-1)^{2}$ and therefore

$$
(n-1)\left(\frac{1}{n \alpha} U \gamma-\frac{(n+1) \gamma^{2}}{n^{2} \alpha^{2}}\right)=-\alpha^{2}(n-1)^{2}
$$

Thus letting s denote arc length along an integral curve of U we have

$$
\begin{equation*}
\frac{1}{n \alpha} \frac{d^{2} \alpha}{d s^{2}}-\frac{(n+1)}{n^{2} \alpha^{2}}\left(\frac{d \alpha}{d s}\right)^{2}+(n-1) \alpha^{2}=0 \tag{2.5}
\end{equation*}
$$

along the integral curve.
We now show that M^{n} is a hypersurface of revolution. Let

Then \bar{C}_{1} is a unit normal to an M^{n-1} in a hyperplane \mathbf{E}^{n} and \bar{C}_{2} is a unit normal to E^{n} in E^{n+1}. Now a straightforward computation using (2.5) shows that

$$
D_{\iota * U} \bar{C}_{2}=0
$$

that is the \mathbf{E}^{n} 's form a parallel family of hyperplanes and hence the planes of the integral curves of U intersect in a line.

Finally let V be a unit parallel vector field in \mathbf{E}^{n+1} in the direction of \bar{C}_{2} (i.e. parallel to the line of centers) and let $\langle V, \iota * U\rangle=\cos \theta$ choosing the orientation such that $\langle V, N\rangle=-\sin \theta$. Then

$$
\iota_{\star} U\langle V, \iota * U\rangle=\langle V, N\rangle \frac{d \theta}{d s}
$$

and using (2.4),

$$
{ }_{\iota *} U\langle V, \iota * U\rangle=-(n-1) \alpha\langle V, N\rangle
$$

Thus the curvature $\kappa=d \theta / d s$ of M^{1} is given by

$$
\kappa=-(n-1) \alpha
$$

but α as a function of s is given by (2.5). Setting $\alpha=1 / \nu^{n}$, (2.5) becomes

$$
\frac{d^{2} \nu}{d s^{2}}-(n-1) \frac{1}{\nu^{2 n-1}}=0
$$

Integrating once we have

$$
\frac{d \nu}{d s}=\left\{-1 / \nu^{2 n-2}+A\right\}^{\frac{1}{2}}
$$

where A is a constant. Hence the plane curve M^{1} is given by its curvature $\kappa(s)=-(n-1) \alpha(s)$ where $\alpha=-1 / \nu^{n}$ and

$$
s=\int \frac{\nu^{n-1} d \nu}{\left\{A \nu^{2 n}=\frac{d}{2}-1\right\}^{1}}
$$

completing the proof.
Remark. For $n=3$, the conformal flatness of M^{n} does not yield quasiumbilicity. If however we assume that M^{3} is a minimal, quasi-umbilical hypersurface of \mathbf{E}^{4}, then the conclusion of the theorem also holds with the same proof.

References

1. B.-Y. Chen, Geometry of submanifolds (Marcel-Dekker, Inc., New York, 1973).
2. B.-Y. Chen and K. Yano, Conformally flat submanifolds (to appear).

Michigan State University, East Lansing, Michigan

