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NECESSARY AND SUFFICIENT CONDITIONS FOR 
MEAN CONVERGENCE OF LAGRANGE 

INTERPOLATION FOR ERDOS WEIGHTS II 

S. B. DAMELIN AND D. S. LUBINSKY 

ABSTRACT. We complete our investigations of mean convergence of Lagrange in
terpolation at the zeros of orthogonal polynomials p„(W2,x) for Erdos weights W2 = 
e~2Q. The archetypal example is W^a = exp(—2t,a)> where 

QKa(x) := expt(|*|a), 

a > 1, k > 1, and exp^ = expj expf exp(- • •)) I is the A>th iterated exponential. Fol

lowing is our main result: Let 1 < p < 4 and a € R. Let Ln\f] denote the Lagrange 

interpolation polynomial t o / at the zeros ofpn(W
2,x) = pn(e-2Q,x). Then for 

\™oW-Ln\f\W\\Lp<fL) = 0 

to hold for every continuous function/: IR. —> IR satisfying 

lim (JW){x)(\ + \x\)a = 0, 
| * | - K » 

it is necessary and sufficient that a > \/p. This is, essentially, an extension of the 
Erdos-Turan theorem on Li convergence. In an earlier paper, we analyzed convergence 
for all/? > 1, showing the necessity and sufficiency of using the weighting factor 1 + 
Q for all p > 4. Our proofs of convergence are based on converse quadrature sum 
estimates, that are established using methods of H. Konig. 

1. Introduction and results. In this paper, we continue our investigation from [2] 
of mean convergence of Lagrange interpolation at zeros of orthogonal polynomials for 
Erdos weights. Recall that Erdos weights have the form W1 = e~2Q, where Q: R —* IR is 
even and of faster than polynomial growth at infinity. The archetypal example is 

(1.1) WKa{x) := e x p ( - e M W ) , 

where 

(1.2) QKa(x) := e x p ^ x n , k > 1, a > 0. 

Here exp^ = expf exp(exp(- • •))) denotes the A>th iterated exponential. 
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Given a weight W: R —> R such as those above, we can define orthonormal polyno
mials 

Pn(x) = Pn(W\x) = lnX" + • • • , 7„ = 7„(^2) > 0, 

satisfying 

J—oo 

We denote the zeros of pn by 

-00 < Xnn < 
Xn—l,n < Xn-2,n < < X2n < X\n < OO. 

The Lagrange interpolation polynomial to a function/: R —• R at {xjn}j=i is denoted 
by Ln[f]. Thus if (Pm denotes the class of polynomials of degree < m, and £j„ G tPn-\, 1 < 
j < n, are the fundamental polynomials of Lagrange interpolation at {XJ„}J=1, satisfying 

then 

(1-3) Lnm(x) = tA*Jn)tj*{x). 
7=1 

In [2], we investigated mean convergence of L„[-] for the following class of Erdos 
weights: 

DEFINITION 1.1. Let W := e~Q, where Q: R —> R is even, continuous, Q" exists in 
(0, oo), gW > o in (0, oo), y = 0, 1,2, and the function 

(1.4) T(x):=l+xQ"(x)/Q'(x) 

is increasing in (0, oo), with 

(1.5) lim T(x) = oo; 7(0+) := lim T(x) > 1. 
x—>oo x—v0+ 

Moreover, we assume that for some C\, C2, C3 > 0, 

(1.6) C, < 7Xr) / ( ^ ^ ) < C2, * > C 3 , 

and for every e > 0, 

(1.7) r(*) = o(<2(*)£), J C - O O . 

Then we write W G £1. 
The principal example of fT = e~® G *£i is Wk^a = exp(—(?£,«) given by (1.2) with 

a > 1. Another (more slowly decaying) example of W = e~Q G £1 is given by 

Q{x) := exp[(log(4 + x2))^], (3>l,A large enough. 

The behaviour of T(x), efc., for these weights is discussed in greater detail in [2], [7]. 
The first results for mean convergence of Lagrange interpolation for a class of Erdos 

weights appeared in [9], and the first "sharp" results appeared in [2]. Following is the 
main result of [2]: 
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THEOREM 1.2. Let W := e Q £ *E\. Let Ln[-] denote the Lagrange interpolation 
polynomial tof at the zeros ofp„(W2, •). Let \ < p < oo, A £ R, K > 0. Then for 

0-8) Mm \\tf-Ln\fl)W(l + 0-A|| ip(R) = 0, 
n—>oo 

to hold for every continuous function f: R —> R satisfying 

(1.9) Mm |/»P|(xXlog|jc|)1+« = 0, 
|x|—•oo 

if w necessary and sufficient that 

(1.10) A>max{0J(i-I)}. 

It was also shown in [2] that even iff vanishes outside a fixed finite interval, we need 
a factor like (1 + Q)~A with A large enough in (1.8), if p > 4. We remarked there that for 
p < 4, the weighting factor 1 + Q is unnecessarily strong. After all, Q grows faster than 
any polynomial. Let us recall the Erdos-Turan theorem, as extended by Shohat (see [3, 
Ch. 2, p. 97]). Iff: R —-> R is Riemann integrable in each finite interval, and there exists 
an even entire function G with all non-negative Maclaurin series coefficients such that 

limf2(x)/G(x) = 0, 
\x\—>oo 

and 
f ° G(x)W2(x)dx <oo , 

J—oo 

then 

(1.11) lim||(/--L„[/W||L2(R) = 0. 
rt—KX) 

For the nice weights in 5>i, a result of Clunie and Kovari [1, Thm. 4, p. 19] allows us to 
choose G with 

G(x) - Vr2(x){\ + W)-1"16, x G R, K > 0. 

Here and in the sequel, the notation involving ~ means that the ratio of the two sides is 
bounded above and below by positive constants independent of x. (Later on, the depen
dence will be on n and possibly other parameters). Thus we can ensure that (1.11) holds 
provided 

lim (fW)(x)(l + \x\)xl2+*l2 = 0. 
|JC|—>oo 

Thus Theorem 1.2 does not extend the classical result for/7 = 2. 
Following is our main result, which does essentially constitute an extension of the 

Erdos-Turan result. 
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THEOREM 1.3. Let W := e~Q e *E\. Let 1 <p < 4, and a e R. LetLn[f] denote the 
Lagrange interpolation polynomial tof at the zeros ofpn(W

2, •). Then the following are 
equivalent. 

(a) For every continuous f: R —• R with 

(1.12) lim \f(x)\ W(x)(l + \x\f = 0, 
M-KX) 

we /z#ve 

(1.13) l i m | | ( f - I „ [ / W | | i p ( R ) = 0. 

0 ; a > l / / 7 . 

The basis of the proof of this result is a converse quadrature sum estimate that we 
believe is of independent interest: this is recorded in Theorem 3.1. We next show that 
we cannot insert any positive power of 1 + |JC| inside the Lp norm in (1.13) at least when 
a> l/p: 

THEOREM 1.4. Let W := e~Q e *E\. Let 1 < p < 4 and A e R. Then the following 
are equivalent: 

(a) For every a > l/p and every continuous function f: R —> R satisfying (1.12), we 
have 

(1.14) lim \\{f -L„[f])(xW(x)(l + Nth,,™ = 0. 

(b) 

(1.15) A < 0 . 

We note that with more work, we can replace continuity of / in the above two 
theorems by Riemann integrability, and we can replace (1 + |x|)a, a > l/p, by 

(1 + |x|)1^(log(2 + |*|))1/ /7+\ some e > 0, (and so on). 
In [2], it was shown that even for/ vanishing outside [—2,2], and/? > 4, we needed 

(1 + Q)~A in (1.8), with A > | (£ — -) . Following is an analogous result forp = 4: 

THEOREM 1.5. Let W := e~Q £ *E\. Suppose that a measurable function U: R —» R 
satisfies 

(1.16) lim t/(x)x-3/4(loge(jc))1/4 = oo. 

Then there exists a continuous function / : R —* R vanishing outside [—2,2] swc/z ^Aa/ 

(1.17) limsup \\Ln[f]WU\\Lm = oo. 
n—>oo 

https://doi.org/10.4153/CJM-1996-038-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-038-9


CONDITIONS FOR MEAN CONVERGENCE 741 

If, for example, Q(x) grows faster than exp(x3+e), some e > 0, then Theorem 1.4 
shows that we cannot choose U = 1 and hope for convergence. So there is no analogue 
of Theorem 1.3 for/? = 4. However, it seems that a negative power of log Q, rather than 
the 1 + Q required for/? > 4, will allow some analogue of Theorem 1.2 for/? = 4. 

While the methods of this paper use many techniques and tools of H. Konig [4], [5], 
we use also estimates and results from [7], [8]. However the reader need only have a 
copy of [2] available for reading this paper. 

This paper is organized as follows: In Section 2, we gather technical estimates from 
other papers. In Section 3, we prove a converse quadrature sum inequality using the same 
methods as H. Konig used in [4], [5]. In Section 4, we prove the sufficiency conditions 
of Theorem 1.3 and 1.4, and in Section 5, we prove the necessity conditions of Theo
rems 1.3,1.4, and also prove Theorem 1.5. At a first reading, it is best to skip the technical 
Section 2, and concentrate on Section 3. Then read Sections 4 and 5, and finally return 
to Section 2. 

We close this section by introducing more notation. Given Q as above, the Mhaskar-
Rahmanov-Saff number au is the positive root of the equation 

(1.18) u = - j j 1 autQ
f(aut)dt/Vl-t2, w > 0. 

For the example Q = Q^a of (1.2), au ~ (log^ u)xla (see [2], [7]). To the unfamiliar, one 
of the uses of au is in the identity [10] 

(i-19) l l ^ k w = l l^ lw-**.] . P e %• 

(Recall that % denotes the polynomials of degree < n). 
In the sequel, C, C\, C2,... denote constants independent of n, x and P G (Pn. The 

same symbol does not necessarily denote the same constant in different occurrences. 
The H-th Christoffel function for a weight W2 is 

n-\ 
(1.20) \n(x) = \n(W\x) = pw£ J_JPW)2(t)dt/P2(x) = 1/ £p?(x) . 

The Christoffel numbers are 

(1.21) Xjn := \n(W\xjnl 1 < / < # ! . 

The fundamental polynomials £j„ of (1.3) admit the representation 

(1.22) W = Xjn—Pn_l{Xjn)—- = ^ - ^ ^ - y 

We define the Hilbert transform of g E L\(R) by 

(1.23) H[g](pc) := lim f ^ - dt9 
V ^ e-^-J\x-t\>e X - t 

(this exists a.e. [12]). 
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Finally, we define some auxiliary quantities: 

(1.24) SH:=(nT(an))~2,\n>l. 

This quantity is useful in describing the behaviour ofpn(e~2Q, •) near x\n. For example, 

(1.25) \xln/an(Q)-l\<-6n. 

Here L is independent of n. We often use the fact that Sn is much smaller than any power 
of 1 / T{an\ see Section 2. We also use the function (with the same L as in (1.25) above) 

(1.26) ¥»(*) = maxj. 
a„ 

and set 

(1.27) Vn (x) := %,(a„), 

1 

T(an)Jl-&+L8n 

\x\ < an, 

This function is used in describing spacing of zeros ofpn, behaviour of Christoffel func
tions, and so on. Finally, we set 

(1.28) x0n := xin(l + L5„); xn+Un := xm(l +L8n)\ 

and 

(1.29) Ijn := (xjn,Xj-Uny, \Ijn\ := xj-hn - xjn, 1 <j < n. 

Also, in proving our quadrature estimates, we use 

(1.30) 
^ ) : = m i n ( | ^ ' ^ 

14.1 
xjn) 

i - M + LSn 

-1 /4 

Define the characteristic function of /,„, 

(1-31) X*.W==X/,W:={J; \%\ . 

2. Technical estimates. In this section, we gather technical estimates from various 
sources. We begin by recalling some results from [7], [8], in the form recorded in [2]. 
Throughout, we assume that W \— e~@ G *Ei. 

LEMMA 2.1. (a) Uniformly for n > 1 and \x\ < an, 

(2.1) 

(b) Forn > 1, 

(2.2) 

\n(W2,x)~^W\xy¥n(x). 
n 

\xin/a„-l\<C6„. 
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Uniformly for n>2 and 0 <j < n — 1, 

(2.3) 

(c) Forn > 1, 

743 

Xjn —Xj+\,n ~ — ^ n ( X j n ) . 

(2.4) 

and 

(2.5) 

swp\p„W\(x) 
x€R 

i _ H 
a„ 

1/4 
1 fl„ 

- 1 / 2 

sup |p„^(x)~a ; 1 / 2 («r (a n ) ) 
1/6 

x€R 

(d) LetO <p <oo, K>0. There exists C> 0, n0 SHC/I that for n>n0 andP € (P„, 

(2- 6) \\PW\\LP(K) < C\\PW\\Lp[-a„(i-KK)Mi-KW-

Moreover, given r>\, there exists O 0 such that 

(2.7) 

(e) For n>\, 

(2.8) 

II^L M>a„) <e -CnT(a„Txl2 

\\PW\\ Lp[-a„,an]-

Jn-l 
In 

~ an 

(f) Uniformly for n>2and0 <j <n- 1, 

(2.9) 1 - \xjn\/an +L6n ~ 1 - \xj+hn\/an +L6n, 

and 

(2. 10) yn(xjn) ~ Vn(Xj+hn). 

Here, L is chosen so large that (1.25) is true. 

(g) Uniformly for n>2 and 1 <j<n, 

3/2 

(2. 11) ^ - ^ l i ^ n X l - \Xfn\/att + L6n)
l/2\p'nW\(Xjn) - «i / 2 |P»-l»1(^) 

- ( l - | x y w | / a w + W n ) 1 / 4 . 

PROOF. This is Lemma 2.1 in [2], except for (2.3), (2.9) and (2.10) fory = 0, which 
follow from the definition of xon and ¥„. • 
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LEMMA 2.2. (a) Let 0 < p < oo. Then for n>2, 

(I 

(2.12) \\pnW\\Lpm ~ ap
n

 2 x< 

p<4, 
(logw)?, p = 4, 

[(nT(anj)iih>\ p>4. 

Pn(x) 

(b) Uniformly forn > 1, 1 <j < n , x G R , • 

3/2 

(2.13) \tjn(x)\ ~ ^-^nW)(xJn)(\ - \xjn\/a„+IIny'4 

(c) Uniformly for n > 1, 1 <j < n, x G R, 

(2.14) I ^Wl^W^-^x^^C. 

(d) Forn > 2, 1 <j < n — 1, x G [Xy>j,J9+i,«], 

(2.15) ^ ( x ) ^ ( x ) ^ - 1 (*/«) + ^ i ^ x ) ^ ) ^ - 1 ^ ^ ) > 1. 

PROOF. This is Lemma 2.2 in [2]. • 

LEMMA 2.3. (a) Given r > 0, there exists x$ such that for x > XQ andj = 0, 1, 2, 
QV\x)/xr is increasing in [xo, oo). 

(b) Uniformly for u> C andj = 0, 1,2, 

(2.16) afu&>Xau) ~ uT(auT
xl2. 

(c) Let 0 < a < (3. Then uniformly for u > C,j = 0, 1, 2, 

(2.17) T(aau) ~ 7(^M); g ^ ) - g ^ ) . 

fc/> Given fixed r> 1, 

(2.18) 

Moreover, 

(2.19) flnI~flB,ii€(l,oo). 

(e) Uniformly for t G (C, oo), 

(2.20) 

log r 
0™/f l" > 1 + ~ — r , u G (0, oo). 

1 
at tT(at)' 

(f) Uniformly for u G (C, oo), a«d v G [f, 2w], we /zave 

(2.21) * _ 1 2 - 1 
V 

1 

T(au) 

PROOF. This is Lemma 2.3 in [2]. 
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LEMMA 2.4. (a) Let e > 0. Then 

(2.22) an < Cne; T(an) <Cn\ n>\. 

(b) Given A > 0, we have 

(2.23) Sn<CT(an)-
A, n>\. 

(c) LetO < r\ < 1. Uniformly forn > 1, 0 < |JC| < am, \x\ = as, we have 

(2.24) C i < r w ( ' - - ) < C 2 i o g - . 
V an) s 

PROOF. This is Lemma 2.4 in [2]. • 
Next, we present a lemma from Konig [5]: Recall the notation 

for \x measurable functions g on a measure space (Q, /x). 

LEMMA 2.5. Let 1 < p < oo and q := p/(p— I). Let (Q, /x) be a measure space, k, 
r: Q2 —> R and 

(2.25) Tk\f\iu) := ^ k(u, v/(v) <//z(v) 

^or ^ measurable/: Q —» R. Assume that 

(2.26) sup / | % , v)|K«, v)|« dn(v) < M. 

(2.27) sup f \k(u, v)||r(w, v)|_/? <//i(w) < M. 

77*e« 7^ /s a bounded operator from Lp(d\i) to Lp(d\i). More precisely, 

(2-28) \\Tk\\Lp(d^Lp(dli)<M. 

PROOF. We sketch this, as no proof is given in [5], though such lemmas are standard. 
First use the dual expression for the Lp norm of Tk\f], and then Fubini's theorem, and 
then Holder's inequality, to show that 

\\Tk\f]\\LPm < I I / I I M ^ S U P ^ I J ^ ^ V ^ I I ) ^ dKv) 
i/i 

where the sup is taken over all g with ||g||ig(^) = 1. Let us call the sup J. So we must 
show that J is bounded by M. Using Holder's inequality on the inner integral in J gives 

I f \q 

|jQA:(w,v)g(w)J/i(w)| 

[/Q \k(u, v)|\r(u, V)\~P d^u)]q/P JQ \k(u, v)|\r(u, v)\i\g(u)\« d»(u) < 

< hpl* JQ \k(u,v)\\r(u,v)\<*\g(u)\« dfi(u). 
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Substituting this into J, and using Fubini's theorem gives 

J < M'IP supf f \g(u)\< f \k(u, v)| \r(u, v)|« drfy)<W«)1 ^ 

The next lemma essentially already appears in 1970 papers of Muckenhoupt [11, 
pp. 449-451], and later in H. Konig's paper [5], and is of course implied by results of 
the weighted Lp boundedness of Hilbert transforms (Muckenhoupt's Ap condition): 

LEMMA 2.6. Let 1 <p < 4. Then 

(2.29) \\H[g](x) 1 -
\x\ -1/4 

£,(•*) 
<c to an 

-1/4 

MR) 

wzY/z C independent of n and g E L^( 

PROOF. The proof appears with aw = \/2w + 2 in [5], but we very briefly sketch the 
proof from [5]: Consider the operator Tk of Lemma 2.5, with 

1/4 
*(II,V):=(£| - l ) / ( W - v ) . 

Using r(w, v) := \u/v\l^q\ where # := p/(p — 1), Lemma 2.5 can be used to show that 
Tk is bounded from LP(R) to Lp(R). Comparison of Tk and the bounded operator H show 
that 

Hx[g\(u)'= Mm / - ^ 
1/4 

</v 

is bounded from LP(R) to Zp(R). Replacing w by an ± w, and v by an ± v, easily gives the 
result. • 

Our final lemma in this section concerns bounds on the difference between 1 / (x—xjn) 
and the Hilbert transform of a weighted characteristic function. Recall the notation (1.29— 
31) for Ijmfjn a n d Xjn- m particular, recall that 

f t \ • / l \JJ»\ U l i \x\ +w„ 
-1/4 

LEMMA 2.7. Uniformly for n>\ and 1 < / < n anrfx € [x„n,x\„\ 

(2.30) ry„(x) := alJ2\p„(W2,x)W(x)\ 
x — x. 

~ ji-iHlXjnM 
y« \4 ljn\ 

< Cfjn{x). 

PROOF. The idea already appears in [5]. Note first that 

(2.31) fl[x>](*) = log: 

We consider two ranges: 

•A-jn 

Xj— \,n X 
= - log 1 - \u 

X—X: "jn 
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CASE I. \x - xjn\ > 2\Ijn\. Using the inequality \t + log(l - 1 ) \ < f, \t\ < 1 / 2 , we 
see that 

1 

y« rjn 

_\_ 
•HlXjnM 

1 JkL+tog[,-M_ 
Xjn L X Xjn x — x, 

< \ljn\ 

(X - XJn)2 ' 

Next, the bounds (2.4), (2.5) show that uniformly in n andx, 

(2.32) an
/2\pnW\(x)<c\\l-^+L6n\ 

LI an\ J 

1/4 

So we obtain the result for this range of x. 

CASE II. \x - xjn \ < 2 \Ijn |. From the identity 

an%nW)(x) = (tjnW)(x)W-l(xJn)(x -xjn)a\l2{p'nW)(xjn\ 

(for bothy andy- 1) and from (2.3), (2.9), (2.11), (2.14), we obtain for \x-xjn\ < 2\Ijn\, 
2 <j < n, 

(2.33) al
n

,2\pHW\(x) < C^(x )min{ |x -^ | , | x - j c y _ 1 ) n | } . 

Fory = 1, this holds with the minimum replaced by |JC — x\„\. Then for 2 <j < n, 

(2.34) rJn(x) < Crfjnix) 1 + min{|* - xjn\9 \x-Xj-hn\} J_ l°g 
Xj—\,n X 

Since \Ij„ \ > Q max{|x — Xjn\, \x — jcy_i>w|}, we see that with 

u := 
Xj—\,n X 

we obtain for both signs of the exponent, 

Tjn(x)<C^jn(x)[l+2u±l\\ogU±l\l 

As either u or u~l lies in [0,1] and t\ log t\ is bounded for t G [0,1], we have (2.30). It 
remains to handle the casey = 1. Note that for x G [xm, JCI„] (it is only here that we need 
this restriction) with \x — x\n\ < 2\I\n\, we have 

| * - * 0 w | ~ an8n. 

(See (2.2), (2.3), (1.28), (1.29)). Then instead of (2.34), we obtain 

Tm(x)<CfUx) 1+Ci 
| * ~ " * l « | | i |̂ C — Xi„ 

a„8n 
logo--

anK 
where a ~ 1 independently of jc,y, n. As \x—x\n\ < C2aw<5n,theboundednessofw|log«| 
in any finite interval in (0, oo) again gives our result. • 
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3. A converse quadrature sum estimate. The main result of this section is 

THEOREM 3.1. Let W := e~Q e *E\ and 1 < p < 4. There exists C> 0 such that 
forn> landPe %^x 

(3.1) \\PW\\Lp{K) < C{Z^jnW-2(xjn)\PWf(xjn) 
7=1 

i//> 

Our proof of Theorem 3.1 follows that of H. Konig. We shall divide the proof into 
several steps: In the sequel, we shall use the abbreviation 

(3.2) [ijn := \jnW~2(xjn) ~ \Ijn\ = xj-u -xjn. 

(See (2.1) and (2.3)). 

STEP 1: EXPRESS PW AS A SUM OF TWO TERMS. Let P e %-\. We write 

(PW)(x) = (Ln[P]W)(x) = j:P(xJn)(£jnW)(x) 

(3.3) 

Here 

(3.4) 

aJ2(pnW)(x)£yjn{— T^HlXjnKx)} 
j=\ ^X — Xjn \ljn\ > 

+ al%nW)(x)H\YJyjnj?L^ 
L/=l Vjn\\ 

ljn Vjn | 

(x)=:Ji(x)+J2(x). 

yjn : = an 

1/2 (PW)(Xjn) 

(p'nW)(XjnY 

Note that in view of the behavior of the smallest and largest zeros (see (2.2)) and in view 
of the infinite-finite range inequality (2.6), it suffices to estimate ll^^ll^t^^^] in terms 
of the right-hand side of (3.1). 

STEP 2: ESTIMATE | \J2 \ |. (We begin with J2, as it is easier to handle). Using our bound 
(2.4) for pn, and then the weighted boundedness of the Hilbert transform in Lemma 2.6 
gives 

\x\ 
II^IU^w,,,] ^ c i 11]>>-fry- U - — 

\2jn I ' an \\j=\ LP(R) 

Using the spacing (2.3), and also (2.9), one deduces that 

r I Ixl \-P/4 

f\l-f\ dx~\Ijn\ 

-p/4 ll/p 

+£„ 

dx 

-p/4 
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Next, from (3.4) and (2.11), we see that 

(3.5) \yjn\ ~ \PW\{xjn)\Ijn\ 

Hence, 

| | « /2 | | l ^ w r xi„ ] < C2 

749 

x \Xjn\ 
-,1/4 

+ *»] • 

IVP 

EI^IWM 
L / = l 

<c3 Y,\jn^2(Xjn)\PW)P(Xjn) 
L/=l 

!//> 

by (3.2). 

STEP 3: ESTIMATE J\. By Lemma 2.7, 

|« / l (*) | < CA E \yjn\fjn(x% X G [ x n w , X i „ ] . 

7=1 

Then 

IWIMWI*] <c 4 E L 
\k=2J1*» 

E by»li5iiW 
y = i 

Using the spacing (2.3), (2.9) and the definition (1.30) offj„9 we see that 

f t \ _ _ j y _ _ n i l ^ l l x i ; 1"1/4 ^i 

uniformly in n andy ^ A:. We deduce that 

(3-6) | | / i | | i p [ w l „]<C 5 (5 1 +5 2 ) , 

where 

|*fo. 
(3.7) 

and by (1.30), 

S>:=<£|4,| 
k=2 

n I/- I 

.j=\ \*kn ~ xjn)' 
+ 6* 

- 1 / 4 ' P^/P 

s2:= EWI^I1"* 
\k=2 

a„ \ J J 

Exactly as in the last part of Step 2, we see that (3.5) gives 

s2<c6 
Y:^jnW-2(Xjn)\PWf(Xjn) 

L/=l 

l l / P 

To deal with Si, we use Lemma 2.5 with a discrete measure space. Using (3.5) and (3.2), 
we see that 

Si<c 7 E 
U=i 

tb^jlP\PW\^Jn)} 
L / = l 

P\VP 
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where 
bkk :=0 = blk\/k 

and fory ^ k, 

bkj:=\Ijn\
2-xlp\Ikn\

xlp(xJn-xknT*\\\ M +s„ 
1/4 r 

1 _ L^L + Sn 
1-1/4 

Note the order: by rather than bjt. DefiningB :— ibig)n
k,=l, we see that if ln denotes the 

usual (little) lp space on W, then 

ni/p 
S\ < Cg\\B\\i»_i« 

L/=l 

So the result follows if we can show that independently of n, 

(3.8) 11*11 ;̂ <C9. 
STEP 4: WE PROVE (3.8). This is far more complicated than the analogous proof 

for the Hermite weight [5] because of the more complicated behavior of the spacing of 
the zeros of the orthogonal polynomials. We apply Lemma 2.5 with the discrete measure 
space Q := {1,2 , . . . ,«} , and /x({/}) = 1 J = 1,2,..., n. Moreover, we set there 

/Ii/.|\1/(W) 

fail 

Note that because of the way we order the variables (by rather than &,*)>tne variable u 
in (2.26)-(2.27) is k, and the variable v in {226)-{2.21) i s / So (2.26-7) become 

Jadi+^xi/4 
(3.9) 

(3.10) 

SUP E ( _ 
k j=\ \xjn xkn 

m 

, l - m + g . y / 4 

^ I4.II4.I f l i -^ l+M 1 7 4 
s"p£(*»-***)H|i-^ 

Recall that given fixed /? E (0,1), we have uniformly in I and «, 

(3.11) |/ t o |~f-(i_J*»l) l / 2 , \Xen\<a0n; 

(3.i2) |/,„i ~ ^ T K r ' d i - ^ | + 6 « ) " 1 / 2 ' W >«^; 

(See (2.3) and (1.26)). To take account of this dual behavior of |/^w|, we consider three 
ranges of JC/„, x^. It is not difficult to see that we may consider only Xj„, x^ > 0. 

RANGE I: 0 <Xj„,Xkn < #3,1/4 • Using (3.11), we see that if we restrict summation in 
the sum in (3.9) toy': \XJ„ \ < a$nu, then the resulting sum is bounded by a constant times 

I , « l 3 / * 

n\ an) J. 0<K%/5 
| /-^|>C1 0 | /^| ^ Xkn) 

•dt. 
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We make the substitution 
1 _ _ L = (1_^i)w 

an V a„J 

in this integral, and use (3.11) again to give 

|l-«|>C„«-'(l-xfo,/a„)-1/2 V ' 

<C l 2I(1_^)-1 / 2L(1_^) , / 2
 + 1l 

<C13[l + ̂ W/ 2 ]<C 1 4 , 

by (2.21) and (2.22). Next, if we restrict summation in (3.10) to k: |x^| < a3nu, and we 
use (3.11), we see that the resulting sum is bounded above by a constant times 

I\2 '= — ( 1 — ) / 0<Kfl4„/5 . a" , 2 dt. 

The same substitution as before withy replacing k shows that I\2 has a similar upper 
bound to that for In, and hence is bounded independently of/, n. 

RANGE II: JC,„, x^ > a„/2. Using (3.12), we see that after restricting summation in 
the sum in (3.9) toy: \XJ„ | > a„/2> the resulting sum is bounded by a constant times 

E it | 3 /2 |H /2<c.6i/ far E r - ^ 
f-\Xj»\>a„,4 (XJ« Xb>)2 j:\xj„\>a„/4 \xj" *fo>P'2 

dt 
< CM12 Lv_x^_CmKl JJZ^JSTI ^ c>°-

Similarly, after restricting summation in the sum in (3.10) to k: |JC^ | > a„/2, the resulting 
sum is bounded by a constant times 

\Ikn?l2\Ijn\Xl\ 

*:|*d>"„/4 (XJ" ~ Xkn? 
E 

ty4 

After swapping the indicesy and &, we see that this is the same as the sum just estimated. 

RANGE III: xjn < an/2 ANDX^ > a3n/4; ORXjn > a3n/4 ANDX^ < an/2. Here 

\Xjn -Xk„\> «3/i/4 ~ «n/2 > C\9an/T(an). 

(See (2.21)). Also, given fixed small e > 0, we see that 

\hn\ < C2on~2/3+e
9 uniformly in I and n 
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(See (3.11), (3.12), (2.22) and (1.24)). Finally, 

l^MUsH]'l,4<C2ln
1/^. 

an I J 

Then we see after suitably restricting the range of summation in (3.9), we obtain a sum 
bounded above by 

C 2 2 «- ' / 2 + 2 f a- 2 r (a n ) 2 EI^I < C2in-^2+2<T(an)W = <*l). 
J 

Similarly the sum arising from (3.10) is o(\). So we have completed the proof of (3.8). • 

4. Proof of the sufficiency conditions. We begin with the 

4.1 Proof of the sufficiency part of Theorem 1.3. Let/: R —* R be continuous and satisfy 
(1.12) with a > 1J p. We must show (1.13). Let e G (0,1). We can choose a polynomial 
P such that 

\\{f-P)(x)W(x)(\+\x\r\\um<e. 

(Compare [6]). Then for n large enough 

W-Ln\f\W\\Lpm < | | ( / - F ) ^ | M R ) + | | ^ [ P - / ] ^ | | M R ) 

< e||(l + \x\Ta\\Lp(K) + \\Ln[P -f]W\km 
(4.1) 

The first norm in the right-hand side of (4.1) is of course finite as ap > 1. Next, Theo
rem 3.1 shows that for large enough n, 

UP 

\\L„[P-fWWhM ^ C> 1 E \nW-2(xJn)\(P -f)Wf(xjn) 

MP 

EI^Ki + M)"^ <C2e 

<C 3 e | | ( l+Wr a | | i p ( R ) . 

Substituting into (4.1), and noting that the various constants are independent of 6, gives 
the result. • 

4.2 Proof of the sufficiency part of Theorem 1.4. As (1 + \x\f < 1 if A < 0, the limit 
(1.14) follows from (1.13). • 

5. Proof of the necessary conditions. We begin with 

LEMMA 5.1. Let 0 < p < oo. Let 0 < A < B < oo and £: R —* (0,oo) be a 
continuous function such that for 1 < s, t < oo with ^ < y < 2, we have 

(5.1) A<Z{a,)lZ(at)<B. 
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For n > 1, let % C [—an, an] be an interval containing at least two zeros ofp„(W2, •). 
Then for n>l, 

(5.2) \\pnwi\\Lp(%) > c,a„-1/2|b)(|i - ^1 +^r l / 4 | | .̂ 
ii vi an\ \\LP(%) 

Here C\ depends only on A, B (and not on^orn or %). 

PROOF. From (2.15), forx E [xj+i^Xjn], 

and hence for such JC, 

\PnW\ix) >-TXfa{\x-Xjn\\[fj^{x^ 

n (l \x~ 11 i —̂ Î  

- C2~iJ:2Vnlixjn)y^ - ~f~|+ , 5») mai{\x ~ xJn\,\x - xj+u\} 

by (2.11), (2.10) and (2.9). Let 

J i n : = Xj+\,n "*" A\xjn Xj+\,n)iXjn A^Jn -^/+l,n/ 

so that Jj„ has length \{xjn — JC/+I,„). By (2.3), 

-1/4 
\p„W\(x) > C3a„-1/2 jll - M l +s„)~ >JC € ^.„. 

U <ZW I > 

Then using also (2.9), 

fXJ" \Pnwrmp{t)dt>cAa7/2\\\-^\+dnY
PlUn eiodt. 

Jxj+\„ U an ' i ^ w 

The result follows if we can show that 

f e(t)dt>c5f
Xj" ?(t)dt. 

J Jjn Jxj+\,n 

(The Lp norm of £(0(| 1 — jr I + ^") o v e r t n a t P a r t °f /̂« n e a r t n e endpoints of this 
interval is easily estimated in terms of the rest). To do this it suffices to show that 

Of) ~ £(Xjn\ t £ [Xj+i^Xjn]. 

Now in view of (5.1), it suffices to show that if Xj+\^ = asandxjn = a,,wheres > so > 0, 
then 

1 < - < 2. (5.3) 

But ift > 2s, then (2.18) and (2.17) give 

Xjn/xj+ijn - 1 > a2s/as - 1 > C6/T(as) > C7/T(a»), 
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while our spacing (2.3) gives 

Xjn/xJ+u - 1 < C^H(xJn)/xM/l'< C9^n(an) < Cl0an(nT(an)y
2/\ 

But (2.23) shows that T(an)~
l is much larger than any negative power of «, for n large, 

and we have a contradiction. So (5.3) and the result follow. • 

We can now proceed with the 

5.1 Proof of the necessity parts of Theorems 1.3 and 1.4. Fix a, A G R and 1 < p < 4. 
Assume moreover that we have the convergence (1.14) for every continuous/ satisfying 
(1.12). Let r\\ R —> (0, oo) be a positive even continuous function, decreasing in (0, oo) 
with limit 0 at oo. We shall assume it decays very slowly later on. Let 

X := If R -+ R continuous with \\f\\x := sup \fW\(x)(l + \x\fr](x)-{ < oo}. 

Moreover, let Y be the space of all measurable functions/: R —> R with 

II/1IK:=II(W(*XI + W) 4 IIMI»)< 0 0 -

Each/ G X satisfies (1.12), so the conclusion of Theorem 1.4 ensures that 

lim ||/--1,1/111 y = 0. 

Since X is a Banach space, the uniform boundedness principle gives 

(5.4) | | / - - I»[ / ] | | r<C| | / lU, 

with C independent of n a n d / In particular as L\[f] =f(0) (recall that/?i(x) = 7ix), we 
deduce that for/ G X with/(0) = 0, 

ll/1lr<C||/1|* 

So for such/, 

(5.5) |M/]||r<2C|[/1U-

Chooseg„ continuous in R, with gn = 0 in [0, oo) U (—oo, —\an], with 

iig„iu = sup\g„w\(x)(i + writf*)-1 = i, 

andforjc/„ G (— \an,0\ 

{gnW)(xjn)(\ + Ixj^r^Xjn)-1 Sign(p'n(xjn)) = 1. 
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For example, (gnW)(x)(l + IJCI)0^*)"1 can be chosen to be piecewise linear. Then for 

x€ [h\<*n], 

\Ln[gn](x)\ = \ £ UXjn)- MX) 

*/„e(-^a„,0) Pn(Xjn)(X Xj") 

= \Pn(.X)\ Y, 
(1 + {Xjnlr^Xj,,) 

XjM->a„fi)\P'nnXjnXx + \xjn\) 

>QalJ2\pn(xMan) £ |/y„[(1 +]f l)~" (by (2.11)) 
Xj„e(-2x-x) X+\Xj„\ 

> C2aJ2 \pn(x)\n(an) j * f - 1 dt (by (2.3)) 

> C3a
1„/2\pn(x)\i1(a„)x-a. 

Then by (5.5), 

2C = 2C||gn | |x>||IB[g„]|k 

> cWJ^ia^Wfpr,W)(x)x*-a\\Lp[,A/4] 

by Lemma 5.1. We may assume that 77 decays so slowly to 0 that 

r](an)>(\og\ogan)~\ 

(Note that we could have imposed this condition on 77 at the start, but delayed this for 
clarity). Suppose now that A — a > — 1 //?. Then we obtain 

2C>C6(loglogawr1 logaw . 

Then for large «, we obtain a contradiction. So we deduce A — a < — 1 jp is necessary. 
Consequently if for a given A £ IR, we have the convergence (1.14) for every continuous 
/ satisfying (1.12) and for every a > l/p then we must have A < 0. The necessity part 
of Theorem 1.4 is proved. 

Finally, for the necessity part of Theorem 1.3, we take A = 0 in the above and deduce 
that a > 1 /p. m 

5.2 Proof of Theorem 1.5. This is similar to the previous proof. We letZbe the Banach 
space of continuous functions/: IR —> IR vanishing outside [—2,2], with norm 

ll/1U:=llWk,[-2*]. 

We let Fbe the space of all measurable/: R —» R with 

ll/1|r:=||/»T/|| i4(R)<cx>. 
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Assume that we cannot find/ satisfying (1.17). Then the uniform boundedness principle 

gives (5.4) for a l l / € X. Again, when/(0) = 0, we obtain (5.5). We now choose gn £ X, 

with||g„|U= 1, 

->4 (g„W)(xj„)sigp(p'„(xj„j) = 1, xjn 6 

g„ = 0 in (-oo, - 2 ] U [0, oo) and 

(gn W)(xjn) sign(^(*/„)) > 0, Xj„ £ [-2,2]. 

Much as before, we deduce that for x > 1, 

\Ln\gn](x)\ > CxaJ2\pn(x)\lx. 

Also by hypothesis, given A > 0, there exists C% such that 

U(x) > ^ / 4 t l o g Q ( x ) Y x l \ x > C2. 

Hence by (5.5), 

2C=2C\\gn\\x>\\L„[gn]\\Y 

(5.6) > QAa'J2\\pn(x)W(x)x- i [log Q(x)]~* \\U[CIAA 

>C3Aa* [log n]l\\p„W\\Li[an/2M 

by (2.16) and (2.22). Now by Lemma 5.1, 

-'/4II 
\\pMu[an/2,a„] > C4a„ 1 / 2 | ( l - - +SnY 

II v an / U[an/2,a„] 

= C4an 
1/4 \i, (\+sylds 

J0<s<(\-an/2/an)/5n 

> C5a;1/4[log{l + C68-lT(any
1}]1'4 

>C6a-l/\\ogny/\ 

1/4 

Here we made the substitution 1 
using (5.6), we obtain 

/ _ 8ns, and also used (2.21) and (2.22). Finally, 

2C > C7A. 

It is clear that Cj is independent of A. Of course, this is impossible for large enough^. 
So there must exist continuous/ vanishing outside [—2,2] satisfying (1.17). • 
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