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Facial Recognition Technologies 101

Technical Insights
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2.1 INTRODUCTION

The best way to anticipate the risks and concerns about the trustworthiness of facial 
recognition technologies (FRT) is to understand the way they operate and how such 
decision-making algorithms differ from other conventional information technology 
(IT) systems. This chapter presents a gentle introduction to characteristics, build-
ing blocks, and some of the techniques used in artificial intelligence (AI) and FRT 
solutions that are enabled by AI. Owing to simplification and limitation, this is by 
no means a complete or precise representation of such technologies. However, it is 
enough to better understand some of the available choices, the implications that might 
come with them, and considerations to help minimise some of the unwanted impacts.

When talking about facial recognition technologies, usually the first thing that 
comes to mind is identifying a person from their photo. However, when analysing 
an image that includes a face, quite a few processes can be done. Apart from the ini-
tial general image preparation and enhancement steps, everything starts with a face 
detection process. This is the process to find the location of all of the faces within an 
image, which usually follows by extracting that part of the image and applying some 
alignments to prepare it for the next steps.

Face recognition that follows the detection step deals with assessing the identity 
of the person in the extracted face image and can be either an identification or a 
verification process. Face identification is when a 1:N, or one-to-many, search hap-
pens and the target face image is compared with a database of many known facial 
images. If the search is successful, the identity of the person in the image is found. 
For example, when doing a police check, a newly taken photo of the person might 
be checked against a database of criminal mugshots to find if that person had any 
past records. In the verification process, by performing a 1:1, or one-to-one check, we 
are actually trying to confirm an assumed identity by comparing a new facial image 
with a previously confirmed photo. A good example for this can be when a newly 
taken photo at a border checkpoint is compared with the photo on the passport to 
confirm it is the same person.

https://doi.org/10.1017/9781009321211.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009321211.004


30 Ali Akbari

Although it is not always categorised under the facial recognition topic, another 
form of facial image processing is face categorisation or analysis. Here, rather than 
the identity of the person in the image, other characteristics and specifications 
are important. Detecting some demographic information such as gender, age, or 
ethnicity, facial expression detection, and emotion recognition are a few examples 
with applications such as sentiment analysis, targeted advertisement, attention 
detection, or driver fatigue identification. However, this sub-category is not the 
focus in this text.

All of the above-mentioned processes on facial images fall under the computer 
vision field of research, which is about techniques and methods that enable comput-
ers to understand images and extract various information from them. This closely 
relates to image processing, which can, for example, modify and enhance medi-
cal images but not necessarily extract information or automatically make decisions 
based on them. Eventually, if we go one step further, along with computer vision 
and image processing, any other unstructured data processing such as speech pro-
cessing or natural language processing falls under the umbrella of AI. The impor-
tance of this recognition is that facial recognition technologies inherit a lot of their 
characteristics from AI, and in the next section we take a closer look at some of these 
specifications to better understand some of the underlying complexities and chal-
lenges of FRT.

2.2 WHAT IS AI?

Although there have been many debates around the definition of AI, we do not 
yet have one universally accepted version. The definition by the Organisation for 
Economic Co-operation and Development (OECD) is among one of the more 
commonly referenced ones: ‘Artificial Intelligence (AI) refers to computer sys-
tems that can perform tasks or make predictions, recommendations or decisions 
that usually require human intelligence. AI systems can perform these tasks and 
make these decisions based on objectives set by humans but without explicit human 
instructions.’1

2.2.1 AI versus Conventional IT

While the OECD has provided a good definition, in order to better understand 
AI systems and their characteristics it would be beneficial to compare them with 
conventional IT systems. This can be considered across the following three 
dimensions: 

 1 OECD, Artificial Intelligence in Society (OECD Publishing, 2019), https://doi.org/10.1787/
eedfee77-en.
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• Instructions – In order to achieve a goal, in conventional IT systems, explicit 
and step by step instructions are provided. However, AI systems are given objec-
tives and the system comes up with the best solution to achieve it. This is one 
of the most important factors that makes the behaviour of AI systems not nec-
essarily predictable because the exact solution is not dictated by the developers 
of the system.

• Code – The core of a conventional IT system is the codebase in one of the pro-
gramming languages that carries the above-mentioned instructions. Although 
AI systems also contain codes that define the algorithms, the critical compo-
nent that enables them to act intelligently is a knowledge base. The algorithms 
apply this knowledge on the inputs to the system to make decisions and per-
form tasks (so called outputs).

• Maintenance – It is very common to have periodic maintenance on con-
ventional IT systems to fix any bugs that are found or add/improve features. 
Moreover, an AI system that is completely free of bugs and performing perfectly 
might gradually drift and start behaving poorly. This can be because of changes 
in the environment or the internal parameters of the models in the case of con-
tinuous learning capability (this is discussed further in Section 2.3.4). Owing to 
this characteristic, apart from maintenance, AI systems need continuous moni-
toring to make sure they perform as expected along their life cycle.

2.2.2 Contributors in AI Systems

A common challenge with FRT and more broadly AI systems is to understand their 
behaviour, explain how the system works or a decision was made, or define the 
scope of responsibilities and accountability. Looking from this angle, it is also worth 
reminding ourselves of another characteristic of AI systems, which is the possibility 
of many players contributing to building and applying such solutions.

For example, let us consider a face recognition solution being used for police checks. 
The algorithm might be from one of the latest breakthroughs developed by a research 
centre or university and publicly published in a paper. Then a technology provider 
may implement this algorithm in their commercial tools to create an excellent face 
matching engine. However, in order to properly train the models in this engine, they 
leverage the data being collected and prepared by a third company that may or may 
not have commercial interest in it. This face matching engine by itself only accepts 
two input images and outputs a similarity score that cannot be used directly by police. 
Hence a fourth company comes into play by integrating this face matching engine in 
a larger biometrics management solution in which all required databases, functional-
ities, and user interfaces exactly match the police check requirements. Before putting 
this solution into operation, the fifth player is the police department, which, in collab-
oration with the fourth company, runs tests and decides the suitable parameters and 
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configuration that this solution should use when implemented. Finally, the end users 
who will take a photo during operation of the system may affect success as the sixth 
player by providing the image with the best conditions.

In such a complex scenario, with so many contributors to the success or failure of 
an FRT solution, investigating the behaviour of the system or one specific decision 
is not as easy as in the case of other simpler software solutions.

2.3 AI LIFE CYCLE AND SUCCESS FACTOR CONSIDERATIONS

Considering the foregoing, the life cycle of AI systems also differs slightly from the 
common software development life cycle. Figure 2.1 is a simple view of these life 
cycle steps.

2.3.1 Design

Following the inception of an idea or identification of a need, it all starts with the 
design. Many critical decisions are made at this stage that can be based on various 
hypotheses and potentially reviewed and corrected in the later steps. Such decisions 
may include but are not limited to the operations requirements, relevant data to be 
collected, expected data characteristics, availability of training data or approaches 

Design

Data 
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Operation & 
Monitoring

Review 

Inception 

Retirement 

Figure 2.1 AI system life cycle
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to create them, suitable algorithms and techniques, and acceptance criteria before 
going into operation. For example, an FRT-based access control system developer 
might assume that their solution is going to be always used indoors and in a con-
trolled imaging environment, and decide only simple preprocesses are required 
based on this consideration. A system developed based on this design may perform 
very poorly if used for outdoor access control and in a crowded environment with 
varying light and shade conditions.

2.3.2 Data Preparation

The data preparation can be one of the most time-consuming and critical steps of 
the work. As discussed in Sections 2.3.3 and 2.6, this can also be an important fac-
tor in success, failure, or unwanted behaviour of the system. This stage covers all 
the data collection or creation, quality assessment, cleaning, feature engineering, 
and labelling steps. When it comes to the data for building and training AI models, 
especially in a complex and sensitive problem such as face recognition, there is 
always the difficult trade-off between volume, quality, and cost. More data helps to 
build stronger models, but curating lots of high-quality data is very costly. Owing to 
the time costs and other limitations in the creation of such datasets, sometimes the 
developers are forced to rely on lower quality publicly available or crowd-sourced 
datasets, or pay professional data curation companies to help them with this step. 
For a few examples of the datasets commonly used in FRT development, you can 
refer to Labeled Face in the Wild,2 Megaface,3 or Ms-celeb-1m.4 However, devel-
opers should note that not only it is a very difficult task to have a thorough quality 
check on such huge datasets, but also each has its own characteristics and limita-
tions that are not necessarily beneficial for any type of FRT development activity. 
Inadequate use of such datasets might lead to unwanted bias in FRT solutions that 
only gets noticed after repeatedly causing problems.

2.3.3 Modelling and Validation

When the data is prepared, actual development of the system can get started. 
The core of this stage, which is one of the most iterative steps in the AI life 

 2 G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, ‘Labeled faces in the wild: A database for 
studying face recognition in unconstrained environments’ (2007), Technical Report 07–49, University 
of Massachusetts, Amherst.

 3 I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard, ‘The megaface benchmark: 
1  million faces for recognition at scale’, Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Las Vegas, USA (27–30 June 2016), pp. 4873–4882, doi: 10.1109/
CVPR.2016.527.

 4 Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, ‘Ms-celeb-1m: A dataset and benchmark for large-scale 
face recognition’ in B. Leibe, J. Matas, and M. Welling (eds.), European Conference on Computer 
Vision (Springer, 2016), pp. 87–102.
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cycle, is to find the most suitable algorithms and configurations, and train some 
models by applying the algorithms to previously prepared training data. This is 
followed with running enough test and validation processes to become confi-
dent of the suitability of the models for the intended application. Usually, many 
iterations are required to get to the desirable performance levels and to con-
fidently sign off a model to operate in the production environment. Incorrect 
selection of the algorithms or performance metrics and validation criteria can 
easily cause misleading results. For example, when checking a suspect’s photo 
against a database of previous criminal records, we may want to consider different 
acceptance levels for false positive versus false negative rates; hence, a straight 
accuracy measure is not enough to pass or fail a model. Similarly, for a sensitive 
application, we might want to check such measures separately for various cohorts 
across demographic dimensions such as gender and ethnicity, to minimise any 
chances of bias. An accurate technical understanding of performance measure-
ment metrics and meaning is critical in the correct selection and application of 
FRT. Unfortunately, a lack of adequate AI literacy among some of the business 
operators of FRT technologies can cause the choice of solutions that are not 
suitable for their application. For example, a technology that works well for a 1:1 
verification and access control to a digital device does not necessarily perform as 
well as 1:N search within a criminal database.

2.3.4 Operation and Monitoring

Following the build and passing all readiness tests successfully, the AI system is 
deployed and put into operation. AI systems, as any other software, need consid-
erations such as infrastructure and architecture to address the required security, 
availability, speed performance, and so on. Additionally, as briefly discussed ear-
lier, operators should make sure that the conditions of the application are suitable 
and match what the models were intended and built for. What should not be for-
gotten is that AI systems, especially in high-risk applications, are not ‘set and forget’ 
technologies. If an AI system performs very well when initially implemented, that 
does not necessarily mean it will continue to keep performing at the same level. 
If continuous learning is used, the models keep dynamically changing and adapt-
ing themselves, which of course means the new behaviour needs to be monitored 
and confirmed. However, even if the models are static and not changing, a drift 
can still happen, which changes the performance of the models. This can be due 
to changes in the concept and the environment in which the model is perform-
ing. For example, specific facial expressions in different cultures might appear dif-
ferently. Hence, an FRT system that is built successfully to detect various facial 
expressions in a specific country might start behaving poorly when too many peo-
ple from a different cultural background start interacting with it. A monitoring pro-
cess alongside the main solution makes sure such unexpected changes are detected 

https://doi.org/10.1017/9781009321211.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009321211.004


 FRT 101 35

in time to be addressed properly. For instance, a very simple monitoring process 
for the scenario described here can be to observe the ratio of various expressions 
that are detected on a regular basis. If a persistent shift in detecting some specific 
expressions happens, it can be a signal to start an investigation. A good approach is 
to build the pairing monitoring processes in parallel with the design and develop-
ment of the main models.

2.3.5 Review

Review can happen periodically, similar to with conventional software, or based on 
triggers coming from the monitoring process. It can be considered as a combination 
of simplified evaluation and design steps that identifies the gaps between the exist-
ing circumstances of the AI system and the most recent requirements. As a result of 
such an assessment, the AI models may go through another round of redesign and 
retraining or be completely retired because of changes in circumstances.

2.4 UNDER THE HOOD OF AI

At a very simplistic level and in a classic view, an AI system consists of a form of 
representation of knowledge, an inference engine, and an optional learn or retrain 
mechanism, as illustrated in the Figure 2.2.

Knowledge in an AI system may be encoded and represented in different forms 
including and not limited to rules, graphs, statistical distributions, mathematical equa-
tions and their parameters, or a combination of these. The knowledge base represents 
facts, information, skills or experiences from human knowledge or existing relation-
ships, associations, or other relevant information in the environment that can help in 
achieving the main objective of the AI system. For example, in an FRT system the 
knowledge might define what shapes, colours, or patterns can indicate the location of 
a human face in the input image. Or it can suggest what areas and measurements on 

Knowledge 

Facts Inference Output 

Feedback Learn 

AI System

Figure 2.2 AI system key components
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the face would be the most discriminating factors between two different human faces. 
However, it is not always as explicit and explainable as these examples.

Inference engine consists of the algorithms, mechanisms, and processes that allow 
the AI system to apply knowledge to the input facts and observations and to come up 
with the solutions for achieving its objective, making a prediction or a decision. The 
type of inference engine depends on the knowledge representation model to be able 
to apply that specific type of model, and usually they come as a pair. However, these 
two components are not always necessarily separable. For example, in AI systems 
based on artificial neural networks (ANNs), the knowledge is stored as the trained 
parameters and weights of the network. In such cases we can consider that the infer-
ence engine and knowledge base are combined as an ANN algorithm together with 
its parameters after training.

Learn or retrain, as already mentioned, is an optional component of the AI system. 
Many AI systems after being fully trained and put into operation remain static and 
do not receive any feedback from the environment. However, when the ‘learn’ com-
ponent exists, after making a decision or prediction, the AI system receives feedback 
that indicates the correct output. The learning mechanism compares the predicted 
output with the feedback and, in case of any deviation or error, it tries to readjust the 
knowledge to gradually minimise the overall error rate of the system. For example, 
every time that your mobile phone Face ID fails to identify your face and you imme-
diately unlock the phone using your passcode, it can be used as a feedback signal to 
improve your face model on the phone by using the most recently captured image. 
While this is a great feature for improving AI models, it also has the risk of changing 
their behaviour in an unexpected or unwanted manner. In the example just given, if 
with each failure your mobile phone keeps expanding the scope of acceptable facial 
features that unlock your phone, it may end up accepting other people whose faces 
are only similar to yours.

2.4.1 The Source of Knowledge

We have just mentioned how the knowledge base might be updated and improved 
based on the feedback received during the operation. But what is the source 
of the knowledge and how that knowledge base is created in the first place? 
Generally speaking, during the initial build of an AI system the knowledge base 
can be created either manually by the experts or automatically using suitable 
data. You might have previously seen illustrations similar to Figure 2.3, which 
tries to explain the relation between AI and machine learning (ML). However, 
before getting to the details of ML, it might be good to consider what is AI out-
side the ML subset.

The AI techniques outside the ML subset are called Symbolic AI or sometimes 
referred to as Good Old-Fashioned AI. This is mostly based on the human expert 
knowledge in that specific domain, and the knowledge base here is being manually 
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curated and encoded by the AI developers. As a result of that, it is mostly human 
readable (hence symbolic) and usually separable from the inference part of the sys-
tem as described in the building blocks of AI earlier. Expert Systems are one of the 
well-known and more successful examples of symbolic AI, where their knowledge is 
mainly stored as ‘if-then’ rules.5

Symbolic AI systems are relatively reliable, predictable, and more explainable 
owing to their transparency and the readability of their knowledge base. However, 
the manual curation of the knowledge base makes it less generalisable and more 
importantly converts the knowledge acquisition or updating step into a bottleneck 
owing to the limited availability of the domain experts to collaborate with the devel-
opers. Symbolic AI solutions have therefore had limited success, and we have not 
heard much about them recently.

To obtain knowledge without experts dictating it, another approach is to observe 
and automatically learn from the relevant examples, which is the basis of compu-
tational learning theory and ML techniques. There is a wide range of ML tech-
niques starting from statistical models and mathematical regression analysis to more 
algorithmic methods such as decision trees, support vector machines, and ANNs, 
which are one of the most well-known subsets of ML in the past couple of years, 
thanks to the huge success stories of deep neural networks.6 When enough sample 
data is provided, these algorithms are capable of training models with automatically 
encoded knowledge that is required to achieve their objectives when put into opera-
tion. The table in Figure 2.4 summarises some of the key differences between these 
two groups of AI techniques.

Artificial Intelligence
All computer systems that can mimic human intelligence in performing tasks 
based on objectives, not specific instruction

Machine Learning
A subset of AI techniques that enables machines to learn from 
data and experience

(Deep) Neural Networks
A subset of ML techniques that is based on 
neural network structures and automatic training 
of their parameters

Figure 2.3 AI versus ML

 5 P. Jackson, Introduction to Expert Systems (3rd ed., Addison, Wesley, 1998), p. 2. 
 6 Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach (4th ed., Pearson, 2021); 

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning (Springer, 2009).
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2.4.2 Different Methods of Learning

Depending on the type and specifications of the data available to learn from, there 
are several different methods of learning in ML algorithms. Each one of these 
options has strengths and weaknesses. In an application such as FRT where we 
might not easily access any type of dataset that we want, it is important to be aware 
of the potentials and limitations of different methods. Below are a few examples 
among many of these methods; it is an increasing list.

Supervised learning is one of the most common and broadly applied methods. 
It can be utilised when at the time of creating and training ML models there 
are enough samples of input data along with their expected output (labels). In 
an identity verification example under FRT domain, the trained model would 
normally be expected to receive two face images and give a similarity score. In 
such a case, the training dataset includes many pairs of facial images along with 
a manually allocated label, which is 1 when those are photos of the same person 
and 0 otherwise. In FRT applications, preparing large enough labelled datasets for 
supervised learning purposes is time consuming, expensive, and subject to human 
errors such as bias.

Unsupervised learning applies when only samples of the input data are available 
for the training period and the answers are unknown or unavailable. As you can 
imagine, this method is only useful for some specific use cases. Clustering and 
association models are common examples of this learning method. For example, 
in a facial expression categorisation application, during the training phase a model 
can be given lots of facial images and learns how to group them together based on 
similarity of the facial expression, without necessarily having a specific name for 
those groups. For such FRT, it might be easier to source unlabelled sample data 
in larger volumes, for example through web scraping. However, this is subject to 
privacy implications and hidden quality issues, and thus works for limited applica-
tions only.

Range of AI techniques

Machine 
Learning

Symbolic AI 
(GOFAI)

Manual Automated

Human Data

Transparent Black box

More predictable Less predictable

Less generalizable More generalizable

Figure 2.4 Symbolic AI versus ML
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Reinforcement learning is used when neither the samples nor the answers are avail-
able as a batch in the beginning. Rather, a reward function is maximised through 
trial and error while the model gradually learns in operation. For example, you can 
imagine an AI system that wants to display the most attractive faces from a database 
to its user. There is no prior dataset to train the model for each new user, however, 
assuming the amount of time the viewer spends before swiping to the next photo is a 
sign of attractiveness, the model gradually learns which facial features can maximise 
this target. In such situations, the learning mechanism should also balance between 
exploring new territories and exploiting current knowledge to avoid possibilities of 
local maxima traps. It is easy to imagine that only very few FRT applications can rely 
on such trial and error methods to learn.

Semi-supervised learning can be considered as the combination of supervised and 
unsupervised learning. This can be applied when there is a larger amount of train-
ing samples, but only a smaller subset of them is labelled. In such scenarios, in order 
to make the unlabelled subset useful in a supervised manner, some assumptions 
such as continuity or clustering are made to relate them to the labelled subset of 
the samples. Let us imagine a large set of personal photos with only a few of them 
labelled with names for training a facial identification model. If we know which sub-
sets are taken from the same family albums, we may be able to associate a lot more of 
those unnamed photos and label them with the correct names to be used for better 
training of the models. Although this can help with the data labelling challenge for 
FRT applications, the assumptions necessarily made during this process can intro-
duce the risk of unwanted error in the training process.

Self-supervised learning helps in another way with the challenge of labelled data 
availability, especially when a very large volume of training data is required, such as 
deep learning. Instead of a manual preparation of the training signals, this approach 
uses some automated processes to convert input data to meaningful relations that can 
be used to train the models. For example, to build and train some of the largest lan-
guage models, training data is scraped from any possible source on the internet. Then, 
an AI developer could use, for example, a process to remove parts of the sentences, 
and the main model is trained to predict and fill in the blanks. In this way the answer 
(training signal) is automatically created, and the language model learns all mean-
ingful structures and word relationships in human language. In the FRT domain you 
can think of other processes, including distortions to a face image such as shadows or 
rotation, or taking different frames of the same face from a video. This produces a set 
of different facial images that are already known to be of the same person and can be 
used directly for training of the models without additional manual labelling.

2.5 FACIAL RECOGNITION APPROACHES

Similar to the AI techniques, facial recognition approaches were initially more sim-
ilar to Symbolic AI. They were naturally more inclined towards the way humans 
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might approach the problem and were inspired by anthropometry.7 Owing to the 
difficulty of extracting all important facial features and accurate measurements that 
could be easily impacted by small variation in the images, there was limited success 
in such works until more data driven approaches were introduced; these were based 
on mathematical and statistical methods and had a holistic approach to face rec-
ognition, an example being Eigenfaces,8 which is basically the eigenvectors of the 
training grayscale face images (An eigenvector of a matrix is a non-zero vector that, 
when multiplied by the matrix, results in a scaled version of itself.). This shift towards 
ML techniques got more mature and successful by combining the two approaches 
through other ideas such as neural networks in DeepFace,9 and many other similar 
works. More in-depth review of the history of FRT is discussed in Chapter 3, so here 
we just look at technical characteristics and differences of these approaches.

Feature analysis approaches rely on the detection of facial features and their 
measurements. Here, each face image is converted to a numeric vector in a multi-
dimensional space and the face recognition challenge is simplified to more com-
mon classification or regression problems. Similar to symbolic AI, the majority of 
the knowledge, if not all, is manually encoded in the form of rules that instruct 
how to detect the face within an image and identify each of its components to be 
measured accurately. These rules may rely on basic image and signal processing 
techniques such as edge detection and segmentation. This makes the implemen-
tation easier and, as mentioned earlier when discussing symbolic AI, the process 
and its decision-making is more transparent and explainable. However, intrinsic to 
these approaches is the limited generalisability challenge of symbolic AI. In ideal 
and controlled conditions these methods can be quite accurate, but changes in the 
imaging condition can dramatically impact the performance. This is because in the 
new conditions, including different angles, resolution, or shadows and partial cover-
age, the prescribed rules might not apply any more, and it would not be practical to 
manually find all these variations and customise new rules for them.

Holistic approaches became popular after the introduction of Eigenfaces in the 
early 1990s.10 Rather than trying to detect facial features based on human definition 
of a face, these approaches consider the image in its pixel form as a vector in a high 
dimensional space and apply dimensionality reduction techniques combined with 
other mathematical and statistical approaches that do not rely on what is inside the 
image. This largely simplifies the problem by avoiding the facial feature extraction 

 7 A. J. Goldstein, L. D. Harmon, and A. B. Lesk, ‘Identification of human faces’ (1971) 59(5) Proceedings 
of the IEEE 748–760, https://doi.org/10.1109/PROC.1971.8254. 

 8 M. Turk and A. Pentland, ‘Eigenfaces for recognition’ (1991) 3(1) Journal of Cognitive Neuroscience 
71–86.

 9 Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, ‘Deepface: Closing the gap to human-level per-
formance in face verification’ (2014), Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 1701–1708.

 10 Turk and Pentland, ‘Eigenfaces for recognition’.
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and measurement step, together with its sensitivities. This shifts the face recognition 
approach towards the classic ML techniques and changes the training to a data-
driven problem rather than manual rule development. Unfortunately, purely holis-
tic approaches still suffer from a few challenges, including statistical distribution 
assumptions behind the method that do not always apply, and any deviation from 
the controlled imaging condition makes it worse.

Deep neural networks made a leap in the advancement and success of face recog-
nition approaches. After Eigenfaces and its variations, there were many other small 
improvements made to the holistic approaches by adding some generic feature extrac-
tion steps such as Gabor prior to the main classifier,11 followed by some neural network-
based ML approaches. However, it was not as successful until the introduction of deep 
learning for image processing,12 and applying it for face recognition.13 Convolutional 
neural networks convert the feature extraction and selection from the images to an 
unsupervised process, so it is not as challenging as manually defined facial features and 
not too generic like the Gabor filters used prior to some of the holistic approaches. The 
increasingly complex and important features that are automatically selected are used in 
a supervised learning layer to deliver the classification or recognition function.14 This is 
the key in the success of object and face recognition of deep neural networks.

2.6 THE GIFT AND THE CURSE OF COMPLEXITY

Many variations of ANNs have been used in ML applications including face recog-
nition. However, the so called shallow neural networks were not as successful owing 
to their limited learning capacity. Advancements in hardware, use of graphical pro-
cessing units, and cloud computing to increase processing power along with access 
to more training data (big data) made the introduction of deep learning possible. In 
addition to novel network structures and the use of more sophisticated nodes such 
as convolutional functions, another important factor in the increased capacity of 
learning of DNNs is the overall complexity and scale of the network parameters to 
train. For example, the first experimental DNN used in FaceNet includes a total of 
140 million parameters to train.

While the complexity of DNNs increases their success in learning to solve 
challenging problems such as face recognition, these new algorithms become 

 11 C. Liu and H. Wechsler, ‘Gabor feature based classification using the enhanced fisher linear discrim-
inant model for face recognition’ (2002) 11(4) IEEE Transactions on Image Processing 467–476.

 12 A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘Imagenet classification with deep convolutional 
neural network’ in NIPS’12: Proceedings of the 25th International Conference on Neural Information 
Processing Systems, vol. 1 (Curran Associates Inc., 2012), pp. 1097–1105.

 13 Y. Taigman, M. Yang, M. Ranzato, and L. Wolf (2014). Deepface: Closing the gap to human-level 
performance in face verification. Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 1701–1708.

 14 Hannes Schulz and Sven Behnke, ‘Deep learning’ (2012) 26 KI – Künstliche Intelligenz 357–363, 
https://doi.org/10.1007/s13218-012-0198-z. 
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increasingly data hungry. Without going into too much detail, if the number of 
training samples are too small compared with the number of parameters of the 
model, rather than learning a generalised solution for solving the problem it overfits 
the model and memorises the answer only for that specific subset. This causes the 
model to perform very well for the training samples, as it has memorised the cor-
rect answers for the training set, but fail when it comes to test and unseen samples, 
owing to a lack of generalisation and fitting the model only to the previously seen 
examples. Therefore, such successful face recognition systems based on DNNs or a 
variation of them are actually trained on large training facial datasets, which can be 
the source of new risks and concerns.

Privacy and security concerns are one of the first to pay attention to. It is difficult 
and expensive to create new and large face datasets with all appropriate consents 
in place. Many of these large datasets are collected from the web and from a few 
different sources where copyright and privacy statements raise problems from both 
legal and ethics perspectives. Additionally, after collection, such datasets could be 
potentially a good target for cyber-attacks, especially if the images can be correlated 
to other information that may be publicly available about the same person.

Data labelling is the next challenge after collection of the suitable dataset. It is 
labour intensive to manually label such large datasets to be used as a supervised 
learning signal for the models. As discussed earlier, self-supervised learning is one of 
the next best choices for data-heavy algorithms such as DNNs. However, this intro-
duces the risk of incorrect assumptions in the self-supervised logic and the missing 
of some problems in the training process even when performance measures seem 
to be adequate.

Hidden data quality issues might be the key to most of the well-known face rec-
ognition failures. Usually, a lot of automation or crowdsourcing is involved in the 
preparation of such large face datasets. This can prevent thorough quality checks 
across the samples and labels, which can lead to flawed models and cause unex-
pected behaviour in special cases despite high performance results during the test 
and evaluation. Bias and discrimination are among the most common misbehav-
iours of FRT models, which can be either due to such hidden data quality issues 
or simply the difficulty of obtaining a well-balanced large sample across all cohorts.

2.7 CONCLUSION

Face recognition is one of the complex applications of AI and inherits many of its 
limitations and challenges. We have made a quick review of some of the important 
considerations, choices, and potential pitfalls of AI techniques and more specifically 
FRT systems. Given this is a relatively new technology being used in our daily lives, 
it is crucial to increase the awareness and literacy of such technologies and their 
potential implications from a multi-disciplinary angle for all its stakeholders, from 
its developers and providers to the operators, regulators, and the end users.
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Now that with DNNs the reported performance of FR models is reaching or sur-
passing human performance,15 a critical question is why we still hear so many exam-
ples of failure and find FR models insufficiently reliable in practice. Among many 
reasons, such as data quality discussed earlier, the difference between development 
and operation conditions can be one of the common factors. The dataset that the 
model is trained and tested on may not be a good representation of what the model 
will receive when put into operation. Such differences can be due to imaging condi-
tions, demographic distribution, or other factors. Additionally, we should not forget 
that the performance tests are usually done directly on the FRT model. However, 
an FRT-based solution has a lot of other software components and configurable 
decision-making logic that will be applied to the facial image similarity scores. For 
example, such surrounding configurable logic can easily introduce human bias to 
a FRT solution with a good performing model at core. Finally, it is worth remind-
ing that like many other software and digital solutions, FRT systems can be subject 
to adversarial attacks. It might be a lot easier to fool a DNN-based FR model using 
adversarial samples or patches compared with the human potential for identifying 
such attempts.16

Hence, considering all such intentional and unintentional risks, are the benefits 
of FRT worth it? Rather than giving a blanket yes/no answer, it should be con-
cluded that this depends on the application and impact levels. However, making a 
conscious decision based on a realistic understanding of potentials and limitations 
of technology, along with having humans in the loop, can significantly help to min-
imise these risks.

 15 P. J. Phillips, A. N. Yates, Y. Hu, C. A. Hahn, E. Noyes, K. Jackson, J. G. Cavazos, G. Jeckeln, R. 
Ranjan, S. Sankaranarayanan, J-C. Chen, C. D. Castillo, R. Chellappa, D. White, and A. J. O’Toole, 
‘Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms’ 
(2018) 115(24) Proceedings of the National Academy of Sciences 6171–6176, https://doi.org/10.1073/
pnas.1721355115

 16 Yaoyao Zhong and Weihong Deng, ‘Towards transferable adversarial attack against deep face rec-
ognition’ (2020) 16 IEEE Transactions on Information Forensics and Security 1452–1466, doi: 10.1109/
TIFS.2020.3036801.
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