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1. Introduction. Let X be a smooth projective variety of dimension n defined
over a number field F and let

X̄ = X ×F �.

For a prime number l, let Hi
et(X, �l) be the étale cohomology of X̄ . If K is a number

field, we denote �K := Gal(�/K). The Galois group �F acts on Hi
et(X, �l) by a

representation φi,l. For any j ∈ �, let Hi
et(X, �l)(j) denote the representation of �F

on Hi
et(X, �l) defined by φi,l ⊗ ξ

j
l , where ξl is the l-adic cyclotomic character. For any

finite extension E/F the elements of Vi(X, E) := H2i
et (X, �l)(i)�E are called Tate cycles

on X defined over E. The union

Vi(X) := ∪EVi(X, E)

is the space of all Tate cycles on X .
To each algebraic subvariety Y of X of codimension i, one can associate a

cohomology class

[Y ] ∈ H2n−2i(X(�), �) ∼= H2i
B (X(�), �)(i),

where H2i
B (X(�), �) is the Betti cohomology. Then using the isomorphism

H2i
B (X(�), �)(i) ⊗� �l ∼= H2i

et (X, �l)(i),

we obtain a class [Y ] ∈ H2i
et (X, �l)(i). A cohomology class [Y ] obtained in this way is

called algebraic. If Y is defined over a finite extension E of F , then we obtain a class
[Y ] ∈ H2i

et (X, �l)(i)�E . Let Ui(X, E) be the space of algebraic cycles defined over E.
Then Ui(X, E) ⊆ Vi(X, E) and the first part of the Tate conjecture [16] states that for
any finite extension E/F we have

Ui(X, E) = Vi(X, E),

i.e. every Tate cycle is algebraic.
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The L-function L2i(s, X/F ) (more exactly the Euler product) attached to the
representation φ2i,l converges for Re(s) > i + 1. The second part of the Tate conjecture
[16] states that for any finite extension E/F the L-function L2i(s, X/E) has a
meromorphic continuation to the entire complex plane and has a pole at s = i + 1
of order equal to

dim�l
Vi(X, E).

We consider a quartic totally real number field F containing a quadratic subfield.
Let B be a quaternion division algebra over � and let D := B ⊗� F . We assume
that D is a quaternion division algebra over F which splits at the real places. Let G
be the algebraic group over F defined by the multiplicative group D× of D and let
Ḡ = ResF/�(G). We denote by SK := SḠ,K the canonical model of the quaternionic
Shimura variety associated with an open compact subgroup K of Ḡ(�f ), where �f is
the finite part of the ring of adeles �� of �. Then, SK is a four-dimensional proper
smooth variety defined over �.

In this paper we prove the first part of the Tate conjecture for SK for non-CM
submotives if we assume that the field F is Galois over �. We prove the second part
of the Tate conjecture for SK , without assuming that F is Galois over �, but only for
solvable number fields (see Theorem 8.2 for details). We remark that similar results
were obtained by Ramakrishnan [12] in the case of Hilbert modular fourfolds and
by Harder, Langlands, Rapoport [4], Murty, Ramakrishnan [11], Klingenberg [8], Lai
[11] and Flicker and Hakim [3] in the case of Hilbert modular surfaces and compact
quaternionic Shimura surfaces.

2. Quaternionic Shimura fourfolds and surfaces. Let F be a totally real field
of degree 4 over � such that F contains a quadratic number field F0. We consider
a quaternion division algebra B over � and let D := B ⊗� F . Assume that D is a
quaternion division algebra over F which splits at the real places (we remark that given
a quaternion division algebra D over F which splits at the real places, there exists a
quaternion division algebra B over � such that D := B ⊗� F if and only if for each
rational prime p we have

∑
v|p invvDv = 0, where v runs over the places of F dividing p,

and invv denotes the invariant of D at v). Let G be the algebraic group over F defined
by the multiplicative group D×. By restricting the scalars, we obtain the algebraic
group Ḡ = ResF/�(G) over � defined by the propriety Ḡ(A) = G(A ⊗� F) for all
�-algebras A.

Then, Ḡ(�) is isomorphic to GL2(�)4. Let h : �∗ → Ḡ(�) be defined by a + bi 
→
δ(( a

−b
b
a )), where δ denotes the diagonal embedding of GL(2, �) in Ḡ(�). Let K∞ be

the centralizer of h in Ḡ(�). For each open compact subgroup K ⊂ Ḡ(�f ) set

SK (�) = Ḡ(�) \ Ḡ(��)/KK∞.

For K sufficiently small, SK (�) is a complex manifold which is the set of the complex
points of a proper smooth four-dimensional variety SK defined over �, which is called
a compact quaternionic Shimura fourfold.

Let D0 be a quaternion algebra over F0 which splits at the real places such that
D = D0 ⊗F0 F (we remark that B ⊗� F0 is a quaternionic division algebra over F0 which
has this propriety). Let G0 be the algebraic group over F0 defined by the multiplicative
group D×

0 . As above by restricting the scalars, we obtain the algebraic group
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Ḡ0 = ResF0/�(G0). Then, Ḡ0(�) is isomorphic to GL2(�)2. Let h0 : �∗ → Ḡ0(�) be
defined by a + bi 
→ δ0(( a

−b
b
a )), where δ0 denotes the diagonal embedding of GL(2, �)

in Ḡ0(�). Let L∞ be the centralizer of h0 in Ḡ0(�). For each open compact subgroup
L ⊂ Ḡ0(�f ) set

S0L(�) = Ḡ0(�) \ Ḡ0(��)/LL∞.

For L sufficiently small, S0L(�) is a complex manifold which is the set of the complex
points of a proper smooth two-dimensional variety S0L defined over �, which is called
a compact quaternionic Shimura surface.

3. Cohomologies for quaternionic Shimura fourfolds. Let K be a sufficiently small
open compact subgroup of Ḡ(�f ).

If l is a prime number, let �K be the Hecke algebra generated by the bi-K-invariant
�̄l-valued compactly supported functions on Ḡ(�f ) under the convolution. If π ′ =
π ′

f ⊗ π ′
∞ is an automorphic representation of Ḡ(��), we denote by π

′K
f the space of

K-invariants in π ′
f . The Hecke algebra �K acts on π

′K
f .

We have an action of the Hecke algebra �K and an action of the Galois group ��

on the étale cohomology H4
et(SK , �̄l) and these two actions commute. We say that the

representation π ′ is cohomological if H∗(g, Ḡ∞, π ′
∞) �= 0, where g is the Lie algebra of

Ḡ∞ (the cohomology is taken with respect to the (g, Ḡ∞)-module associated with π ′
∞).

We know the following result (see for example Propositions 1.5 and 1.8 of [15]).

PROPOSITION 3.1. The representation of �� × �K on the étale cohomology
H4

et(SK , �̄l)(2) is isomorphic to

⊕π ′ρ(π ′) ⊗ π
′K
f ,

where ρ(π ′) is a representation of the Galois group ��. The above sum is over weight
2 cohomological automorphic representations π ′ of Ḡ(��), such that π

′K
f �= 0, and the

�K -representations π
′K
f are irreducible and mutually inequivalent, i.e. the decomposition

is isotypic with respect to the action of �K .

The representations π ′ that appear in Proposition 3.1 are one dimensional or
cuspidal and infinite dimensional. If π ′ is one dimensional, then ρ(π ′) is six dimensional
and if π ′ is cuspidal and infinite dimensional, then ρ(π ′) is 16 dimensional. From now
on in this paper we assume that π ′ is cuspidal and infinite dimensional, because
for π ′ one dimensional the algebraicity of the Tate cycles corresponding to the π ′-
component of H4

et(SK , �̄l) (see Proposition 3.1) could be proved in the same way as in
Proposition 4.11 of [12], and the second part of the Tate conjecture in this case is also
trivial (see [12]). We denote by π the cuspidal automorphic representation of GL(2)/F

corresponding to π ′ by Jaquet–Langlands correspondence.
Let ρπ ′ = ρπ be the l-adic two-dimensional semisimple representation of ��

associated with π ′ or with π (see [2, 17]). Then the representation ρ(π ′) is semisimple
(see section 7 of [13]) and ρ(π ′) = AsF/�ρπ ′ , where AsF/�ρπ ′ is the Asai (or tensor
induction) representation (see section 6 of [12]).

We fix an isomorphism j : �̄l → � and define the L-function

L4(s, SK ) :=
∏
π ′

∏
q

det(1 − q−s+2j(ρ(π ′)(Frobq))|H4
et(SK , �̄l)(2)Iq )−1,
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where Frobq is a geometric Frobenius element at a rational prime q and Iq is a inertia
group at q (in order to define the local factor at l one has to use actually the l

′
-adic

cohomology for some l
′ �= l and Theorem 3 of [1] which gives us the expression of the

local factors of the zeta functions of quaternionic Shimura varieties).
We have the canonical isomorphisms:

�K : H4
B(SK (�), �) ⊗� �̄l → H4

et(SK , �̄l)

and

� : H4
B(S(�), �) ⊗� �̄l → H4

et(S, �̄l),

where H4
B(SK (�), �) is the Betti cohomology, and S := lim←−SK . We denote by V (π ′) the

π ′-component of H4
et(S, �̄l)(2) in the decomposition of Proposition 3.1 and by VB(π ′)

the corresponding π ′-component of H4
B(S(�), �)(2). Thus,

VB(π ′) ⊗� �̄l ∼= V (π ′).

Since ρ(π ′) = AsF/�ρπ ′ , for each finite-order Hecke character ν of F, we have ρ(π ′) ⊗
ν|I�

∼= ρ(π ′ ⊗ ν), where I� is the idele group of �, i.e. V (π ′) ⊗ ν|I�
∼= V (π ′ ⊗ ν) as

��-modules.

4. Meromorphic continuation. For π ′ being a cuspidal representation as in
Proposition 3.1, we denote by AsF/F0 (π ′) the isobaric automorphic representation
of GL(4, �F0 ) defined in Theorem D of [14]. Let

ρAsF/F0 (π ′) : �F0 → GL4(�̄l)

be the l-adic representation associated with AsF/F0 (π ′). Then, ρAsF/F0 (π ′) = AsF/F0ρπ ′

and L(s, ρAsF/F0 (π ′)) = L(s, AsF/F0 (π ′)). From the proprieties of the Asai representations
we know that ρ(π ′) = AsF/�ρπ ′ = AsF0/�(AsF/F0ρπ ′ ), and because AsF/F0ρπ ′ is
automorphic, from Theorem 6.11 of [12], and using the solvable base change for
GL(2) (see [10]) and the main theorem of [7], one obtains easily that (see also [1])

PROPOSITION 4.1. If k/� is solvable, then the function L(s, ρ(π ′)|�k ) has a
meromorphic continuation to the entire complex plane and satisfies a functional equation
s ↔ 1 − s.

5. Some definitions. For k being a number field, define

V(π ′, k) := {x ∈ V (π ′)|ρ(π ′)(a)x = x for all a ∈ �k},

and

V(π ′, �̄) := ∪kV(π ′, k),

where V (π ′) is the space corresponding to ρ(π ′). The elements of V(π ′, k) are called
Tate cycles defined over k, and the elements of V(π ′, �̄) are called Tate cycles. We
denote by U(π ′, k) ⊆ V(π ′, k) the subspace of algebraic cycles defined over k.
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We denote by ralg(π ′, k) := dim�̄l
U(π ′, k), by rl(π ′, k) := dim�̄l

V(π ′, k), by
rl(π ′, �̄) := dim�̄l

V(π ′, �̄) and for k solvable number filed by ran(π ′, k) the order
of the pole of L(s, ρ(π ′)|�k ) at s = 1. Then, ralg(π ′, k) ≤ rl(π ′, k).

For ν being a finite-order character of ��, define

V(π ′; ν) := {x ∈ V (π ′)|ρ(π ′)(a)x = ν−1(a)x for all a ∈ ��},

and

V(π ′, �ab) := ∪νV(π ′; ν).

Let U(π ′; ν) ⊆ V(π ′; ν) and U(π ′, �ab) ⊆ V(π ′, �ab) be the subspaces of algebraic
cycles. We remark that when π ′ is non-CM, for k sufficiently large we have V(π ′, k) =
V(π ′, �ab), i.e. all the Tate cycles are defined over abelian extensions of �. For π ′ of
CM type, it is possible to have for all k that V(π ′, k) �= V(π ′, �ab).

We denote by ralg(π ′; ν) := dim�̄l
U(π ′, ν), by rl(π ′; ν) := dim�̄l

V(π ′, ν) and by
ran(π ′, ν) the order of the pole of L(s, ρ(π ′) ⊗ ν) at s = 1. Then, ralg(π ′; ν) ≤ rl(π ′; ν),
rl(π ′, �ab) ≤ rl(π ′, �̄).

6. Matching Tate cycles and poles. We say that an automorphic representation
π of GL(2)/F for some number field F is of CM type if there exists some quadratic
Galois character η : IF/F× → �̄×

l , with η �= 1 such that π ∼= π ⊗ η. We say that a
representation ρ of a group G is dihedral if there exists a normal subgroup N of index
2 in G and a character χ : N → �× such that ρ = IndG

Nχ . If π is an automorphic
representation of GL(2)/F as in Proposition 3.1, then π is of CM type if and only if
ρπ is a dihedral representation. If π corresponds to an automorphic representation
π ′ of Ḡ(�f ) by Jacquet–Langlands correspondence, then we say that π ′ is CM if π is
CM.

Using in particular the decomposition (in some cases) of ρ(π ′) as a sum of
automorphic representations, more exactly as a direct sum of l-adic representations
associated Hecke characters and of twists by Hecke characters of Sym2π ′′ and Sym4π ′′

for non-CM representations π ′′ of GL(2) (which from [5] and [8] we know that are
cuspidal and irreducible), in [12] (Propositions 8.6 and 8.8) are proved the following
two lemmas (for the definition of π ′ and π see Proposition 3.1 and the comments after
it):

LEMMA 6.1. For π ′ non-CM, all the Tate classes in V (π ′) are rational over an abelian
number field k, with

rl(π ′, k) ≤ 2;

hence,

rl(π ′, �ab) = rl(π ′, �̄) ≤ 2.

LEMMA 6.2. Let F/� be Galois, and π ′ non-CM. Then
(a) rl(π ′, �ab) �= 0 iff a twist of π is a base change from a quadratic subextension

of F.
(b) rl(π ′, �ab) = 2 iff a twist of π is a base change from �.
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(c) The following are equivalent:
(i) rl(π ′; ν) = 2 for some ν.

(ii) A twist of π is a base change from �, and F is biquadratic.

From Lemma 6.1 above and section 8 of [12] we know that

PROPOSITION 6.3. For π ′ non-CM we have

rl(π ′; ν) = ran(π ′; ν) ≤ 2,

and thus because ralg(π ′; ν) ≤ rl(π ′; ν), we have

ralg(π ′; ν) ≤ rl(π ′; ν) = ran(π ′; ν) ≤ 2.

We also know that (see Proposition 8.5 of [12])

PROPOSITION 6.4. If π ′ is of CM type, we have for any k,

rl(π ′, k) = ran(π ′, k).

7. Twisted Hirzebruch–Zagier cycles. We use the same notations as in section 2,
i.e. we consider a quaternion division algebra D0 over some quadratic subextension F0

of F such that D = D0 ⊗F0 F . Then, the map h factors through the map h0 of R�/�(�∗)
into Ḡ0�. The natural diagonal embedding of Ḡ0 into Ḡ defines a morphism

δL,K : S0L ↪→ SK

over �, if L is contained in K .
For any g ∈ Ḡ(�f ), and any open compact subgroup K of Ḡ(�f ), define the

corresponding Hirzebruch–Zagier cycle (or H-Z cycle) (relative to Ḡ0) to be the
algebraic cycle of codimension 2 of SK given by

D0 Zg,K = R(g)(δḠ0(�f )∩gKg−1,gKg−1 (S0Ḡ0(�f )∩gKg−1 )),

where R(g) : SgKg−1 → SK is the right translation action on Shimura varieties.
Now for each character of finite order μ of F , we have the usual twisted

correspondence R(μ) ⊂ SK × SK[μ], where K [μ] is some level which depends on K
and μ (see for example section 5 of [12] for details). This twisting correspondence is
algebraic and acts on any cohomology group, Betti or étale, of the fourfold S = lim←−SK .
The induced operator sends the π ′-component to the π ′ ⊗ μ-component. The twisting
correspondence R(μ) is rational over �(μ1), where μ1 = μ|I�

, and I� is the idele group
of �.

For each character of finite order μ of F and each H-Z cycle Z on S, let Z(μ) be
the μ-twisted H-Z cycle obtained by pushing forward Z under R(μ). Then, Z(μ) is
algebraic and rational over �(μ1).

8. Matching algebraic cycles and poles. We prove

PROPOSITION 8.1. Let F be a quartic, Galois, totally real number field, and π ′ be
a non-CM cuspidal automorphic representation of Ḡ(��) of weight 2 that appears in
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Proposition 3.1. Then for any character of finite order ν of ��, we have

ralg(π ′; ν) = ran(π ′; ν).

Proof. From Proposition 6.3 we know that ralg(π ′; ν) ≤ ran(π ′; ν) ≤ 2.

We distinguish three cases:
(A) ran(π ′; ν) = 0. Then ralg(π ′; ν) = 0 and we are done.
(B) ran(π ′; ν) = 1. Then as in the proof of Theorem 9.1 of [12], one can find a

quadratic subfield F1 of F and a finite-order character μ of F such that ralg(π ′; ν) =
ralg(π ′ ⊗ μ; 1) and such that L(s, AsF/F1 (π ′ ⊗ μ)) = L(s, AsF/F1 (π ⊗ μ)) has a simple
pole at s = 1, which by the residue formula of [4] implies that there exists some function
φ in the space of π such that

∫
GL(2,F1)Z(�F1 )\GL(2,�F1 )

φ(g)μ(det(g))dg �= 0,

where Z denotes the centre of GL(2). From [6] (the main theorem) and [3] (the
appendix), we deduce that that there exists some function φ′ in the space of π ′ such
that

∫
Ḡ1(�)Z̄1(��)\Ḡ1(��)

φ′(g)μ(det(g))dg �= 0,

where Z̄1 denotes the centre of Ḡ1 = ResF1/�(G1), and G1 is the algebraic group over
F1 defined by the multiplicative group D×

1 of a suitable quaternion division algebra D1

over F1 which satisfies that D = D1 ⊗F1 F (more exactly let S be the set of places v of F1

which split into two different places w and w̄ of F such that Dw and Dw̄ are ramified (we
remark that because D = B ⊗� F , we get that B ⊗� F1 is a quaternion division algebra
over F1, and thus we have that for each two different places w and w̄ of F dividing a
place v of F1, Dw and Dw̄ have the same invariant). If |S| is even, then there exists a
quaternion division algebra D1 over F1 which ramifies at exactly the places v in S such
that D = D1 ⊗F1 F . Then by the main theorem of [6], D1 satisfies the above propriety. If
|S| is odd, then from [3] (appendix) we know that there exists a place (actually infinitely
many) v1 of F1 outside S which does not split into F and a quaternion division algebra
D1 over F1 which is ramified at exactly the places v in S ∪ v1, such that D = D1 ⊗F1 F
and has the above propriety). Hence, the integral of a (2, 2)-form ηφ′ on the compact
quaternionic Shimura fourfold SK defined by φ′ has a non-zero μ-twisted period over
a Hecke translate of the embedded compact quaternionic Shimura surface attached
to D1. Thus, the corresponding twisting self-correspondence of the fourfold defines
for some g ∈ Ḡ(�f ) a μ-twisted H-Z cycle Z(μ) =D1 Zg,K (μ) of codimension 2 such
that

∫
Z(μ)

ηφ′ �= 0,

and hence Z(μ) is homologically non-trivial. Thus, ralg(π ′; ν) ≥ 1, and we obtain that
ralg(π ′; ν) = 1, and we are done.

(C) ran(π ′; ν) = 2. From part (c) of Lemma 6.2 we deduce that F/� is biquadratic,
and then as in [12], one can find a finite-order character μ of F such that ralg(π ′; ν) =
ralg(π ′ ⊗ μ; 1) and such that π ⊗ μ is a base change from two quadratic subfields F1 and

https://doi.org/10.1017/S0017089510000789 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000789


366 CRISTIAN VIRDOL

F2 of F . Then as in (B) because the functions L(s, AsF/F1 (π ′ ⊗ μ)) and L(s, AsF/F2 (π ′ ⊗
μ)) have simple poles at s = 1, we get, for some quaternion algebras D1 and D2 over F1

and F2 and some g1, g2 ∈ Ḡ(�f ), two twisted codimension 2 algebraic cycles Z1 :=D1

Zg1,K (μ) and Z2 :=D2 Zg2,K (μ) on S which are homologically non-trivial because the
period integrals of some (2, 2)-forms over these cycles are non-zero. But these two
cycles could be proportional in the π ′-component of the cohomology, and thus one
may have to replace one of them by a twisted version. Then in [12], Lemma 9.3, a
finite-order character ξ of F is defined such that it has some special signature at the
infinite places, and such that ξ |IF1

= 1, and thus ξ |I�
= 1 and hence

ran(π ′ ⊗ ξ ; ν) = ran(π ′; ν).

Also L(s, AsF/F1 (π ′ ⊗ ξμ)) has a simple pole at s = 1, and thus, if we define

Z3 :=D1 Z∗
g3,K (μξ ),

we have for some g3 ∈ Ḡ(�f ), and some φ′ in the space of π ′ that
∫

Z3

ηφ′ �= 0.

Then, from Lemma 9.4 of [12], we know by looking at the signatures at infinite places
of the classes of Z1, Z2 and Z3 in VB(π ′) that the space spanned by the classes of
Z1, Z2 and Z3 in VB(π ′) has dimension 2. Thus, ralg(π ′; ν) ≥ 2 and we obtain that
ralg(π ′; ν) = 2, and we are done. �

We can deduce now the following result.

THEOREM 8.2. Let F be a quartic totally real number field containing a quadratic
subfield. Let π ′ be an automorphic representation as in Proposition 3.1. Then,

(a) For any solvable number field k, the function L(s, ρ(π ′)|�k ) has a meromorphic
continuation to the complex plane and satisfies a functional equation s ↔ 1 − s.

(b) If F/� is Galois, then for any solvable number field k we have that dim�̄l
V(π ′, k)

is equal to the order of the pole of the function L(s, ρ(π ′)|�k ) at s = 1. If π ′ is CM, this
result is true for any number field k.

(c) If F/� is Galois and π ′ is non-CM, then for any number field k we have

dim�̄l
U(π ′, k) = dim�̄l

V(π ′, k).

Proof. Part (a) is the statement of Proposition 4.1. Now assume that F/� is
Galois and π ′ is non-CM. Then from Propositions 6.3 and 8.1 we get that ralg(π ′; ν) =
rl(π ′; ν) = ran(π ′; ν) ≤ 2, and from Lemma 6.1 we deduce part (c). Now if π ′ is CM, part
(b) is the statement of Proposition 6.4. For π ′ non-CM and k solvable we know from (a)
that L(s, ρ(π ′)|�k ) has a meromorphic continuation to the complex plane, and we have
to match the order of the pole of L(s, ρ(π ′)|�k ) at s = 1 with the dimension of the space
of the Tate cycles defined over k. But because k is solvable and π ′ is non-CM we get
that ρπ ′ |�Fk is cuspidal irreducible. Now because K contains a quadratic subextension
F0 we get that ρ(π ′)|�k is a tensor product of Asai representations of degree 4, 2
or 1 associated with cuspidal representations of GL(2). When we have degree 4,
i.e ρ(π ′)|�k = AsFk/kρπ ′′ , for some cuspidal non-CM automorphic representation π ′′

of GL(2)/Fk (associated with ρπ ′ |�Fk ) and Fk has a quadratic subextension k′/k,
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we obtain part (b) exactly as in [12], section 8 (it is proved in the same way as
Proposition 6.3). The rest of the cases are similar. �
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