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SUMMARY
The effects of finite population size, occurring either as a bottleneck

in a single generation followed by a large expansion or in all generations,
are considered for models of two linked heterotic loci. Linkage is assumed
to be tight because it is required if there is to be stable linkage disequi-
librium, D =)= 0, in infinitely large populations. (D is the difference
between gamete frequencies and the product of the gene frequencies.)

If a substantial perturbation of frequencies occurs as a result of a
bottleneck but the population is subsequently very large, D may take
hundreds of generations to return to its stable point. In finite populations,
the distribution of D can be U-shaped, unimodal or bimodal. The corre-
lation of D in successive generations is higher with tight linkage and is
little affected by selection or the size of the population.

The utility of infinite population studies of linkage disequilibrium and
its stable points is questioned, and considerable pessimism is expressed
about the possibilities of distinguishing selection and sampling effects at
linked loci.

1. INTRODUCTION

There has been considerable interest in recent years in theoretical and experi-
mental studies on the population genetics of linked loci. In particular there is now
an extensive literature on equilibrium properties of populations with two or more
linked loci using deterministic (i.e. infinite population) models, on effects of
genetic drift (in small populations) on linked loci without selection and on associ-
ation of alleles at electrophoretic loci in laboratory or natural populations, usually
of Drosophila. Lewontin (1974), Thomson (1977) and Hedrick, Jain & Holden
(1978) have reviewed this area in some detail and Karlin (1975) gives a valuable
summary of the two locus deterministic theory.

As with single loci, one of the main difficulties in multi-locus studies is to dis-
tinguish between selection and drift or sampling effects. Lewontin (1974) argues
that if selection is the main cause of disequilibrium the same sign and magnitude
of disequilibrium would be expected in different populations, whereas if random
drift due to small population size is the main cause, values will differ randomly
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between populations. For two loci, stable linkage disequilibrium can only be
obtained if there is tight linkage, some non-additivity of effects between the loci,
and also heterozygote superiority at individual loci such that they remain
segregating. Apart from small population size, no such restraints have to be made
for disequilibrium generated by chance sampling, with new variation generated
by mutation. There has been some study of the joint effect of selection and
sampling, for example to ask how resistant to perturbations due to finite popu-
lation size are stable positions of linkage disequilibrium in an infinite population
(Sved, 1968; Franklin & Lewontin, 1970; Felsenstein, 1974; Clegg, 1978; Avery,
1978).

In this paper we shall illustrate, in an essentially non-mathematical way, the
effects of perturbations due to sampling on tightly linked loci. Firstly we consider
the effect of a substantial perturbation, for example a population passed through
a bottleneck of a single pair of individuals. The point of this is not to show that
new disequilibrium is generated, which is obvious, but to illustrate how slowly
populations would return to a stable point even if the subsequent population were
infinitely large. In particular the linkage disequilibrium (gametic association)
terms return much more slowly than gene frequencies. Then we turn to populations
always of the same finite size and investigate the autocorrelation of linkage
disequilibrium effects, and the distribution of the disequilibrium which can be
bimodal in form.

2. MODEL

Consider a diploid population reproducing by random mating including random
selfing, with no migration or mutation. The analysis will be of two loci each with
two alleles, where

A, a are alleles at locus 1, and p is the frequency of A;
B, b are alles at locus 2, and q is the frequency of B;
xlt x2, x3, a;4 are the frequencies of chromosomes AB, Ab, aB and ab respectively;
D = x1xi — x2x3 = xx—pq is the linkage disequilibrium;
r — D/[p(l — p) q(l — q)]b is the correlation of gene frequencies on the same

gamete; and
c = recombination fraction between the loci.

Most of the analysis will deal with a special case of the symmetric model of
fitness used by Lewontin & Kojima (1960) and Bodmer & Felsenstein (1967),
denned as follows:

BB Bb bb
AA l-2s + ks* l - s l
Aa l - s 1 l - s
aa l - 2 s + fos2 l - s l

Three examples will be used: additive, k = 0; multiplicative, k = 1; epistatic,
k = 1/s. Although this is only one of an infinite set of epistatic models, it shows
strong epistasis and has been discussed previously (Avery, 1978).
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With these models and an infinitely large population there are at most two
stable equilibria at which both loci are polymorphic. These are where both genes
have frequency one-half (p = q = 0-5), and the chromosome frequencies are
xx = 0-5 — x2 = 0-5 — x3 = xt, with 0 < x1 < 0-5. Thus at a stable point D = xx

— 0-25 and r = 4D, with the values depending on the recombination fraction and
fitness array. Lewontin & Kojima (1960), Bodmer & Felsenstein (1967) and Karlin
(1975) show that for the additive model (k = 0), or other models where k < 0,
there is only one stable polymorphism for all values of c, which is at D = 0. For
other models, the equilibria are given by the roots of l&ks2IP— (ks2 — 4c) D = 0,

which are Z) = 0 or £ = ± ^[1 - 4c/(fe*)]. (1)

If c < &s2/4, there are stable points at D 4= 0 and an unstable point at D = 0,
while if c > &s2/4 there is a stable point only at D = 0. Thus there are stable
values with linkage disequilibrium if c < s2/4 in the multiplicative model which
would imply very tight linkage, and c < s/4 in the epistatic model. If D + 0 is
stable, the zones of attraction in an infinitely large population are simply that if
D is initially positive it moves to the positive stable value and vice versa if
negative (Bodmer & Felsenstein, 1967).

3. POPULATION BOTTLENECKS

A major perturbation of chromosome frequencies away from their stable values
can occur if the population passes through a very small bottleneck of numbers,
the most extreme case being the foundation of a new colony by a single inseminated
migrant female or by seed from one plant which has been ferilized by another
single plant. This example provides a useful illustration of the rate at which
stability is reached and the amount of population diversity possible, even though
the subsequent population size is very large. The model taken is thus of a founder
sample of four chromosomes from a population at the stable point, with the new
populations then assumed to be infinitely large from the first generation so that
deterministic formulae can be used.

The different groups of sampled populations are listed in Table 1, together with
their probabilities in terms of the chromosome frequencies in the original popu-
lation. For example, (1, 0, 0, 3) denotes a population with 1 AB and 3 ab chromo-
somes initially, comprising the diploid pair AB/ab, ab/ab; this population has
probability 40^ #4 and the initial correlation of frequencies is r = 1. In the sym-
metric fitness model (1,0, 0, 3) is similar in terms of change in D or r to the popu-
lation (3, 0, 0, 1) and, with the sign of D or r reversed, to (0, 1, 3, 0) and (0, 3,1, 0).
Founder samples in which one or more genes are fixed are excluded from Table 1
and subsequent discussion. Thus the sum of the probabilities of all the groups
gives the probability of both loci remaining unfixed which in the simple case of
a-j = #2 = a;3 = £4 is given by (1 — £)2 = |f. The subsequent deterministic changes
in gene frequency and correlation of frequencies for each group are shown in Fig. 1
for the additive, multiplicative and epistatic models with s = 0-25 and c = 0-01

3 CRH 33
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Table 1. Classifications by arrangements of founder populations of four chromosomes
as (AB, Ab, aB, ab), their corresponding correlation of gene frequencies (r), and their
probabilities, in terms of gamete frequencies (a )̂ in the base population

Arrangements
A

t ^

Group Example No. r General case x1 = x2 = x3 = *4

(1,0,0,3) 2* 1 ix^^xl + xl) 8/256
(0,1,3,0) 2 - 1 1XZX3(X\ + X\) 8/256
(2, 0, 0, 2) 1 1 6x\x\ 6/256
(0,2,2,0) 1 - 1 6*1*1 6/256
(2,1,0,1) 4 1/̂ /3 12*1*4 (*! + a;4) (*2 + *3) 48/256
(1,2,1,0) 4 -l/y/3 12*2*3 (a;1 + *4) (*2 + *3) 48/256
(1,2,0,1) 2 1/3 12*!a;4(a|-l-*|) 24/256
(2,1,1,0) 2 - 1 / 3 12*2*3 (*J + *2) 24/256
(1, 1, 1, 1) 1 0 24*1*2*3a;4 24/256

* i.e. (1,0,0, 3) and (3, 0, 0, 1).

(additive and multiplicative) or 0-05 (epistatic). For these examples, |r| = 0, 0-6
and 1/V^ = 0-447, respectively, at the stable point.

The return of the gene frequencies to their stable value is seen to be much more
rapid than that of the correlation of frequencies. Even so, the trajectory of change
in frequency may not have constant direction (group 3, e.g. founder AB/AB,
Ab/ab). Despite the very strong selection coefficients on individual genotypes a
few hundred generations are required for r to become essentially zero with the
additive model, the approach to the appropriate non-zero stable point being
somewhat quicker in the other models. In each case, there are one or more groups
in which the change in the absolute value, \r\, is not monotonic, although r itself
never changes sign.

For the multiplicative and epistatic models there is an unstable equilibrium at
p = q = 0-5, D = 0, thus, in an infinite population, there would be no departure
from D = 0 in group 5. However, to be more realistic, a slight perturbation has
been introduced to allow for sampling in the first generation after the bottleneck,
to an initial frequency of AB of 0-26 and p = q = 0-5, i.e. D = 0-01, r = 0-04
(graphs ' 5 per' in Fig. 1). The rate of departure from this point is slow, and indeed
for the multiplicative model it takes about 200 generations to get from r = 0-01
t o r = 0-04.

The main point illustrated by Fig. 1 is that, since the rate of return to equi-
librium is so slow with tight linkage (and tight linkage is required for there to be
stable points at D #= 0), for very many generations no distinction between the
models is possible. There are some other anomalies, however. Since groups 3 and 4
are the most common and in these \r\ initially increases, the mean value, E(r2),
actually rises in early generations if the population sampled is in linkage equi-
librium with p = <Z = 0-5 (Table 2). As a comparison, values of E(r2) following a
bottleneck for a deterministic model with no selection (s = 0) are also shown in
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Fig. 1. Values of r, p and q are plotted against generations for various models,
assuming an infinite population, after an initial bottleneck to four chromosomes.
The numbers on the groups refer to the different groups obtained after bottlenecking
as follows: group 1: (1003); 2: (2002); 3: (2101); 4: (1201); 5: (1111) (Table 1). The
dotted lines refer to stable values. The graphs marked ' 5 per ' refer to group 5 per-
turbed initially to p = q = 0-5, D = 0-01 (i.e. r = 004).
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Table 2. Mean values of r2 in unfixed classes after a bottleneck of a population with
p = a = 0-5 and D = 0 to four chromosomes followed by an infinitely large popu-
lation, for neutral (s = 0) and additive (s = 0-25) models with c = 0-01. Generation 0
refers to the four chromosomes of the bottleneck

Generation

Neutral
Additive

0-
0-

0

3333
3333

0-
0-

1

3267
3452

0-
0-

5

3015
3774

0
0

10

•2726
•3840

0-
0-

20

2230
3332

0-
0-

50

1220
1547

0
0

100

•0447

•0404
0
0

300

0008
•0002

Table 2, and it is seen that the additive model maintains more disequilibrium on
average than the neutral model in early generations. Subsequently linkage dis-
equilibrium is lost rather more rapidly with the additive model since selection
increases the frequency of double heterozygotes, an effect noted by Clegg (1978).

4. FINITE POPULATIONS

The single bottleneck followed by a large population size exhibits some extreme
effects of sampling on distribution of linkage disequilibrium; in general a popu-
lation is never infinitely large so a stochastic model should always be used. Firstly
let us assume that the population size and selective effects are both sufficiently
large that the linkage disequilibrium is distributed around its stable point. This
distribution was studied by Felsenstein (1974) for the case where the stable point
is given by D = 0, and subsequently generalized by Avery (1978). Their results
will be briefly reviewed and generalized to consider the correlation of D values in
successive generations, which gives some impression of how long departures from
the stable point persist.

Autocorrelation of linkage disequilibrium
Let the stable point be denoted p, q and T) and let d't = (pt — p, qt — q, Dt — 3)

denote the transpose of the vector of departures from this stable point at gener-
ation t. Assuming these departures to be small,

dt+1 = Adt + et (2)

(Felsenstein, 1974) where A is the matrix of first order terms from the Taylor's
expansion of pt+1, qt+i and Dt+1 in terms of pt, qt and Dt evaluated at p, q and 3,
and et is a random vector with mean zero, independent of d{.
F r O m ( 2 ) ' d't). (3)

Since dt has mean 0, dt and et are independent and for the symmetric model,

Cov (pt-p, Dt-D) = Cov (qt-q, Dt-3) = 0

(Avery, 1978), it follows from (3) that

Cov (Dt+1, Dt) = a,, Var (Dt), (4)

where 033 is an element of A. When the distribution of D has stabilized, Var (Dt) =
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Var (Dt+1) so the correlation, p, of disequilibrium in successive generations is, from

P = C&33 . (O)

For the symmetric fitness models, from Avery (1978),

l-s-c + ks2/2) ( 1 -
p = (6)

(l-s + ks2/4: + 4:ks23
with & = 0 (additive model), 1 (multiplicative) or 1/s (epistatic). If 5 = 0, (6)
reduces to

p = (1 — s — (

or if 3 =}= 0, substituting in (1),

p = (1 —

Equation (5) shows that, to the degree of approximation used, the autocorre-
lation of D values is a function solely of the deterministic changes in D and does not
include terms in population size. The correlation is therefore just a first order
approximation to the proportion of the deviation of D from its stable point which
is retained in the next generation in an infinite population, i.e. (Dt+1—D)/(3t — D).

Table 3. The correlation (p) of linkage disequilibrium in
successive generations

Model of fitness and value of 8

CLUIU UlilfcUjlUI

fraction (c)
001
0025
005
0 1
0-2
0-5

1 xN fc)llH Hi

0

0-9900
0-9750
0-9500
0-9000
0-8000
0-5000

Additive

0-25

0-9867
0-9667
0-9333
0-8667
0-7333
0-3333

0 1

0-9889
0-9722
0-9444
0-8889
0-7778
0-4444

Multiplicative

0-25

0-98541*
0-9878
0-9551
0-8898
0-7592
0-3673

0-1

0-9917
0-9751
0-9474
0-8920
0-7812
0-4488

Epistatic
X

0-25

0-87862*
0-91183*
0-96974*
0-9538
0-8308
0-4615

0-1

0-96816*
1-0000
0-9730
0-9189
0-8108
0-4865

* Stable point at 1, t> = ±0-15; 2, D = ±0-2291; 3, D = ±0-1936; 4, JD = ±0-1118;
5, D = ±01936. Otherwise D = 0.

Values of p are given in Table 3 for a range of models, and compared with the
value 1 — c, which equals the ratio Dt+1/Dt when there is no selection. The corre-
lation is seen to depend mainly on the recombination fraction rather than fitness
values, although it must be emphasized that the population sizes have been
assumed to be sufficiently large that D never departs far from its stable point.

Monte Carlo simulation

Under these assumptions of reasonably large population size, D has a normal
distribution and values for its variance have been given by Felsenstein (1974) and
Avery (1978). I t is apparent from some of Avery's results, however, that the
distributions of D about t) are somewhat skewed when Z) 4= 0. To obtain a fuller
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description of the distribution some Monte Carlo simulations have been made
using a procedure described by Avery (1978). These results can also be used to show
how the distribution changes with time, say for populations drawn from the same
base population at which there is segregation around the stable point.

Additive (k = 0): s = 005, c = 001, N = 64

0-2 -

01 -

I 00

•1 0-2 -

f 160

1

1 1 1 , 1

01 -

-

Initia
Stabl

1
1 1 1 1 ,

point
: point

I

/ = 40

' 100
- 1 0 -0-8 -0-6 -0-4 -0-2 00 0-2 0-4 0-6 0-8 10

r

Fig. 2. Frequency distribution of r obtained by simulation (100 replicates) for an
additive model with s = 0-25, c = 0-Oland.W = 64afterf = 40 and 160 generations.
Initially r = 0 (stable point).

The additive model, with s = 0-25 and c = 001 is illustrated in Fig. 2 for a
population initially at r = D = 0 (the stable point). A histogram of r is plotted
for N = 64 and t = 40 and 160 generations, the distribution having stabilized by
about 80 generations. No fixation occurred in these replicates and the gene
frequencies p and q depart little from 0-5. Notice that the distribution is almost
uniform over the range — 1 to +1, and the fact that there is stability at r = 0 in
an infinite population is not very informative. After the distribution has stabilized,
the standard deviation of r is SD(r) = 0-55, very close to the value of 0-54 pre-
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dieted from Felsenstein's theory (Avery, 1978). For larger values of N, SD(r)
declines in proportion to 1/*JN, as predicted from both theoretical and simulated
results (Avery, 1978).

Multiplicative (k = 1): 5 = 0-25. c = 0 0 1 , A' = 64
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= 00
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nt

[

Ini
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tial
int
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point

1
- 1 0 0-8 - 0 6 -0-4 -0-2 - 0 0

r
0-2 0-4 0-6 0-8 10

Fig. 3. Aa Fig. 2 but for 100 replicates of a multiplicative model with s = 0-25,
c = 0-01 and N = 64 after t = 40 and 320 generations. Initially r = 0 (point of
unstable equilibrium).

When there is not linkage equilibrium at the stable point the situation is more
complicated. Figure 3 shows the multiplicative model, with otherwise similar
parameters to the additive model in Fig. 2 and started at r = 0, when a symmetric
bimodal distribution is generated but the modes are outside the stable points at
r = + 0-6, indeed quite close to unity. Similar results are shown in Fig. 4 for the
epistatic model and a range of population sizes, although in all cases the starting
point is taken at the positive stable point, r = 1/^5- Unless N is very large, how-
ever, selection is not strong enough to prevent values of r or D changing in sign.
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Epistatic (k = \/s): s = 0-25, c = 0.01
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Fig. 4. As Fig. 2 but for 100 replicates of an epistatic model with s = 0-25, c = 0-05,
and N = 64 or 320. Initially r = ^0-2 (stable point).

Diffusion approximation
In the models we have considered selection pressures and population sizes have

been sufficiently large that the gene frequencies (p and q) have not departed far
from their stable value of 0-5. The variation in D or r can, however, be large
(Figs. 2-4), although the covariances of p with D and q with D are essentially zero
(Felsenstein, 1974; Avery, 1978). It therefore seems reasonable to simplify the
model by assuming p and q are fixed at one-half and considering the distribution
of D alone. The diffusion approximation of this process now has only one dimen-
sion, and since fixation of the individual loci does not occur, a steady-state
distribution is produced which can readily be solved. This univariate diffusion
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approximation has been used by Sved (1968), essentially for the additive model,
and by Franklin & Lewontin (1970) for the multiplicative model. We shall
explore it in more detail and obtain some insight into our simulation results.

I t is convenient to define a new variable, y = 2xv i.e. twice the frequency of the
AB gamete or since p = q = 0-5, y equals the sum of the frequencies of coupling
gametes, and then D = y/2-0-25 and r = 2y-l. Sved (1968) and Franklin &
Lewontin (1970) made the equivalent transformation, but used the sum of fre-
quencies of the repulsion gametes. The range of y values of 0 < y < 1 and this
reparametrization enables diffusion equation results for single loci to be used. The
quantities l/N, ksz and c are assumed to be small and of similar order of magnitude,
but the selective coefficient at single loci, s, is assumed of greater order than 1/N
so segregation is maintained. Therefore an epistatic model such as the one we
have used where k = 1/s cannot be described by the following diffusion approxi-
mation. Ignoring higher order terms in formulae of Avery (1978), the mean {MSy)
and variance (Vly) of change in y per generation are

MSy = [-A(y-\)+By{i-y) (y-i)]/(2J\T), Vly = (l-y)/(2N), (7)

where A = 2Nc/(l-s), B = 2Nks2/(l-s). (8)

At the steady state, the density function <j>(y) is given by

<t>(y) = (K/VSy) exp (2^Miy/Viy) dyj (9)

(Wright, 1938; e.g. also Crow & Kimura, 1970, p. 434), where K is a normalizing

constant such that d>(y)dy = 1. From (7) and (9)
Jo

)). (10)

(This distribution is the same as that for a single locus with equal forward and
reverse mutation, homozygotes of equal fitness and heterozygote superiority if
B < 0, neutrality if B = 0 or heterozygote inferiority if B > 0.) For B = 0, <p(y)
has the Beta distribution with K = T{2A)/Y2(A), where F( ) is the gamma
function; and for B #= 0, it can be shown that

K =

For additive gene action (B = 0) the frequency distribution has three alter-
native forms (Fig. 5). If N and c are sufficiently small that A < 1, <j>(y) is U-shaped,
going to infinity at the bounds ofy = 0 or 1, equivalent tor = + 1. If A = \ the
distribution is uniform, while if A > 1 the distribution is unimodal and symmetric
about r = 0 (y = %), the stable point in infinite populations. The example simu-
lated in Fig. 2, with s = 0-25, c = 0-01 and N = 64 corresponds to A = 1-71.
The diffusion approximation predicts a slightly humped distribution (Fig. 5) and
this was observed in Fig. 2.

Without additivity (B #= 0), the results are more complicated, the distribution
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can be U-shaped, unimodal or bimodal. Positions of maxima and minima can be
obtained by diiferentiation of <j>(y) or, more easily, log (fi{y). The solutions are as
follows assuming B > 0 (e.g. multiplicative case):

(a) If 0 < 4(A — 1)/B < 1 there is a minimum at y = £, i.e. r = 0 and there
are maxima at y(l-y) = (A-l)/B, i.e.

. (11)r=

- l +1

Fig. 5. Distribution of r from the diffusion approximation for additive model
(fc = B = 0). Curves are given for increasing values of A = 2Nc/(l — s), i.e. changing
population size and/or recombination fraction.

For large values of N these maxima correspond to the stable points in infinite
population given by (1) which exist when ks2 > 4c, but now the distribution can
be bimodal even when this condition is not satisfied.

(6) If 4(A — 1)/B ^ 0, or simply ^ 4 ^ 1 , there is a U-shaped distribution with
a minimum at r = 0.

(c) If ±{A — 1)/B ~& 1 there is a unimodal distribution with a maximum at
r = 0.
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Examples of cases where B > 0 are given in Figs. 6-8. These illustrate the
effect of increasing recombination fraction when JV, s and k are fixed, so that
A increases while B remains fixed (Fig. 6), and of increasing population size when
s, k and c are fixed (Figs. 7 and 8). Figure 8 gives an example where there is a
bimodal distribution as N is small, reducing to a unimodal distribution as N
becomes very large. The example simulated in Fig. 3 for the multiplicative model
corresponds to A = 1-71, B = 10-67 with 4{A — 1)/B = 0*265, so two modes at

4 -

- 1

Fig. 6. Distribution of r from the diffusion approximation for model where k > 0.
Curves are given for fixed B = 8 and A increasing, i.e. changing recombination
fraction.

r = ± 0-86 are predicted from the diffusion equation. The results shown in Fig. 3
fit this prediction as far as the lack of replication enables us to tell.

I t is noticeable in Fig. 7 that even when N is very large and the distribution is
bimodal, there is still an appreciable probability that D or r takes values near
zero, or y values near one-half. Letting 0(max) denote the density at the modes,
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it can be shown from (10) that

(12)

Examples computed from (12) are given in Table 4, and for A = 1-71, B = 10-67
(Fig. 3), 0(O-5)/0(max) = 0-360. Presumably as a consequence of the unstable
point which exists at r = 0, there is a substantial movement of populations from
positive to negative disequilibrium and vice versa, even though either is stable
in an infinitely large population.

Fig. 7. Distribution of r from the diffusion approximation for model where k > 0.
Curves are given for B = %A, and A and B increasing together, i.e. changing
population size. In this model the stable points in infinite population have r =
± /V

When the fitness parameter k is negative, there is always stability of linkage
equilibrium in an infinitely large population. However, in a finite population
various distributions of r can be generated for B < 0.

(a) If 0 < 4:(A — i)/B < 1, the distribution is W-shaped, with a maximum at
r = 0 and minima at r = ± ̂ /[l — 4(A — 1)/-B]- An example is shown in Pig. 9, in
which population size is varied, the W-shaped distribution being obtained when
A = £ , £ = - 4 .
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(b) If 4{A — 1)/B ^ 0, i.e. A > 1 there is a unimodal distribution with a
maximum at r = 0.

(c) If 4(A — 1)/B 5s 1 there is a U-shaped distribution with a minimum at r = 0.
The results from the diffusion equation give a useful picture of the distributions

likely to be obtained, although predictions of variance of r are less satisfactory.
Whilst the method cannot formally be used for our epistatic model, where k = 1/s,
it should give a guide to the distribution of D or r when there is rather less epistasis.
I t is clear that the distribution can take a variety of forms.

Fig. 8. As Fig. 7, but B = 3A, so in infinite population r = 0.

5. DISCUSSION

The first issue we considered was the rate of return to the stable point in popu-
lations greatly perturbed from it, say by having few founders. Despite strong
selective pressures and cases of stability with considerable disequilibrium, the
rate of approach was slow for the cases of tight linkage we considered. Of course,
with more loosely linked genes the rates of approach would have been more rapid,
but we have concentrated on tight linkage since only then can there be stable
linkage disequilibria with feasible models of selection effects. Equation (6),
derived here as the correlation of D values in successive generations in finite
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populations, also gives the proportional decline in the deviation of D from its stable
point in infinite populations when p and q are close to 0-5 and this, as other
workers previously and Table 3 have illustrated, tends to 1 — c if selective values
are very small.

The examples given in Fig. 1 are for symmetric models and in such cases the
zone of attraction and general behaviour of the stable points can be calculated.
Karlin & Carmelli (1975) sampled fitness sets randomly, and argued that epistasis

Fig. 9. As Fig. 7, but fc < 0 with B = —SA, so in infinite population r = 0.

and thus linkage disequilibrium was likely to be the rule rather than the exception.
One example of a fitness matrix by Karlin & Carmelli which has heterozygote
superiority at both loci is as follows:

AA
Aa
aa

BB
0-683474
0-443646
0-493213

Bb
0-365552
0-804193
0-678145

66
0-166198
0-476447
0-442100
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Fig. 10. Values of r andp plotted against generations for Karlin & Carmelli's model
(see text) with c = 0-02 in infinite population. Initially p = q = 0-5 and a range of
r values (shown on graphs) are given. The dotted lines show stable points.

Karlin & Carmelli showed that two polymorphic stable points existed with tight
recombination, and one otherwise. For c = 0-02,thestablepointsare2> = 0-196522,
q = 0-569544 and D = -0-089119, giving r = -0-452949 and p = 0-749444,
q = 0-754393 and D = 0-174870, giving r = 0-937504. In such a case the zones of
attraction are not easily computed. The reason we have introduced this compli-
cated model is, however, to illustrate more strikingly than does Fig. 1 the peculiar
trajectories by which the stable point can be reached, and the long period taken
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for the population to appear to 'decide' on which stable point it is moving to-
wards. Results using a deterministic model are given in Fig. 10; in each case the
initial gene frequencies are taken as 0-5 but a range of initial r (= 4Z>) values are
given.

The examples shown in Fig. 10 illustrate that observations taken over many
generations can often give little indication of the final state of the population,
and could be consistent with many real stable points, including non-polymorphic
ones.

The variation in linkage disequilibrium with drift and no selection has been
extensively studied theoretically, following Hill & Robertson (1968). Joint studies
of drift and selection have been limited by analytical difficulties except for
populations distributed closely round the stable point (Felsenstein, 1974; Avery,
1978). The main observation we have made here (Figs. 2-9) is that, except when
populations are very large, implying no seasonal or sporadic bottlenecks of size,
a bimodal or wide distribution of linkage disequilibrium can be observed. Even
though there is a stable point with quite substantial linkage disequilibrium,
populations may pass through D = 0 and move from positive to negative linkage
disequilibrium, or vice versa. Thus populations subdivided for many generations
may show disequilibrium of opposite sign even though the selective forces in each
are the same.

Selection and drift are only two of the possible causes of linkage disequilibrium.
Other possible causes are migration and population admixture, or directional
selection at a locus causing disequilibrium between it and a linked neutral locus
or between an adjacent pair of neutral loci ('hitch hiking' effects). Either of
these alternatives can, for example, be used to explain disequilibrium in the
human histocompatibility system, HLA (Thomson, 1977).

Hedrick et al. (1978) reviewed experimental tests for the presence of linkage
disequilibrium, and except for the HLA system and genes associated with
inversions, found that only rarely has it been observed. Even if linkage dis-
equilibrium is found, our results show that interpretation is bound to be difficult.
Langley (1977) has discussed how to test whether the data are consistent with
neutrality, but such tests lack the sophistication of those available for testing
neutrality at single loci, such as that of Ewens (see review by Ewens, 1977). Since
it is only with very tight linkage that stable polymorphisms having linkage dis-
equilibrium are possible, any sampling effects take very many generations to be
eliminated. Thus we think it unlikely that observations on disequilibria among
linked loci are likely to give much information about any selective forces that may
be present.

We are grateful to the Science Research Council for financial support.
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