THEORY OF MEROMORPHIC FUNCTIONS ON AN
OPEN RIEMANN SURFACE WITH NULL BOUNDARY

MASATSUGU TSUJI

In the former paper,” I have developped a theory of meromorphic functions
in a neighbourhood of a bounded closed set E of logarithmic capacity zero, by
means of Evans’ potential fnnction #(z), which tends to oo, when z tends to
any point of E. It is not known, whether such a potential function exists on
an open Riemann surface with null boundary, but by a substitute of Evans’ func-
tion, we shall develop the similar theory of meromorphic functions on an open
Riemann surface with null boundary.

§1

1. Let F be an open Riemann surface with null boundary, spread over
the z-plane. We exhaust F by a sequence of compact Riemann surfaces:
Fo,C F,C ... C F,~F, where the boundary 7', of F, consists of a finite number
of analytic Jordan curves.

Let #,(z) be the harmonic measure of [, with respect to Fn— Fy, such
that #,(z) is harmonic in Fy — Fo, #n(2) =0 on Iy, #n(2) =1 on {». Then as
well known, lim #,(2z) = 0 uniformly in any compact domain of F. Let v.(z) be

N»r

the conjugate harmonic function of #,(z) and

(1) dn =S dvn(2),
Ty
then
(2) dixd:>...xdy—0.
We put
~2-"—( niz)+ivn(2)) .
(3) C=e™" ) =re",
where
_2d: % 2) 2[.,
(4) r=ra(2) =e s 0=0n(z)=raw‘—v"(z),
n
then
(5) 1<r<r, re=edn .
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1) M. Tsuji: On the behaviour of a mernmorphic function in the neighbourhood of a closed
set of capacity zero. Proc. Imp. Acad. 18 (1942). M. Tsuji: Theory of meromorphic func-
tions in an neighbourhood of a closed set of capacity zero. Jap. Journ. Math. 19 (1944-48,.
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By (2),

(6) VENE ... Erp> 0,

In this paper, 7, # mean always 7(2), 0.(2).
Since lim #a(z) =0 uniformly in any compact domain of F, the part of Fy,

n>

such that 75 <7x(2) €7, (0<8<1) tends to the ideal boundary of F, for #-> oo,
Hence for a given F,, we can take m so large that the part 7} = 7m(2) £7m of
Fn lies outside of Fy.

Let 4, be the part of F, — Fo, such that 1=<7,(2) 27 (=7,) and Cy : 7(2) =7
(1<7<7,) be the niveau curve of 7.(z), then by (1),

7 . di=2r.
Let w(z) be one-valued and meromorphic on F. We put

1
(8) m(f, a) = 27!'—3‘6

o8 [w(z) ]
where
la—b|

Lo, 8]= GaSTamas ol

Let n(7, a) be the number of zero points of w(z) —a in Fo+ 4, and put

(9) Nz, a)-S M dr — C(a), Cla) =m(1, a).
(10) Ta(7, @) = m(r, @) + N(7, a),

an At =40+ (—:L --%T--»~)zrdrd0, st = A,
(12) T(r) = :,i(;’.l-d,’

where w' = ZC , C=7¢" and A, is the area of the image of Fy by w =w(2) on
the w-sphere K.
Then we shall prove an analogue of Nevanlinna’s first fundamental theorem.

THEOREM 1. Tn(r, a) = Tn(r) (L=r=r).
Though Tu(7) is defined for 1 <7< r,, it is enough for our purpose.

Proof. Considering w(z) as a function of ¢ =7e", we have

dmlr, @) _dm(r,b) _ 1 2 lw-0b ldﬁ
dr dr zJdc.or °8| w-a
1 w—b n(r, b) —alr, a)
zan darg(w_a>= 7 ’
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dm(r, a) | n(z, a) _ dm(r, b) 4 8 b
dr r = ar r '

hence integrating on [1, ], we have by (9),
Tn(f, a)= Tn(r, b)-

Let dw(b) be the surface element on K, then

Tu(r, a) = lSS Tulr, b)dew(b) =~~1»‘SS m(r, b)dw(b)

1 SS N(rz, b)dw(d) = §§-’: dr + const..

If we put =1, then we see that const. =0, so that

Tn(r, d) = Tn(?’) .

139

2. To prove that 0 C(a) =m(1, @) £ K, where K is a constant independent

of @ and »n, we shall prove a lemma:

LEMMA. Let f(z) = u(z) + iw(z) (f(0) =0) be regular for |z| =
and v(2)=0 for —1l=x=1, v(2)>0 for >0, |2]1<1 and v(z) =
y<0, lzl=1.

Then f(z) is schlicht in |2]|£1/7.
Proof. By the hypothesis,

(1) v(z) = v(re”) =alrsin0+§]anr"sin nf (a,>0),
n=2

where

a = ]-‘—S v(€") sin 0df = »2—3 v(£) sin 046,
TJaom
= iS v(e™) sin n0df = ——ZVS v(e™) sin nodd.
T Jon T Jy
Since !sinn | < |sin 6|,
(2) lan] = —2—5 v(e®) | sin 0| do = Zﬁs v("®) sin 0d6 = na;.
T Jo T Jo

Since f(z) =a1z~}-2a,,z", we have for |zl =7, |2 =7 (r<1),

1(z=x+1y)
= —v(z) jor

if r=1/7.

/(z‘z)l:i:z‘i)«f a1+2an(zi'"‘+ et sa— Eman!r" '
SV 1 —-7r+67 =27 1-77
2a(l Z;i ) =yt =7y >a - 3.=0

Hence f(z) is schlicht in | 2! <1/7. q.e.d.
We shall prove
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THEOREM 2. 0=C(a) =m(1, a) =K,
where K is a constant, which is independent of a and n.

Proof. Let zy be a point of I and U; be its neighbourhood, which con-
sists of regular points of Fi. Then for a suitable U,, we can map U, on |7 |<1
conformally, such that 2z, becomes r =0 and the part of U, which lies in F, — F;
is mapped on the upper half of |r]/<1 and the part of I, which lies in U
becomes the diameter L of |r|=1 through r= —1 and r=1.

We put u#.(z) =u(r), then u(r)=0 on L, #(r)>0 on the upper half of
iri<1, so that #(z) can be continued harmonically across L in the lower half
of |7]<1, by putting u(r) = —u(7). Hence il we put f»(2) = — vx(2) + iua(2)
=f(7), then by the lemma, f(¢) is schlicht in |r!=<1/7. Hence there exists a
constant R, such that /,,(z) = — vs(2) + fus(2) isregular and schlichi in [z — 2| =R
for any 2z, of I%.

Hence by Koebe’s distortion theorem, there exists a constant K, such that
for any two 21, 22 on Iy,

[ F(2) | £Kol(ze)].
Since #, =0 on I, we have

dvalz,) £ K dvnz:)

(1) Oé ds 0 dS s

where ds is the arc element of Ty and we choose the sense of Iy positive with
respect to F,. Hence if we put

_ dva(2) o = Min (%)
(2) M, = IVII? gs 2 = I\fi:n s
then
(3) Mn éKom,,.
Now
1 1 dv (2) Mn 1 Kan
(4) m(l, a) = E;S ]0g [w’ a_] __”25 ds = d Y ]0g [w’ 'a] ds = = d”’ H
where K is a constant independent of ¢ and n.
Since
- _ dvn
(3) ax _Sr,, dé-dSéLﬂln,

where L is the length of I, we have

KM, _ KK,

Lmy, =L =K,

(6) m(l, a) =

where K is a constant indepsndent of ¢ and .
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3. By means of Theorems 1 and 2, we shall prove

TueoreMm 3.2 Let nla)be the number of zero points of w(z) —ain F and

7y = sup. n(a).

Let E be the set of a, such that n(a)<mny, then E is of logarithmic capacity zero.

Proof. First suppose that 7;< . Then there exists @, such that (@) = 7.
We take » so large that w(z) — a, has 7 zeros in F,. Then for any 6 (0<5<1),
we take m so large that the part of F), such that 735, < 7,(2) <7, lies outside
of Fp, then

(1) T 7m) = N(#m, ao) anos,;" 4; —C(a) 2n(1-06)log 7m — O(1).

n

Let E be the set of @, such that n(a) =n,—1 and suppose that cap. E>0, then
we may assume that E is a bounded closed set. Let #{w) be the equilibrium
potential of E:

1
u(w) = SFlOg E&:"djdﬂ(d\, i‘k‘dﬂ(d) = 1,

such that #(w) is bounded on the w-sphere K. Then from (s, a) + N(7, a)
= Tw(r), we have

o) + S N, @)du(a@) = Tz,

so that
(2 Tonlrm) < (1~ 1) log 7m+ O(1).

Since 7m- «, we have from (1), (2),
m(l—8)=n—1,
which is impossible, if § <1/#,. Hence cap. E=0.

If = o, then for any N>0, there exists a,, such that z#(a,) = N, then the
set of @, such that n(a) <N -1 is of logarithmic capacity zero. Since N is
arbitrary, the set of a, such that n(a) < « is of logarithmic capacity zero.

Remark. Let @ be the Riemann surface of the inverse function z=2z(w)
of w(z) spread over the w-spherz K. If 7#,< o, then the set of @, such that
n(a) = n, is an open set, so that @ consists of 7, sheats and the projection of
singular points of z(w) on K is a closed set of logarithmic capacity zero.

From the above proof, we have easily

2) Y. Nagai: On the behaviour of the boundary of Riemann surfaces, II. Proc. Japan Acad.
26 (1950). Z. Y(1j6bé: On the Riemann surfaces, no Green’s function of which exists.
Mathematica Japonicae. 1I, No. 2(1951). M. Tsuji: Some metrical theorems on Fuchsian
groups. Kodai Math. Seminar Reports. Nos. 4-5(1950). A. Mori: On Riemann surfaces cn
which no bounded harmonic function exists. Journ. Math. Soc. Japan. 3 (1951).
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THEOREM 4. If ny =sup. nla) = oo, then w(z) takes any value infinitely often,

except a sel of logarithmic capacity zero and

lim 72" = oo,

n->»o lOg Tn
Conversely, if this condition is satisfied, then uw(z) takes any value infinitely
often, except a set of logarithmic capacity zero.

82
1. Let ® be the Riemann surface of the inverse function z = z(w) of w(z)
spread over the w-plane and wo be its regular point. We continue 2(w) along
2 half-line L(¢): arg (w —wy) = ¢ till we meet a singular point of z(w). Then
we obtain the Mittag-Leffler’s principal star region H(w»). Let E be the set of
¢, such that L(¢) meets a singular point of z(w) at a finite distance. Then

Tueorem 53 E is of measure zero.
This is an extension of Gross’ theorem.”

Proof. Let Hp(w,) be the part of IH(w,), which liesin | w —wo] <R and Ez
be the set of ¢, such that L(¢) meets a singular point of z(w) in |w — wo | <R.
Let Ik be the image of Hx(wo) on F and C,(R) be the part of C, contained

in &y and s(#) be the length of its image in Hx(w,), then writing w' = %wz ,
¢ =74, we have
2 2 9 dA(f)
_ '} < |2 .
s(r)’ = (Scr(mlw [rdl?) =—_27rrgcr(mlu Prd0 =2y P

where A(7) is the area of the image of 4,*Fr in Hx(ww). Hence

S"' s(r)?

Vin T

dr22nAlrm) =£27°R

Hence if we put Min s(7) = sa, then

Vingrara

shlogra <4 7R’

Since 72— o, we have s$2—0, so that mEz=0. Since Ris arbitrary, we have
mE = Q.

2. Let a Riemann surface F be spread over the z-shpere K. If there exists
a sequence of compact Riemann surfaces F— F, such that L,/| Fn| >0 (n—> o),

3 K. Noshiro: Open Riemann surface with null boundary. Nagoya Math. Journ. 3 (1951).
Z. YGjobo. 1. c. 2).

* W, Gross: Uber die Singularititen analytischer Funktionen. Monatshefte f. Math. u. Phys.
29 (1918).
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then F is called regularly exhaustible in Ahlfors’ sense, where L, is the length
of the boundary of F, and | F, | is its area measured on K.

TueoreM 6.5 The Riemann surface © of the inverse function z(w) of w(z)
is regularly exhaustible in Ahifors’ sense.

Proof. Writing w' = l(iz’c ¢ =72", we put as in §1,

(1) Alr) = A°+§5M(l+]wP> rdrdf s
(2) L(r) = 1'+“;z'v],rda

Then

(3) L(r)<2rr dﬁ‘r’l.

(i) First suppose that A(r;) > o (> ») and suppose that
(4) L(»)> (A(r)*"

for any 7, such that v7,%7<=7,, then

§oe s =2, e =
Since S::"%ﬁ —~log 72— o, this is absurd, hence there exists v (V7p £ 2= 7n),
such that
(5) L(zn) = (Azn))",

Since A(rp)— o with A(7x) - ©, we have

L(Tn) 1
(6) Altw) = (AGea))H

(ii) If A(zy) 2K (n—> ), then
™ L(r)?

Yra

-0 (n—> o).

=2 dr =27 A(r) £27K,
so that there exists rn (~V7n £ta=74), such that L(rs) -0, hence

L(Tn) - oo
@) Ao -0 (n ).

Hence our theorem is proved.

§3
1. As an application of Theorem 6, we shall prove an extension of Myrberg’s

5 K. Noshiro: 1. c. 3).
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theorem. Let F be a closed Riemann surface of genus p =2, spread over the
z-sphere K. We make F bacome a surface of planar character by cutting along
p disjointringcuts C; (=1,2, ..., p), and let F; be the resulting surface. We
take infinitely many same samples as F, and connect them along the opposite
shores of C; as in the well known way, then we obtain a covering surface F*’ of
F, which is of planar character. Hence by Koebe’s theorem, we can map F‘*’ on
a schlicht domain D on the {-plane. The boundary E of D is a bounded perfect set,
which is the singular set of a certain linear group of Schottky type. Myrberg®
proved that E is of positive logarithmic capacity, hence F'*’ is of positive boundary.

We shall generalize this Myrberg’s theorem as follows.

Instead of cutting F along p ring cuts, we cut F along q (1= g £») ring cuts
Ci(i=1,2,...,q) and let Fybe the resulting surface. We take infinitely many
same samples as F, and connect them along the opposite shores of C; (i=1,
2,...,q), then we obtain a covering surface F(; of F, which is of infinite
genus, if g<p.

2. We shall prove

THEOREM 7. F{) is of null boundarv, while if q22, F{3) is of positive
boundary and there exists a non-constant bounded harmonic Sfunction u(z) on
F(3), whose Dirichlet integral DLu] on F{3) is finite.

Proof. (i). First we shall prove that F{;, is of null boundary. We cut F
along C;=C and let F, be the resulting surface. We take infinitely many same

samples as Fy:

Fi, F3, .. . ,Fyy ...

) N

Let C*, C™ be the both shores of C. When we consider them belong to the
boundary of Fh, we denote them by (C*)h, (C™)u.

Similarly we define (C*)y, (C™)4 for Fu.

We connect {F}, {F} as follows.

We identify C*+ of Fy with (C7)} of F!, (C*)! of F{ with (C™)} of F} and
so on. We identify C~ of F, with (C*)!! of FY', (C™)! of F} with (C*){ of F¥
and so on and put

n n
(2) Fn=Fo+ElF’y+§]lF;’, Fn—Fua=Fu+Fy.
v= v=1"
We take a circular disc 4y in F, and let I, be its boundary.
6 P, J. Myrberg: Die Kapazitit der singuliren Menge der linearen Gruppen. Ann. Acad.

Fenn. Ser. A. Math.-Phys. 10 (1941). M. Tsuji: On the uniformization of an algebraic
function of genus px2. Tohoku Math. Journ. 3 (1951).
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Then
(3) AOC.F\,CFLC. .« e CFn*’ F}T;)
The boundary I'» of Fr is
(4) Fn=(CHn+(C)y.

Let u;'(2z) be the harmonic measure of I', with respect to Fy, — do and let v{’(z)

be its conjugate harmonic function and put
(5) W=\ av)(2), u=2z/dy.
Ty

Let u»(z) be the harmonic measure of (C*)}, with respect to F., such that #,(z)
=0 on (C™)n, un(2) =1 on (C*)y and let vi(z) be its conjugate harmonic func-
tion.

Let #//(2z) be the harmonic measure of (C”)’; with respect to Fy, such that
#n(2) =0 on (C")n, un(z) =1 on (C7),. We put

(6) dn =S(C_):dv;(z) +§(C+)udvé'(z), tn=2n/dn.

n 3

Then as Noshiro” proved,

(7) ’u;?)é‘u{)q)-—{-ul-}-,,,-i—,un,

Since un=const.=a>0, we have lim x4\’ = «, so that limd!’ =0, hence F{’

n->»x ke

is of null boundary.

(ii) Next we shall prove that F{;’ (g>2) is of positive boundary. Suppose
that F{;) is of null boundary, then by Theorem 6, F(;, is regularly exhaustible
in Ahlfor’s sense, so that there exists a sequence of compact Riemann surfaces:
FCEC...CF,~F\3), such that

(1) 250, (o),
where L, is the length of the boundary I, of F.. measured on the z-sphere K
and
| Fnl
2 S, =—1nl
(2) "= TF

where | F,, |, | F| are the spherical areas of F, and F respectively.

As seen from the proof of Theorem 6, I, is the niveau curve of a harmonic
measure, so that I'» consists of a finite number v, of disjoint closed curves,
which are not homotop null, hence the length of each curve is=a>0, where a
is a constant, which depends on F only. Hence

(3) Ln =qavy.
) K. Noshiro: 1, c. 3).
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We dsnote the Euler’s characteristic of F, by px.
Let C; (i=qg+1,..., ) be covered u;”-times by F., then we see easily
that

(4) onZ220ufi+ o ) a2 20+ L+ )+ La/a.
Now by Ahlfors’ second covering theorem,”

(5) 2" €S+ hLn,

where h is a constant, which depends on F only, so that

with a suitable %.
Since p=2(p—1) is the Euler’s characteristic of F, we have by Ahlfors’
fundamental theorem on covering surfaces,”

(7) p,,é2(p—1)Sn—th,
so that by (6),
(8) 2(g—1)S, £ hL,,

which contradicts (1), if g=2. Hence Fi;;(g=2) is of positive boundary.
Next we shall prove that there exists a non-constant bounded harmonic
functinn #(z) on F{;', whose Dirichlet integral D[z] is finite.
We take off Fy from F{;), then there remains 2¢q connected surfaces 0}, @]
(i=1,2,...,q), where ¢ abutts on F, along C{ and ¢; abutts on F, along C;.
We exhaust @f =® by a sequence of compact Riemann surfaces: 0,C @,
C...C0,->0, where C{ + I'n is the boundary of @,. Let u,(z) be the harnonic
measure of I', with respect to @, and let v,(2) be its conjugate harmonic func-

tion and put

(9) ) dn = ci(.d?]n(z).

Since #,(z) decreases with #, d, decreases with 7.
From the above proof, we see that

(10) Lim dn>0.

Let

an lim #s(2) = u(2)
no N

and v(z) be its conjugate harmonic function and put
8 L. Ahlfors: Zur Theorie der Uberlagerungsfiichen. Acta Math. 65 (1935).
9 L. Ahlfors: L. c. 8).
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(12) d=§ a2,

then lim d, =d>0, so that #(z)=% const., hence #(z) =00on Cf, 0<u(z)<1in @.

7>

Let D{«] be the Dirichlet integral of #(z) on @, then
(13) 0<D[ul€d< =,

Hence there exists a non-constant bounded harmonic function on @, which
vanishes on C; and whose Dirichlet integral is finite. Similarly there exists a
similar harmonic function on @;, @;.

Hence as proved by R. Nevanlinna'® and Bader and Pareau,'” there exists
a non-constant bounded harronic function on F{;’, whose Dirichlet integral is
finite.

)

Remark. By Sario’s theorem,"” there exists no non-constant one-valued
regular function on F{j’, whose Dirichlet integral is finite.

§4

Let w(z) be one valued and meromorphic on F and @ be the Riemann
surface of the inverse function z(w) of w(z) spread over the w-plane and 0'” be
a connected piece of @, which lies above |w —wq| <p and F'® be its image on F.
We assume that F'? is non-compact.

With the same notations as §1 we put

(1) A = 4o F® FP = Fpo F?, CP =CpF?.

For the sake of brevity we assume that w, = 0.
To define m(7, a), we introduce a metric (g, &) in |w]|<p as follows.®
For |a|<p, we put

_ 20lal
(2) (a, O)—Pz‘*‘l“lz.
2
Let UJ(w) =—’—’;(2—u:)_%gl, then for |a|<p, |b|<p, we define (a, b) by
2 —
3) (@, ) = (Uab), 0) = 2elb~al/lo —ab]

1+ o [b—a /| *—abl*"
By this metric, we put

10) R, Nevanlinna: Uber der Existenz von beschriinkten Potentialfunktionen auf Flidchen von
unendlichem Geschlecht. Math. Zeits. 52 (1950).

11) R, Bader and M. Pareau: Domaines non-compacts et classification des surfaces de Riemann.
C.R. 232 (1951). A. Mori: On the existence of harmonic functions on a Riemann surface.
Journ. Fac. Sci. Tokyo Univ. Section I, Vol. VI, Part 4 (1951).

12) L, Sario: Uber Riemannsche Fliche mit hetbarem Rand. Ann. Acad. Fenn. A. L. 50 (1948).

13) M. Tsuji: On a regular function which is of constant absolute value on the boundary of
an infinite domain. Tohoku Math. Journ. 3 (1951).
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1 1
(4) m(r, a) = "27?565?) log ‘(w( df.

z), a)

We use the same notations as §1, since no confusion occurs.
Let #(7, @) be the number of zero points of w(z) —a in F¢” + 4 and put

(5) N(z, a) = S”(”“) dr—C(a), Cla)=m(1, a).

Then as Theorem 2,

(6) 0=C(a) £K,
where K is a constant independent of @ and #n. We put
(7) Talr, a) =m(r, a) + N(z, a),
w'| A(r)
(8) A = A+, m( ., lwlz) rdrds,  S(r) =47,
where A, is the area of the image of F{” on the w-sphere K by w=w(z),
2
w' = ‘;’g » C=7¢® and o(p) _i + -, is the area of the projection of |w!<p on K.
r
(9) To(r) = | 574
1 7
lw']
(10) L) = SC“’) T

Then similarly as my former paper,”’ we have
THEOREM 8. Tul7z, @) = Tn(7) + O(0(7)), (1=£r=7rn),

where

o) = £ g

For lal£p. <y,
[0(0(2)) | £ Ko(r),

where K is a constant, which depends p, on only.

THEOREM 9. For any 8 (0<8<1), there exists tn (rn®Etagry) (n2m),
such that
m(fn) =~ Tn(T; log Tn(Tn) .

Hence for any ¢>0,
(1 =&)Tultn) € Tultn, @) £(1+)Tulta)  (mam).

) M. Tsuji: L c. 13).
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Proof. We follow Dinghas.” By (10), (8),

2 { lw'| ¥ . dA(r)
L(7) éQm’\ (P)(T_—i—h]ﬂz_vn“" ) rdf =2 ny ==
Lir) _ o A’(r)
7
so that
oo {7 ] Al
O(r) =~ 2 Sl\/-—}—~dr.
Hence
v r
(1) (O(r)) <2 7:3 ——‘?—SIA’( 7)dr=2zrs(p)rlog r-Th(r).
1

Suppose that

for any 7, such that 7, °<7<7r,, then

r N7
n dr - o d77z(7’) <9 n 1 )
S 11‘ Sflng :2“0((‘)57:‘6, n(?’) lOg T;(T) = 1(7(()) log Tn(?’n ) =0
(n—> ),
a dr 1 . N P 1-5 _ P
Since S ylog 7 = log =5’ this is absurd, hence there exists v (74 ° S v, £ 7y)

(n> no), such that

THEOREM 10.1% Under the same condition as Theorem 8, let n(a) be the
number of zero points of w(z) —a (lal<p) in F**' and

7o = sup. n(a).
o

Let E be the set of a, such that n(a)<mn,. Then E is of logarithmic capacity
zero.

Proof. (i) First suppose that 7, < ~. Then there exists @, such that
nlay) = no and let w(z) —a, has », zeros in Fif'.
We take m so large that the part: 75, £7m(2) €7, of Fii' lies outside of
F{®. By Theorem 9, there exists tm (#7° < tm<#m), such that
m dr

(1) (14 6)Tr(tm) = Tl tms @) 2 N, a@>=n05 y <L -Cla)

=nm(1—26)log 7m— O(1).

Let E be the set of a, such that #n(a) < —1 and suppose that cap. E> 0.

15) A Dmghas Eine Bemerkung zur Ahlforsschen Theorie der Uberlagerungsflichen. Math.
Zeits. 44 (1936).
16) Y, Nagai: 1. c. 2). Z. Y{jobo: L. c. 2). M. Tsuji: L c. 2). A, Mori: L c. 2).
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Then we may assume that E is a closed set contained in |w|<p;<p. Then
similarly as Theorem 3, we have
(2) (1—5)Tm(1’m)=4'—(ﬂo—l)logfm'*'O(l).
Hence from (1), (2),

ny(1—23) = 7y —1

1+90 ="1-6°

which is impossible, if ¢ is sufficiently small. Hence cap.E=0. If 5= oo,
then we can prove similarly as Theorem 3, that the set E of a, such that n(a)
< oo is of logarithmic capacity zero.

Maihematical Institute,
Tokyo University

https://doi.org/10.1017/S0027763000017074 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017074



