TWO THEOREMS ON MOSAICS

B. GORDON AND M. M. ROBERTSON

1. Introduction. The concept of a mosaic was recently introduced by A. A. Mullin (1). By the fundamental theorem of arithmetic, every integer n > 1 can be uniquely expressed in the form

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r},$$

where the p_i are primes satisfying $p_1 < p_2 < \ldots < p_r$. We then express any exponents α_j which are greater than unity in the same manner, and continue in this way until the process terminates. The resulting planar configuration of primes is called the *mosaic* of *n*. We denote by $\psi(n)$ the product of all the primes occurring in the mosaic of *n*; by convention, $\psi(1) = 1$. Then $\psi(n)$ is a multiplicative mapping of the set of natural numbers onto itself. Clearly $\psi(n)$ tends to infinity with *n*, and hence for fixed *k*, the equation $\psi(n) = k$ has only a finite number of solutions, which we denote by $\xi(k)$. Our first result is

THEOREM 1. If $k = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ is the prime decomposition of k, then

$$\xi(k) = \beta^{-1} \prod_{j=1}^r inom{eta}{lpha_j}, \qquad where \ eta = 1 + \sum_{j=1}^r \ lpha_j.$$

To state the second theorem we require some more notation. We define the iterates ψ_{ν} of ψ in the usual way, i.e., $\psi_0(n) = n$, and $\psi_{\nu}(n) = \psi(\psi_{\nu-1}(n))$ for $\nu > 0$. It is easily seen that $\psi(n) \leq n$. The equality holds if and only if either n is square-free or n = 4m where m is odd and square-free. Hence for any n there exists a smallest non-negative integer $\nu = \nu(n)$ such that $\psi_{\nu+1}(n) = \psi_{\nu}(n)$. If $k \ge 0$, we let $\theta(k) = \min\{n: \nu(n) = k\}$; for example, $\theta(0) = 1$, $\theta(1) = 8$, $\theta(2) = 16$, $\theta(3) = 36$, $\theta(4) = 72$.

THEOREM 2. (1) For any constant c > 1, there exists a constant A = A(c) > 0such that $\theta(k) \ge Ac^k$ for all $k \ge 0$.

(2) There exists a function $\mu(k) \ge \theta(k)$ satisfying $\mu(0) = 1$, $\mu(1) = 8$, and

$$\mu(k+1) < (5 \log \mu(k) \log \log \mu(k))^{\sqrt{\mu(k)} \log \mu(k)/\log 2}$$

for $k \ge 1$.

2. Proof of Theorem 1. By definition, $\xi(p_1^{\alpha_1} \dots p_r^{\alpha_r})$ is the number of different mosaics which can be formed with α_j primes p_j $(j = 1, \dots, r)$. We may write $\xi(p_1^{\alpha_1} \dots p_r^{\alpha_r}) = \eta(\alpha_1, \dots, \alpha_r)$ because ξ does not depend upon the particular primes p_j , but only on their multiplicities α_j . Since a mosaic cannot have two equal primes on the "first stratum," it follows that

Received July 20, 1964.

(2.1)
$$\eta(\alpha_1,\ldots,\alpha_r) = \sum_{s=1}^r \sum' \sum'' \prod_{t=1}^s \eta(\alpha_1^{(t)},\ldots,\alpha_r^{(t)}).$$

Here the sum \sum' is extended over the $\binom{r}{s}$ distinct *r*-partite numbers $(\epsilon_1, \ldots, \epsilon_r)$ in which *s* of the ϵ_j are equal to 1, and the remaining r - s of the ϵ_j are 0; the sum \sum'' is extended over all ordered partitions of $(\alpha_1 - \epsilon_1, \ldots, \alpha_r - \epsilon_r)$ into *s* parts, in which $(0, \ldots, 0)$ may be counted as a part.

For $r \ge 2$ we consider the function

$$g(z) = g(z; x_1, \ldots, x_r) = \prod_{j=1}^r (1 + x_j z) - z,$$

where $0 < x_j < x$ for $1 \le j \le r$. Clearly g''(z) > 0 for z real and positive; moreover g(0) = 1, and g(z) is positive for z sufficiently large. If x is sufficiently small (in fact if $x < \frac{1}{2}(2^{1/r} - 1))$, g(2) < 0, and so for such x, g(z) has exactly two positive roots γ_1 , $\gamma_2(\gamma_1 < \gamma_2)$, which depend on the x_j . When $\gamma_1 < z < \gamma_2$, g(z) < 0, and when $0 \le z < \gamma_1$ or $z > \gamma_2$, g(z) > 0. Hence if z is complex and satisfies $\gamma_1 < |z| < \gamma_2$, then

$$\left| \prod_{j=1}^{r} (1+x_{j}z) \right| \leq \prod_{j=1}^{r} (1+x_{j}|z|) < |z|$$

A simple application of Rouché's theorem now shows that $z = \gamma_1$ is the only solution of g(z) = 0 in $|z| < \gamma_2$. When r = 1, we let γ_1 be the solution of $g(z) = 1 + x_1 z - z = 0$, and we put $\gamma_2 = \infty$. Then for all $r \ge 1$, γ_1 is the only solution of g(z) = 0 in $|z| < \gamma_2$, and

$$\prod_{j=1}^{7} |1 + x_j z| < |z|$$

for $\gamma_1 < |z| < \gamma_2$. We write

$$G(x_1,\ldots,x_r) = \sum_{\alpha_1=0}^{\infty} \ldots \sum_{\alpha_r=0}^{\infty} \delta(\alpha_1,\ldots,\alpha_r) x_1^{\alpha_1} \ldots x_r^{\alpha_r},$$

where

$$\delta(\alpha_1,\ldots,\alpha_r) = \beta^{-1} \prod_{j=1}^r {\beta \choose \alpha_j}.$$

Let C be any circle |z| = R, where $\gamma_1 < R < \gamma_2$. Then for

$$0 < x_j < x \ (1 \leqslant j \leqslant r),$$

we obtain from the residue theorem:

$$G(x_1, \ldots, x_r) = \sum_{\beta=1}^{\infty} \int_C (2\pi i\beta z^{\beta})^{-1} \prod_{j=1}^r (1+x_j z)^{\beta} dz$$

= $-\frac{1}{2\pi i} \int_C \log \left\{ 1 - z^{-1} \prod_{j=1}^r (1+x_j z) \right\} dz$
= $\frac{1}{2\pi i} \int_C z \frac{d}{dz} \log \left\{ 1 - z^{-1} \prod_{j=1}^r (1+x_j z) \right\} dz.$

Applying the residue theorem again, we get $G(x_1, \ldots, x_r) = \gamma_1$, which shows that

$$G = \prod_{j=1}^{r} (1 + x_j G).$$

Since this equation is an identity in x_1, \ldots, x_r , we may equate corresponding coefficients and obtain

(2.2)
$$\delta(\alpha_1,\ldots,\alpha_r) = \sum_{s=1}^r \sum' \sum'' \prod_{t=1}^s \delta(\alpha_1^{(t)},\ldots,\alpha_r^{(t)}),$$

which is identical in form to (2.1). Now $\eta(0, \ldots, 0) = \xi(1) = 1$ and $\delta(0, \ldots, 0) = 1$. Since $\eta(0, \ldots, 0) = \delta(0, \ldots, 0)$, (2.1) and (2.2) show that $\eta(\alpha_1, \ldots, \alpha_r) = \delta(\alpha_1, \ldots, \alpha_r)$ for all non-negative $\alpha_1, \ldots, \alpha_r$. This completes the proof of Theorem 1.

3. Proof of Theorem 2. (1) Let $\lambda(n)$ be the Liouville function, that is, if $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$, then $\lambda(n) = \alpha_1 + \alpha_2 + \dots + \alpha_r$. Clearly

$$n \geqslant 2^{\alpha_1 + \dots + \alpha_r} = 2^{\lambda(n)},$$

and therefore $\lambda(n) \leq \log_2 n$. From this it follows easily that $1 + \lambda(n) \leq n$.

We now assert that $\lambda(\psi(n)) \leq \lambda(n)$. This is obviously true for n = 1. Suppose that n > 1 and that $\lambda(\psi(m)) \leq \lambda(m)$ for all m < n. If

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r},$$

then

$$\psi(n) = p_1 p_2 \dots p_r \psi(\alpha_1) \psi(\alpha_2) \dots \psi(\alpha_r).$$

Hence

$$\lambda(\psi(n)) = r + \lambda(\psi(\alpha_1)) + \ldots + \lambda(\psi(\alpha_r)).$$

All the α_j are less than *n*, so by induction

$$\lambda(\psi(n)) \leqslant r + \lambda(\alpha_1) + \ldots + \lambda(\alpha_r) = (1 + \lambda(\alpha_1)) + \ldots + (1 + \lambda(\alpha_r))$$
$$\leqslant \alpha_1 + \ldots + \alpha_r = \lambda(n).$$

In particular, if p is a prime, and $\operatorname{ord}_p m$ denotes the greatest integer β such that $p^{\beta}|m$, then $\operatorname{ord}_p \psi(n) \leq \lambda(n)$.

For a fixed prime p, the sequence $f(k) = k/p^{k-1}$ (k = 1, 2, 3, ...) decreases monotonically from 1 to 0. Hence there is a greatest integer δ_p such that $f(\delta_p) > 1/c$. A simple calculation shows that $\delta_p = 1$ for all $p \ge 2c$ and $\delta_p \ge \delta_q$ if p < q. Hence, if M is a fixed positive number, we have

$$g(M) = \sum_{p \leq M} \delta_p \leqslant \pi(M) \delta_2.$$

Since $\pi(M) \sim M/(\log M)$ as $M \to \infty$, we have g(M) < M for all sufficiently large M. Let p_0 be the least prime $\geq 2c$ such that $g(p_0) < p_0$. Then let S be the (finite) set of integers n whose prime factors are all $< p_0$, and which satisfy

1012

 $\lambda(n) \leq g(p_0)$. Let A be the minimum of $n/c^{\nu(n)}$ for all $n \in S$. Since $1 \in S$, we have $A \leq 1/c^{\nu(1)} = 1$.

We shall now prove by induction on k that $\theta(k) \ge A \cdot c^k$ for all $k \ge 0$. Since $\theta(0) = 1 \ge A$, this is true for k = 0. Suppose that k > 0, and that it has already been shown that $\theta(k-1) \ge A \cdot c^{k-1}$. We have to show that if $n < A \cdot c^k$, then $\nu(n) < k$. Let p be a prime, and suppose that $n = p^{\beta}m$, where $p \nmid m$. Then

$$\frac{\psi(n)}{n} = \frac{\psi(p^{\beta})}{p^{\beta}} \frac{\psi(m)}{m} \leqslant \frac{\psi(p^{\beta})}{p^{\beta}} = \frac{p\psi(\beta)}{p^{\beta}} \leqslant \frac{\beta}{p^{\beta-1}}.$$

If $\beta > \delta_p$, then $\beta/p^{\beta-1} \leq 1/c$, by the definition of δ_p . Hence $\psi(n) \leq n/c < Ac^{k-1}$, and by induction, $\nu(\psi(n)) < k - 1$. Since $\nu(n) \leq \nu(\psi(n)) + 1$, this implies that $\nu(n) < k$, completing the induction. Hence we may suppose that for every prime p, ord_p $n \leq \delta_p$. Since $p_0 \geq 2c$, this means that for any prime $p \geq p_0$ we have ord_p $n \leq 1$. Thus we may write $n = n_1 n_2$, where all prime factors of n_1 are $< p_0$, and n_2 is a square-free integer all of whose prime factors are $\geq p_0$. Moreover

$$\lambda(n_1) \leqslant \sum_{p < p_0} \delta_p = g(p_0),$$

so that $n_1 \in S$.

We shall now prove that the set S is mapped into itself by the ψ -function. If $n_1 \in S$, then $\lambda(\psi(n_1)) \leq \lambda(n_1) \leq g(p_0)$. If q is a prime occurring on the "first stratum" of the mosaic of n_1 , then $q < p_0$ by the definition of S. If q occurs on a higher stratum, then there is a prime p such that $\operatorname{ord}_p n_1 \geq q$ Thus $q \leq \lambda(n_1) < p_0$.

It follows from these considerations that $\psi(n) = \psi(n_1) \cdot n_2$, $\psi_2(n) = \psi_2(n_1) \cdot n_2$, and in general $\psi_{\nu}(n) = \psi_{\nu}(n_1) \cdot n_2$ for any ν . Thus $\nu(n) = \nu(n_1)$. Since $n_1 \in S$, we see from the definition of A that $n_1/c^{\nu(n_1)} \ge A$. Hence

$$A \leq n/c^{\nu(n)} < (A \cdot c^k)/c^{\nu(n)}$$

which implies that $\nu(n) < k$, completing the proof of (1).

(2) In this section we denote the *s*th prime by p(s). We consider the sequence $\mu(k)$, where

$$\mu(0) = 1, \quad \mu(1) = 8, \quad \mu(2) = 16, \quad \mu(3) = 36 = p(1)^{p(1)}p(2)^{p(1)},$$

and if $\mu(k) = p(1)^{\alpha_1} \dots p(t)^{\alpha_k}$ $(k \ge 3)$, then

$$\mu(k+1) = \left[p(1)\dots p(\alpha_t-1)\right]^{p(t)} \left[p(\alpha_t)\dots p(\alpha_t+\alpha_{t-1}-2)\right]^{p(t-1)}$$
$$\dots \left[p\left(\sum_{j=2}^t \alpha_j-t+2\right)\dots p\left(\sum_{j=1}^t \alpha_j-t\right)\right]^{p(1)}.$$

It is easily seen that the α_j are primes satisfying $\alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_t = 2$. Furthermore

$$\psi(\mu(k+1)) = \mu(k)p(t+1)\dots p\left(\sum_{j=1}^{t} \alpha_j - t\right).$$

An easy induction proves that $\nu(\mu(k)) = k$ for all $k \ge 3$. Hence for all k, $\theta(k) \le \mu(k)$.

Suppose that $k \ge 3$, and put

$$\alpha = \sum_{j=1}^{t} \alpha_j$$

Then $\mu(k) > 2^{\alpha}$, so that $\alpha < \log \mu(k) / \log 2$. Also,

$$\mu(k+1) < p(\alpha)^{\alpha p(t)} < p(\alpha)^{\alpha \mu(k)^{1/2}}.$$

It is known (2) that $p(s) < s \log s + 2s \log \log s$ for all $s \ge 4$. This implies that $p(s) < 3s \log s$ for all $s \ge 2$. Hence

$$\mu(k+1) < \frac{3 \log \mu(k)}{\log 2} \log \left(\frac{\log \mu(k)}{\log 2} \right)^{\mu(k)^{1/2} \log \mu(k) / \log^2} < \{5 \log \mu(k) \log \log \mu(k)\}^{\mu(k)^{1/2} \log \mu(k) / \log^2},$$

which completes the proof of Theorem 2.

References

- 1. A. A. Mullin, Some related number-theoretic functions, Bull. Amer. Math. Soc., 69 (1963), 446-447.
- 2. J. B. Rosser, The n'th prime is greater than n log n, Proc. London Math. Soc., 45 (1939), 21-44.

University of California, Los Angeles

1014