TWO THEOREMS ON MOSAICS

B. GORDON AND M. M. ROBERTSON

1. Introduction. The concept of a mosaic was recently introduced by A. A. Mullin (1). By the fundamental theorem of arithmetic, every integer $n>1$ can be uniquely expressed in the form

$$
n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{r}{ }^{\alpha} r,
$$

where the p_{i} are primes satisfying $p_{1}<p_{2}<\ldots<p_{r}$. We then express any exponents α_{j} which are greater than unity in the same manner, and continue in this way until the process terminates. The resulting planar configuration of primes is called the mosaic of n. We denote by $\psi(n)$ the product of all the primes occurring in the mosaic of n; by convention, $\psi(1)=1$. Then $\psi(n)$ is a multiplicative mapping of the set of natural numbers onto itself. Clearly $\psi(n)$ tends to infinity with n, and hence for fixed k, the equation $\psi(n)=k$ has only a finite number of solutions, which we denote by $\xi(k)$. Our first result is

Theorem 1. If $k=p_{1}{ }^{\alpha} p_{2}{ }^{\alpha}{ }_{2} \ldots p_{r}{ }^{\alpha}{ }_{r}$ is the prime decomposition of k, then

$$
\xi(k)=\beta^{-1} \prod_{j=1}^{r}\binom{\beta}{\alpha_{j}}, \quad \text { where } \beta=1+\sum_{j=1}^{r} \alpha_{j} .
$$

To state the second theorem we require some more notation. We define the iterates ψ_{ν} of ψ in the usual way, i.e., $\psi_{0}(n)=n$, and $\psi_{\nu}(n)=\psi\left(\psi_{\nu-1}(n)\right)$ for $\nu>0$. It is easily seen that $\psi(n) \leqslant n$. The equality holds if and only if either n is square-free or $n=4 m$ where m is odd and square-free. Hence for any n there exists a smallest non-negative integer $\nu=\nu(n)$ such that $\psi_{\nu+1}(n)=\psi_{\nu}(n)$. If $k \geqslant 0$, we let $\theta(k)=\min \{n: \nu(n)=k\}$; for example, $\theta(0)=1, \theta(1)=8$, $\theta(2)=16, \theta(3)=36, \theta(4)=72$.

Theorem 2. (1) For any constant $c>1$, there exists a constant $A=A(c)>0$ such that $\theta(k) \geqslant A c^{k}$ for all $k \geqslant 0$.
(2) There exists a function $\mu(k) \geqslant \theta(k)$ satisfying $\mu(0)=1, \mu(1)=8$, and

$$
\mu(k+1)<(5 \log \mu(k) \log \log \mu(k))^{\sqrt{\mu(k)} \log \mu(k) / \log 2}
$$

for $k \geqslant 1$.
2. Proof of Theorem 1. By definition, $\xi\left(p_{1}{ }_{1}{ }_{1} \ldots p_{r}{ }^{\alpha_{r}}\right)$ is the number of different mosaics which can be formed with α_{j} primes $p_{j}(j=1, \ldots, r)$. We may write $\xi\left(p_{1}{ }^{\alpha_{1}} \ldots p_{r}{ }^{\alpha}{ }_{r}\right)=\eta\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ because ξ does not depend upon the particular primes p_{j}, but only on their multiplicities α_{j}. Since a mosaic cannot have two equal primes on the "first stratum," it follows that

[^0]\[

$$
\begin{equation*}
\eta\left(\alpha_{1}, \ldots, \alpha_{\tau}\right)=\sum_{s=1}^{\tau} \sum^{\prime} \sum^{\prime \prime} \prod_{t=1}^{s} \eta\left(\alpha_{1}{ }^{(t)}, \ldots, \alpha_{\tau}{ }^{(t)}\right) \tag{2.1}
\end{equation*}
$$

\]

Here the sum \sum^{\prime} is extended over the $\binom{r}{s}$ distinct r-partite numbers $\left(\epsilon_{1}, \ldots, \epsilon_{r}\right)$ in which s of the ϵ_{j} are equal to 1 , and the remaining $r-s$ of the ϵ_{j} are 0 ; the sum $\Sigma^{\prime \prime}$ is extended over all ordered partitions of ($\alpha_{1}-\epsilon_{1}, \ldots, \alpha_{r}-\epsilon_{r}$) into s parts, in which $(0, \ldots, 0)$ may be counted as a part.

For $r \geqslant 2$ we consider the function

$$
g(z)=g\left(z ; x_{1}, \ldots, x_{r}\right)=\prod_{j=1}^{r}\left(1+x_{j} z\right)-z
$$

where $0<x_{j}<x$ for $1 \leqslant j \leqslant r$. Clearly $g^{\prime \prime}(z)>0$ for z real and positive; moreover $g(0)=1$, and $g(z)$ is positive for z sufficiently large. If x is sufficiently small (in fact if $x<\frac{1}{2}\left(2^{1 / r}-1\right)$), $g(2)<0$, and so for such $x, g(z)$ has exactly two positive roots $\gamma_{1}, \gamma_{2}\left(\gamma_{1}<\gamma_{2}\right)$, which depend on the x_{j}. When $\gamma_{1}<z<\gamma_{2}$, $g(z)<0$, and when $0 \leqslant z<\gamma_{1}$ or $z>\gamma_{2}, g(z)>0$. Hence if z is complex and satisfies $\gamma_{1}<|z|<\gamma_{2}$, then

$$
\left|\prod_{j=1}^{r}\left(1+x_{j} z\right)\right| \leqslant \prod_{j=1}^{r}\left(1+x_{j}|z|\right)<|z| .
$$

A simple application of Rouchés theorem now shows that $z=\gamma_{1}$ is the only solution of $g(z)=0$ in $|z|<\gamma_{2}$. When $r=1$, we let γ_{1} be the solution of $g(z)=1+x_{1} z-z=0$, and we put $\gamma_{2}=\infty$. Then for all $r \geqslant 1, \gamma_{1}$ is the only solution of $g(z)=0$ in $|z|<\gamma_{2}$, and

$$
\prod_{j=1}^{r}\left|1+x_{j} z\right|<|z|
$$

for $\gamma_{1}<|z|<\gamma_{2}$.
We write

$$
G\left(x_{1}, \ldots, x_{r}\right)=\sum_{\alpha_{1}=0}^{\infty} \ldots \sum_{\alpha_{r}=0}^{\infty} \delta\left(\alpha_{1}, \ldots, \alpha_{r}\right) x_{1}^{\alpha_{1}} \ldots x_{r}^{\alpha_{r}}
$$

where

$$
\delta\left(\alpha_{1}, \ldots, \alpha_{\tau}\right)=\beta^{-1} \prod_{j=1}^{r}\binom{\beta}{\alpha_{j}} .
$$

Let C be any circle $|z|=R$, where $\gamma_{1}<R<\gamma_{2}$. Then for

$$
0<x_{j}<x(1 \leqslant j \leqslant r)
$$

we obtain from the residue theorem:

$$
\begin{aligned}
G\left(x_{1}, \ldots, x_{r}\right) & =\sum_{\beta=1}^{\infty} \int_{C}\left(2 \pi i \beta z^{\beta}\right)^{-1} \prod_{j=1}^{r}\left(1+x_{j} z\right)^{\beta} d z \\
& =-\frac{1}{2 \pi i} \int_{C} \log \left\{1-z^{-1} \prod_{j=1}^{r}\left(1+x_{j} z\right)\right\} d z \\
& =\frac{1}{2 \pi i} \int_{C} z \frac{d}{d z} \log \left\{1-z^{-1} \prod_{j=1}^{r}\left(1+x_{j} z\right)\right\} d z
\end{aligned}
$$

Applying the residue theorem again, we get $G\left(x_{1}, \ldots, x_{r}\right)=\gamma_{1}$, which shows that

$$
G=\prod_{j=1}^{r}\left(1+x_{j} G\right)
$$

Since this equation is an identity in x_{1}, \ldots, x_{r}, we may equate corresponding coefficients and obtain

$$
\begin{equation*}
\delta\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\sum_{s=1}^{r} \sum^{\prime} \sum \prime \prime \prod_{t=1}^{s} \delta\left(\alpha_{1}{ }^{(t)}, \ldots, \alpha_{r}{ }^{(t)}\right), \tag{2.2}
\end{equation*}
$$

which is identical in form to (2.1). Now $\eta(0, \ldots, 0)=\xi(1)=1$ and $\delta(0, \ldots, 0)=1$. Since $\eta(0, \ldots, 0)=\delta(0, \ldots, 0)$, (2.1) and (2.2) show that $\eta\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\delta\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ for all non-negative $\alpha_{1}, \ldots, \alpha_{r}$. This completes the proof of Theorem 1.
3. Proof of Theorem 2. (1) Let $\lambda(n)$ be the Liouville function, that is, if $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha}{ }_{2} \ldots p_{r}{ }^{\alpha} r$, then $\lambda(n)=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{r}$. Clearly

$$
n \geqslant 2^{\alpha_{1}+\cdots+\alpha_{r}}=2^{\lambda(n)}
$$

and therefore $\lambda(n) \leqslant \log _{2} n$. From this it follows easily that $1+\lambda(n) \leqslant n$.
We now assert that $\lambda(\psi(n)) \leqslant \lambda(n)$. This is obviously true for $n=1$. Suppose that $n>1$ and that $\lambda(\psi(m)) \leqslant \lambda(m)$ for all $m<n$. If

$$
n=p_{1}{ }^{\alpha}{ }_{1} p_{2}{ }^{\alpha_{2}} \ldots p_{r}{ }^{\alpha} r,
$$

then

$$
\psi(n)=p_{1} p_{2} \ldots p_{T} \psi\left(\alpha_{1}\right) \psi\left(\alpha_{2}\right) \ldots \psi\left(\alpha_{\tau}\right) .
$$

Hence

$$
\lambda(\psi(n))=r+\lambda\left(\psi\left(\alpha_{1}\right)\right)+\ldots+\lambda\left(\psi\left(\alpha_{r}\right)\right) .
$$

All the α_{j} are less than n, so by induction

$$
\begin{aligned}
\lambda(\psi(n)) \leqslant r+\lambda\left(\alpha_{1}\right)+\ldots+\lambda\left(\alpha_{r}\right) & =\left(1+\lambda\left(\alpha_{1}\right)\right)+\ldots+\left(1+\lambda\left(\alpha_{r}\right)\right) \\
& \leqslant \alpha_{1}+\ldots+\alpha_{r}=\lambda(n) .
\end{aligned}
$$

In particular, if p is a prime, and $\operatorname{ord}_{p} m$ denotes the greatest integer β such that $p^{\beta} \mid m$, then $\operatorname{ord}_{p} \psi(n) \leqslant \lambda(n)$.

For a fixed prime p, the sequence $f(k)=k / p^{k-1}(k=1,2,3, \ldots)$ decreases monotonically from 1 to 0 . Hence there is a greatest integer δ_{p} such that $f\left(\delta_{p}\right)>1 / c$. A simple calculation shows that $\delta_{p}=1$ for all $p \geqslant 2 c$ and $\delta_{p} \geqslant \delta_{q}$ if $p<q$. Hence, if M is a fixed positive number, we have

$$
g(M)=\sum_{p<M} \delta_{p} \leqslant \pi(M) \delta_{2} .
$$

Since $\pi(M) \sim M /(\log M)$ as $M \rightarrow \infty$, we have $g(M)<M$ for all sufficiently large M. Let p_{0} be the least prime $\geqslant 2 c$ such that $g\left(p_{0}\right)<p_{0}$. Then let S be the (finite) set of integers n whose prime factors are all $<p_{0}$, and which satisfy
$\lambda(n) \leqslant g\left(p_{0}\right)$. Let A be the minimum of $n / c^{\nu(n)}$ for all $n \in S$. Since $1 \in S$, we have $A \leqslant 1 / c^{\nu(1)}=1$.

We shall now prove by induction on k that $\theta(k) \geqslant A \cdot c^{k}$ for all $k \geqslant 0$. Since $\theta(0)=1 \geqslant A$, this is true for $k=0$. Suppose that $k>0$, and that it has already been shown that $\theta(k-1) \geqslant A \cdot c^{k-1}$. We have to show that if $n<A \cdot c^{k}$, then $\nu(n)<k$. Let p be a prime, and suppose that $n=p^{\beta} m$, where $p \nmid m$. Then

$$
\frac{\psi(n)}{n}=\frac{\psi\left(p^{\beta}\right)}{p^{\beta}} \frac{\psi(m)}{m} \leqslant \frac{\psi\left(p^{\beta}\right)}{p^{\beta}}=\frac{p \psi(\beta)}{p^{\beta}} \leqslant \frac{\beta}{p^{\beta-1}} .
$$

If $\beta>\delta_{p}$, then $\beta / p^{\beta-1} \leqslant 1 / c$, by the definition of δ_{p}. Hence $\psi(n) \leqslant n / c<A c^{k-1}$, and by induction, $\nu(\psi(n))<k-1$. Since $\nu(n) \leqslant \nu(\psi(n))+1$, this implies that $\nu(n)<k$, completing the induction. Hence we may suppose that for every prime $p, \operatorname{ord}_{p} n \leqslant \delta_{p}$. Since $p_{0} \geqslant 2 c$, this means that for any prime $p \geqslant p_{0}$ we have $\operatorname{ord}_{p} n \leqslant 1$. Thus we may write $n=n_{1} n_{2}$, where all prime factors of n_{1} are $<p_{0}$, and n_{2} is a square-free integer all of whose prime factors are $\geqslant p_{0}$. Moreover

$$
\lambda\left(n_{1}\right) \leqslant \sum_{p<p_{0}} \delta_{p}=g\left(p_{0}\right)
$$

so that $n_{1} \in S$.
We shall now prove that the set S is mapped into itself by the ψ-function. If $n_{1} \in S$, then $\lambda\left(\psi\left(n_{1}\right)\right) \leqslant \lambda\left(n_{1}\right) \leqslant g\left(p_{0}\right)$. If q is a prime occurring on the "first stratum" of the mosaic of n_{1}, then $q<p_{0}$ by the definition of S. If q occurs on a higher stratum, then there is a prime p such that $\operatorname{ord}_{p} n_{1} \geqslant q$ Thus $q \leqslant \lambda\left(n_{1}\right)<p_{0}$.

It follows from these considerations that $\psi(n)=\psi\left(n_{1}\right) \cdot n_{2}, \psi_{2}(n)=\psi_{2}\left(n_{1}\right) \cdot n_{2}$, and in general $\psi_{\nu}(n)=\psi_{\nu}\left(n_{1}\right) \cdot n_{2}$ for any ν. Thus $\nu(n)=\nu\left(n_{1}\right)$. Since $n_{1} \in S$, we see from the definition of A that $n_{1} / c^{\nu\left(n_{1}\right)} \geqslant A$. Hence

$$
A \leqslant n / c^{\nu(n)}<\left(A \cdot c^{k}\right) / c^{\nu(n)}
$$

which implies that $\nu(n)<k$, completing the proof of (1).
(2) In this section we denote the s th prime by $p(s)$. We consider the sequence $\mu(k)$, where

$$
\mu(0)=1, \quad \mu(1)=8, \quad \mu(2)=16, \quad \mu(3)=36=p(1)^{p(1)} p(2)^{p(1)}
$$

and if $\mu(k)=p(1)^{\alpha_{1}} \ldots p(t)^{\alpha}{ }_{t}(k \geqslant 3)$, then

$$
\begin{aligned}
\mu(k+1) & =\left[p(1) \ldots p\left(\alpha_{t}-1\right)\right]^{p(t)}\left[p\left(\alpha_{t}\right) \ldots p\left(\alpha_{t}+\alpha_{t-1}-2\right)\right]^{p(t-1)} \\
& \ldots\left[p\left(\sum_{j=2}^{t} \alpha_{j}-t+2\right) \ldots p\left(\sum_{j=1}^{t} \alpha_{j}-t\right)\right]^{p(1)}
\end{aligned}
$$

It is easily seen that the α_{j} are primes satisfying $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{t}=2$. Furthermore

$$
\psi(\mu(k+1))=\mu(k) p(t+1) \ldots p\left(\sum_{j=1}^{t} \alpha_{j}-t\right)
$$

An easy induction proves that $\nu(\mu(k))=k$ for all $k \geqslant 3$. Hence for all k, $\theta(k) \leqslant \mu(k)$.

Suppose that $k \geqslant 3$, and put

$$
\alpha=\sum_{j=1}^{t} \alpha_{j} .
$$

Then $\mu(k)>2^{\alpha}$, so that $\alpha<\log \mu(k) / \log 2$. Also,

$$
\mu(k+1)<p(\alpha)^{\alpha p(t)}<p(\alpha)^{\alpha \mu(k)^{1 / 2}}
$$

It is known (2) that $p(s)<s \log s+2 s \log \log s$ for all $s \geqslant 4$. This implies that $p(s)<3 s \log s$ for all $s \geqslant 2$. Hence

$$
\begin{aligned}
\mu(k+1) & <\frac{3 \log \mu(k)}{\log 2} \log \left(\frac{\log \mu(k)}{\log 2}\right)^{\mu(k)^{1 / 2} \log \mu(k) / \log 2} \\
& <\{5 \log \mu(k) \log \log \mu(k)\}^{\mu(k)^{1 / 2} \log \mu(k) / \log 2}
\end{aligned}
$$

which completes the proof of Theorem 2.

References

1. A. A. Mullin, Some related number-theoretic functions, Bull. Amer. Math. Soc., 69 (1963), 446-447.
2. J. B. Rosser, The n 'th prime is greater than $n \log n$, Proc. London Math. Soc., 45 (1939), 21-44.

University of California, Los Angeles

[^0]: Received July 20, 1964.

