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B. GORDON AND M. M. ROBERTSON 

1. Introduction. The concept of a mosaic was recently introduced by 
A. A. Mullin (1). By the fundamental theorem of arithmetic, every integer 
n > 1 can be uniquely expressed in the form 

n = pfipf* . . . pr«r, 

where the pt are primes satisfying pi < pi < . . . < pr. We then express any 
exponents aj which are greater than unity in the same manner, and continue 
in this way until the process terminates. The resulting planar configuration 
of primes is called the mosaic of n. We denote by $(n) the product of all the 
primes occurring in the mosaic of n\ by convention, ^(1) = 1. Then ${n) is a 
multiplicative mapping of the set of natural numbers onto itself. Clearly ip(n) 
tends to infinity with n, and hence for fixed k, the equation \[/(n) = k has only 
a finite number of solutions, which we denote by £(&)• Our first result is 

THEOREM 1. If k = pfipfi . . . pr
ar is the prime decomposition of k, then 

*(*) = 0-1 n v ) > where 0 = i + E «*• 
j = l \CLj/ j=l 

To state the second theorem we require some more notation. We define the 
iterates \{/v of \p in the usual way, i.e., \//o(n) = n, and ypv(n) = ip(\pv_i(n)) for 
v > 0. It is easily seen that ${n) < n. The equality holds if and only if either 
n is square-free or n = 4m where m is odd and square-free. Hence for any n 
there exists a smallest non-negative integer v = v(n) such that \pv+i(n) = \l/v(n). 
If k > 0, we let 6(k) = min{rc: v{n) = k} ; for example, 0(0) = 1, 6(1) = 8, 
6(2) = 16, 6(3) = 36, 0(4) = 72. 

THEOREM 2, (1) For any constant c > 1, there exists a constant A = A (c) > 0 
swc/̂  that 6(k) > Ack for all k > 0. 

(2) 77£ere exists a function n(k) > 0(&) satisfying /x(0) =1,/*(1) = 8 , and 

M(* + 1) < (51og/*(*)loglog/x(*))v^ log/ l (* ) /10B2 

/or & > 1. 

2. Proof of Theorem 1. By definition, %(piai . . . £ r
ar) is the number of 

different mosaics which can be formed with a3- primes pj (j = 1, . . . , r). 
We may write £(piai . . . pr

ar) = 7](au . . . , ar) because £ does not depend 
upon the particular primes ph but only on their multiplicities aj. Since a 
mosaic cannot have two equal primes on the ''first stratum," it follows that 
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(2.1) V(ah . . . , aT) = £ E ' £ " IT ^«i", • • • . «/")• 
5=1 ï = l 

Here the sum X)' is extended over the (r
s) distinct r-partite numbers (ei, . . . , er) 

in which 5 of the €j are equal to 1, and the remaining r — s of the e5 are 0 ; the 
sum X)" is extended over all ordered partitions of (a\ — ei, . . . , ar — er) into 
5 parts, in which (0, . . . , 0) may be counted as a part. 

For r > 2 we consider the function 
T 

i = l 

where 0 < xy < x for 1 < j < r. Clearly g"0s) > 0 for z real and positive; 
moreover g (0) = 1, and g(z) is positive for z sufficiently large. If x is sufficiently 
small (in fact if x < J(21 / r — 1)), g(2) < 0, and so for such x, g(z) has exactly 
two positive roots 71, 72(71 < 72), which depend on the Xj. When 71 < z < 72, 
g{z) < 0, and when 0 < z < 71 or z > y2, g(z) > 0. Hence if z is complex 
and satisfies 71 < \z\ < 72, then 

n (i+*i«) 
3=1 

< n (I+*,MXIS|. 
J=I 

A simple application of Rouché's theorem now shows that z = 71 is the only 
solution of g(z) = 0 in \z\ < 72. When r = 1, we let 71 be the solution of 
g(z) = 1 + Xi z — z = 0, and we put 72 = °°. Then for all r > 1, 71 is the 
only solution of g(z) = 0 in |z| < 72, and 

n 11+*,*i< 1*1 
j = i 

for 71 < |z| < 72. 
We write 

G(xh . . . , Xr) = ^ • • • ]C à(ah • • • > <*r)#ial 

ai=0 a r =0 

where 

* ( a i , . . . f a r ) = i 8 r - i n ( 0 -
j = i \ a ^ / 

Let C be any circle \z\ = R, where 71 < i£ < 72. Then for 

0 < Xj < x (1 < j < r), 

we obtain from the residue theorem: 

G(*i, • • • , *r) = Ê f (2«V)-1 II (1 + x, s)*3 

= -àJc , 0 8 { 1 - 8 " 1 Û ( 1 + x ' s ) } < f a 

^<fa 
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Applying the residue theorem again, we get G(xi, . . . , xr) = yi, which shows 
that 

G= I I (X + XjG). 

Since this equation is an identity in x±, . . . , xr, we may equate corresponding 
coefficients and obtain 

(2.2) d(au . . . , « , ) = S E ' E " IT « W \ • • • ,«r(<)), 

which is identical in form to (2.1). Now 77(0, . . . , 0) = £(1) = 1 and 
0(0, . . . , 0) = 1. Since 17(0, . . . , 0) - 5(0, . . . , 0), (2.1) and (2.2) show that 
rj(ai, . . . , ar) = 5(«i, . . . , ar) for all non-negative «i, . . . , a r. This completes 
the proof of Theorem 1. 

3. Proof of Theorem 2. (1) Let \{n) be the Liouville function, that is, 
if n = pf\pf2 . . . £/**•, then X(w) = «i + a2 + . . . + ar. Clearly 

n > 2«i+-+«r = 2^n\ 

and therefore X(w) < log2 n. From this it follows easily that 1 + \{n) < n. 
We now assert that X(^(n)) < \{n). This is obviously true for n = 1. 

Suppose that n > 1 and that \(\j/(m)) < X(m) for all m < n. U 

n = pfipf* . . . £r«r, 

then 

^ ( w ) = P1P2. . -PT ^ ( « i ) ^ ( « 2 ) • • • ^ ( « r ) . 

Hence 

X (*(»)) = r + X(^(ai)) + . . . + X(iK«r)). 

All the «y are less than w, so by induction 

X(*(»)) < r + X(ai) + . . . + X(ar) = (1 + X(«i)) + . . . + (1 + X(ar)) 
< «i + . . . + ar — \{n). 

In particular, if p is a prime, and ordp m denotes the greatest integer (3 such 
that pP\m, then ordp^(w) < X(n). 

For a fixed prime £, the sequence f(k) = k/pk~l (fe = 1, 2, 3, . . .) decreases 
monotonically from 1 to 0. Hence there is a greatest integer 8P such that 
/(ôp) > 1/c. A simple calculation shows that <5P = 1 for all p > 2c and 5̂  > 5Ç 

if p < q. Hence, if M is a fixed positive number, we have 

g(M) = E ^ < *(M)Ô2. 

Since 7r(ikf) ~ M/(log M ) as M —> 00, w e have g(Af) < M for all sufficiently 
large M. Let p0 be the least prime >2c such that g(/>o) < Po- Then let 5 be 
the (finite) set of integers n whose prime factors are all <po, and which satisfy 
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X(w) < g(po). Let A be the minimum of n/cvW for all n G S. Since 1 G 5, we 
have 4 < 1/c'M = 1. 

We shall now prove by induction on k that 6(k) ^ A-â for all k > 0. Since 
0(0) = 1 > -4, this is true for k = 0. Suppose that & > 0, and that it has 
already been shown that 6(k — 1) > A-a*1. We have to show that if 
n < A -ck, then v{n) < k. Let p be a prime, and suppose that n = p^m, where 
p \ m. Then 

fin) f(fiP) Hfn) s ^ ( / ) PHP) s P 
n ~ p" m ^ p' ~ p' < / Z J -

If p > ôp, then j S / ^ - 1 < 1/c, by the definition of bv. Hence ^(w) < w/c < -4c*-1, 
and by induction, v(yp(n)) < k — 1. Since v(n) < v($(n)) + 1, this implies 
that v(n) < k, completing the induction. Hence we may suppose that for every 
prime p, ord^ n < 8P. Since p0 > 2c, this means that for any prime p > p 0 

we have ordp n < 1. Thus we may write n = n± n2j where all prime factors of 
rt\ are <po, and TZ2 is a square-free integer all of whose prime factors are >^?o. 
Moreover 

X(«i) < Z 5p = g(£o), 
P<P0 

so that n\ G 5. 
WTe shall now prove that the set 5 is mapped into itself by the ^-function. 

If n\ G S, then X(^(wi)) < X(wi) < g(po). If g is a prime occurring on the 
''first stratum" of the mosaic of rii, then q < p0 by the definition of 5. If q 
occurs on a higher stratum, then there is a prime p such that ordp ^i > g 
Thus ^ < X(wi) < £o. 

11 follows from these considerations that \f/(n) = ^(«0 -n^^iin) — ^2(^1) -^2, 
and in general ^„(w) = ^„(wi) -n2 for any p. Thus ^(n) = v(tii). Since ni G 5, 
we see from the definition of A that ni/cv(-ni) > A. Hence 

A < n/cv<n) < {A'â)/cv{n\ 

which implies that v{n) < k, completing the proof of (1). 
(2) In this section we denote the 5th prime by p(s). We consider the sequence 

/z(fe), where 

M(0) = 1, M(D = 8, M(2) = 16, M (3) = 36 = p(l)*™p(2)*™, 

and if /x(ife) = p(l)ai . . . p(t)at (k > 3), then 

M(* + 1) = b ( l ) • • • P(f*t ~ l)]*(0[p(«i) • • • £(«1 + «^1 - 2)]P°-1 } 

p[iaj-t + 2)... py £ a, - t)\ 
3=2 

It is easily seen that the aj are primes satisfying «i > «2 > • • . > <** = 2. 
Furthermore 

*C(fe + 1)) = M(*)/»« + l) • • • *>( É «* - «J • 
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An easy induction proves that v(n(k)) = k for all k > 3. Hence for all k, 
6(k) < M(Jfe). 

Suppose that k > 3, and put 

t 

a = X) aJ-
3=1 

Then /x(&) > 2a, so that a < log M<»/log 2. Also, 

fi(k + 1) < J K * ) " * 0 < p{aY^ll\ 

I t is known (2) that p(s) < s log 5 + 2s log log s for all s > 4. This implies 
that p(s) < 35 log 5 for all s > 2. Hence 

., 31o g M(fe) , , / log/*(fe)Y w l / " 
M(* + D < , _ „ log ^ - ^ g X " / 

! log( i (« / log 2 

log 2 

< {5 log „(*) log log M(£)r t t )1 /2 io i ! "w/,og 2, 
which completes the proof of Theorem 2. 
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