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Glycerol is a hygroscopic fluid that spontaneously absorbs water vapour from the
atmosphere. For applications involving glycerol, care must be taken to avoid exposure
to humidity, since its viscosity decreases quickly as water is absorbed. We report
experimental measurements of the viscosity of glycerol in a parallel-plate rheometer
where the outer interface is exposed to atmosphere. The measurements decrease
with time as water is absorbed from the atmosphere and transported throughout the
glycerol via diffusion and advection. Measured viscosities drop faster at higher relative
humidities, confirming the role of hygroscopicity in the transient viscosities. The rate of
viscosity decrease shows a non-monotonic relationship with the rheometer gap height.
This behaviour is explained by considering the transition from diffusion-dominated
transport in the narrow-gap regime to the large-gap regime where transport is dominated
by inertia-driven secondary flows. Numerical simulations of the water absorption
and transport confirm this non-monotonic behaviour. The experimental viscosity
measurements show unexpectedly fast decreases at very small gap heights, violating
the parallel-plate, axisymmetric model. We propose that this drop-off may be due to
misalignment in the rheometer that becomes non-negligible for small gaps. Theoretical
considerations show that secondary flows in a misaligned rheometer dominate the typical
secondary inertial flows in parallel-plate rheometers at small gaps. Finally, simulations
in a misaligned parallel-plate system demonstrate the same sharp drop-off in viscosity
measurements at small gap heights. This modelling can be used to estimate the gap height
where misalignment effects dominate the transient glycerol viscosity measurements.
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1. Introduction

A rotational rheometer is a device in which one component rotates relative to another
in order to induce a shear on the fluid placed between the two components. Through
a characterization of the torques and forces that result as a function of rotation rate,
rheological properties of the fluids can be measured. In the last several decades, rheometry
has emerged as an essential tool for studying the fluid dynamics of complex fluids for
measuring properties ranging from the dynamic viscosity of Newtonian fluids to the
viscoelastic responses of non-Newtonian fluids (Coussot 2005; Malkin & Isayev 2017).
Owing to their precision and versatility, rheometers have been utilized to investigate
the rheology and mechanics of a wide range of viscous and viscoelastic fluids such as
polymer melts, gels, suspensions, cells, bacterial biofilms, lipid vesicle solutions, food
products, cosmetics, pharmaceuticals and many others (Dhinojwala & Granick 1997;
Gallegos & Franco 1999; Kavehpour & McKinley 2004; Clasen, Kavehpour & McKinley
2010; Shin, Ault & Stone 2015; Dakhil et al. 2018; Yan et al. 2018). Rheometry has
also been used for evaluating drag reduction, since this technique can also be used to
characterize slip lengths such as those generated by nanostructured surfaces (Bocquet,
Tabeling & Manneville 2006; Choi & Kim 2006; Srinivasan et al. 2013). Among various
configurations, parallel-plate rheometry is a technique that is commonly used for highly
viscous and viscoelastic fluids due to the ability to carefully control the gap height and
the spatially uniform confinement in the system. From a fluid dynamics perspective, a
parallel-plate rheometer generates a shear-driven fluid velocity that is primarily in the
azimuthal direction. In the limit of slow rotation speed or narrow gap heights, the velocity
profile in such a system is simply (ur, uθ , uz) = (0, Ωrz/h0, 0), where Ω is the angular
velocity of the upper plate, h0 is the gap height between the plates and (r, θ, z) are the
cylindrical coordinates with the origin located at the centre of the bottom plate (see e.g.
Middleman 1968; Bird, Armstrong & Hassager 1987).

In addition to the primary azimuthal flow, secondary recirculating flows exist due to
inertial effects for any finite angular rotation speed (Greensmith & Rivlin 1953; Ewoldt,
Johnston & Caretta 2015). The first experimental evidence of these secondary flows was
achieved by Garner, Nissan & Wood (1950) in a study of the rheological properties of a
hydrocarbon-type micellar system. The secondary flow profile in a parallel-plate rheometer
was found by Savins & Metzner more than half a century ago and has been well described
by various authors (see e.g. Savins & Metzner 1970; Denn 1980), where the radial velocity
(except near the turning regions) is given as

ur(r, z) = −ρΩ2h2
0r

12μ

[
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)
− 9
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z
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)4 ]
, (1.1)

where ρ is the fluid density and μ0 is the fluid viscosity. Notably, the radial flow becomes
increasingly important as the gap height or rotation speed increase (i.e. ur/uθ ∼ Ωh2

0/ν).
The secondary fluid dynamics can play a surprisingly significant role in a rheometer

both by altering the torque measurements and by triggering instabilities or driving fluid
mixing, especially in the case of non-homogeneous fluids. For example, Jacobi et al.
(2015) studied the effect of radial flow on the viscosity measurements in parallel-plate
and cone-and-plate settings when the target fluid is stratified with an immiscible fluid.
In this case, the authors found that the radial flow can distort the fluid interface, leading
to drastically different torque measurements and even fluid dewetting. Another situation
in which the secondary recirculation plays a key role is in the case of an initially
homogeneous fluid that becomes non-homogeneous during the measurement procedure
due to mass transfer that occurs at the exposed outer edge, such as by solute sorption
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Figure 1. Problem set-up. We measure the viscosity of glycerol in a parallel-plate rheometer exposed to
atmosphere at the outer fluid interface. Due to the strong hygroscopic nature of glycerol, the water vapour
present in the atmosphere is absorbed by the glycerol at the outer boundary of the rheometer at a mass vapour
flux of jw. The absorption of water by glycerol leads to a change in the fluid properties over time including a
reduction in the fluid viscosity, which leads to a transient reduction in the effective viscosity measured by the
system.

or solvent evaporation/condensation. This is particularly important for parallel-plate
rheometry since inhomogeneities alter the stress profiles, such that small changes in
the fluid composition at the outer edge can have significant impacts on the torque
measurement. This secondary flow is expected to play a significant role in the viscosity
measurements of glycerol over time, since any water absorbed at the outer edge of the
rheometer can be transported radially inwards by the secondary flow, redistributing the
relatively lower-viscosity glycerol (where the water fraction is higher). Since the torque in
a parallel-plate rheometer is primarily generated near the outer edge of the system, this
redistribution of the lower-viscosity fluid must have direct consequences for the measured
torque value.

Previously, we reported that the strong hygroscopic nature of glycerol can cause
unreliable viscosity measurements in a cone-and-plate rheometer due to the continuous
vapour absorption from the outer edge (Shin, Jacobi & Stone 2016). Motivated by this
observation, here we present a systematic study of the transient measurement of the
viscosity of glycerol using a parallel-plate rheometer (see figure 1). As the secondary
recirculating flow effectively disperses the absorbed water throughout the glycerol layer,
we find that the rate of decrease of the measured viscosity is a complex function of the
rheometer gap height, angular velocity and relative humidity (RH). While the viscosity
generally decreases over time as water is absorbed, we find that the rate of decrease
is a non-monotonic function of the gap height. Using the theoretical solutions for the
flow profile in a parallel-plate rheometer (i.e. (1.1)) along with numerical simulations,
we show that this non-monotonic behaviour is consistent with existing theory provided
the gap height is not too small. In the limit of very small gap heights, we find that the
behaviour of the transient viscosity measurements is inconsistent with the existing theory
for a parallel-plate rheometer. We hypothesize that misalignment effects in the rheometer
result in non-negligible secondary flows at small gap heights that are responsible for
this discrepancy in the measured viscosity data. By developing new theoretical solutions
and computational simulations for the misaligned parallel-plate geometry, we show that
this hypothesis is consistent with the measured viscosity data and that the misaligned
rheometer model can predict the viscosity measurements across the full range of gap
heights.

2. Experimental viscosity measurements

Here, we consider the transient viscosity measurements of glycerol in a parallel-plate
rheometer where the outer fluid interface is exposed to the atmosphere. Due to the
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hygroscopic nature of glycerol, it will absorb water vapour from the atmosphere at
the outer boundary as shown in figure 1, which will subsequently lead to a local
reduction in the viscosity of the fluid and a net reduction of the torque measured by
the rheometer. Thus, the measured viscosity of glycerol in a parallel-plate rheometer
is expected to decrease with time when exposed to atmosphere. Intuitively, the rate of
decrease should depend on the water concentration/flux experienced at the outer boundary,
which is influenced by the RH in the atmosphere. The rate of decrease should also
depend on the secondary recirculating flows in the rheometer, since these redistribute
the relatively less viscous fluid where the water concentration is higher, thereby
altering the stress distribution and total torque experienced by the upper plate of the
rheometer.

2.1. Experimental methods
Glycerol was purchased from Sigma-Aldrich. Viscosity measurements were performed
using a stress-controlled rheometer (Physica MCR 301, Anton Paar) with a parallel-plate
configuration (plate diameter = 50 mm). The rheometer was placed inside an acrylic
chamber in which the RH was controlled using multiple vapour sources and a stream
of dehumidified air. The RH was constantly monitored using a digital hygrometer (VWR).
Experiments were performed at 23 ◦C.

2.2. Experimental results
The experimental results for the transient viscosity measurements are presented in figure 2.
First, the transient viscosity measurements of glycerol in a RH environment of 53 % are
presented in figure 2(a). The experiments were performed with a rheometer with plate
radius R = 2.5 cm at an angular velocity of Ω = 0.4 rad s−1. Results are normalized by
the initial viscosity μi to account for any small amount of water absorption by the glycerol
while setting up the experiment. As can be seen, the measured viscosities decrease at
varying rates depending on the gap thickness. These trends are all monotonic. However,
the rate of viscosity decrease is seen to be a non-monotonic function of the gap thickness.
That is, decreasing the gap height from h0 = 1.0 to h0 = 0.5 mm results in the viscosity
dropping at a slower rate. However, subsequently decreasing the gap height results in the
viscosity dropping at a faster and faster rate, until the viscosity drops sharply for the
smallest gap height. Furthermore, experimental results for the final measured viscosity
μf /μi after t = 60 minutes are shown in figure 2(b) as a function of gap height h0 for
two different RHs. Here, with RH = 72 % the viscosities are seen to drop faster than
with RH = 45 % due to the increased mass flux of water vapour to the glycerol from
the atmosphere. In addition, the final measured viscosity values also show the same
non-monotonic behaviour as in figure 2(a). That is, decreasing h0 first leads to an increase
in μf /μi, followed by a sharp decrease for h0 < 0.5 mm.

Next, the transient decreases in measured viscosity values are shown in figure 2(c) as
functions of RH at a rotation speed of 0.4 rad s−1 and a gap height of 0.1 mm. Here the
results show a monotonic relationship in which increasing the RH leads to a faster decrease
in viscosity measurements due to the increased flux of water into the glycerol. Finally, the
transient measured viscosities are shown in figure 2(d) for varying rotation speeds at a
gap height of 0.5 mm and a RH of 65 %. Here, a non-monotonic relationship with Ω is
observed. As the rotation speed is increased from 1.0 to 5.0 rad s−1, the viscosity drops at
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Figure 2. Experimental viscosity measurements. (a) Transient decrease in the measured viscosity as a function
of time, normalized by the initial viscosity μi with Ω = 0.4 rad s−1 and R = 2.5 cm. Experiments were
performed at a RH of 72 %. (b) Measured final viscosities μf of glycerol at t = 3600 s normalized by μi

with Ω = 0.4 rad s−1 and R = 2.5 cm. Experiments were performed at RHs of 45 % and 72 %. (c) Normalized
transient viscosity measurements over time for varying RHs at a gap height of 0.1 mm and a rotation rate of
0.4 rad s−1. (d) Normalized transient viscosity measurements over time for varying rotation rates at a gap height
of 0.5 mm and a RH of 65 %.

a faster rate, which is consistent with the increasing inertial secondary flow in this regime.
The key observations from the experimental measurements are as follows.

(i) Increased RH leads to a faster viscosity decrease for all measured cases.
(ii) The rate of viscosity decrease varies non-monotonically with the gap height. That is

to say, for different gap heights, the measured viscosity decreases at a different rate
over time.

(iii) There is a sharp decrease in the measured final viscosity for very small gap heights.

Observation (i) above is a natural and intuitive result, since the hygroscopic nature of
glycerol leads it to absorb more water from the atmosphere at higher humidities. Since the
viscosity of a glycerol–water mixture varies monotonically with the water mass fraction,
the rate of viscosity decrease can be expected to vary monotonically with the RH. However,
an intuitive explanation for observations (ii) and (iii) is not immediately obvious without
a more careful consideration of the fluid dynamics and the coupled transport of dissolved
water in the rheometer. In the following sections, we seek a physical explanation for these
two experimentally observed behaviours using theory and numerical simulations.
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3. Fluid dynamics of a glycerol–water mixture

Before proceeding to analyse the specific fluid dynamics and transient viscosity evolution
in a parallel-plate rheometer, in this section we first introduce all of the relevant governing
physics that applies to such systems. This includes the governing Navier–Stokes equations
for variable-viscosity fluids, the advection–diffusion equation for the absorbed water
concentration with variable diffusivity, the empirical relationships for the coefficients of
viscosity and diffusivity of glycerol–water mixtures as well as the saturation concentration
of absorbed water in glycerol as a function of the RH that will be used in the modelling.

3.1. Navier–Stokes equations for a variable-viscosity fluid
In a glycerol–water mixture, the viscosity is strongly dependent on the local mass
fraction of water. In systems with a homogeneous concentration of absorbed water, the
constant-viscosity form of the Navier–Stokes equations is appropriate. However, when
gradients in water concentration exist in the system, due to circumstances such as mixing
streams or the absorption of water at a gas–liquid interface, the viscosity of the fluid
must be treated as a function of time and position. Note that for glycerol–water mixtures,
the density is a weak function of the water concentration, ranging from approximately
1260 kg m−3 for pure glycerol down to 1000 kg m−3 for pure water. Here, we neglect this
variation and use the density of pure glycerol, assuming that the water mass fraction does
not get too large. The corresponding continuity equation for an incompressible flow is
simply ∇∗ · u∗ = 0. In such a system, extra stresses arise in the fluid that are related to
the gradients of viscosity, and the appropriate form of the Navier–Stokes equations (for a
Newtonian constitutive equation) is

∇∗ · u∗ = 0 and ρ
Du∗

Dt∗
= −∇∗p∗ + μ∗∇∗2u∗ + ∇∗μ∗ · ∇∗u∗ + ∇∗μ∗ · (∇∗u∗)T ,

(3.1a,b)

where ρ is the fluid density, μ is the fluid viscosity and superscript T denotes the
transpose. Here, the asterisks denote dimensional variable quantities. For the case of the
flow in a rheometer system, we represent the flow using cylindrical coordinates, and we
non-dimensionalize the governing equations with

r = r∗

R
, z = z∗

h0
, ur = u∗

r

ΩR
, uθ = u∗

θ

ΩR
, uz = u∗

z

Ωh0
,

p = p∗

μ0ΩR2/h2
0
, μ = μ∗

μ0
and t = Ωt∗,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2a–h)

where μ0 is a reference viscosity value. With these non-dimensionalizations, the
component form of (3.1a,b) in cylindrical coordinates is given by

Re
(

∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r
∂ur

∂θ
− uθ

2

r
+ uz

∂ur

∂z

)

= −∂p
∂r

+ μ

(
ε2

r
∂

∂r

(
r
∂ur

∂r

)
+ ε2

r2
∂2ur

∂θ2 + ∂2ur

∂z2 − ε2 ur

r2 − 2ε2

r2
∂uθ

∂θ

)

+ 2ε2 ∂μ

∂r
∂ur

∂r
+ ε2

r
∂μ

∂θ

(
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
+ ∂μ

∂z

(
∂ur

∂z
+ ε2 ∂uz

∂r

)
, (3.3a)
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Re
(

∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r
∂uθ

∂θ
+ uθur

r
+ uz

∂uθ

∂z

)

= −1
r

∂p
∂θ

+ μ

(
ε2

r
∂

∂r

(
r
∂uθ

∂r

)
+ ε2

r2
∂2uθ

∂θ2

+∂2uθ

∂z2 − ε2 uθ

r2 + 2ε2

r2
∂ur

∂θ

)
+ ε2 ∂μ

∂r

(
∂uθ

∂r
+ 1

r
∂ur

∂θ
− uθ

r

)

+ 2ε2

r
∂μ

∂θ

(
1
r

∂uθ

∂θ
+ ur

r

)
+ ∂μ

∂z

(
∂uθ

∂z
+ ε2

r
∂uz

∂θ

)
, (3.3b)

Re ε2
(

∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r
∂uz

∂θ
+ uz

∂uz

∂z

)

= −∂p
∂z

+ μ

(
ε4

r
∂

∂r

(
r
∂uz

∂r

)
+ ε4

r2
∂2uz

∂θ2 + ε2 ∂2uz

∂z2

)

+ ∂μ

∂r

(
ε4 ∂uz

∂r
+ ε2 ∂ur

∂z

)
+ 1

r
∂μ

∂θ

(
ε4

r
∂uz

∂θ
+ ε2 ∂uθ

∂z

)
+ 2ε2 ∂μ

∂z
∂uz

∂z
, (3.3c)

where the Reynolds number is defined as Re = ρΩh2
0/μ0 and the gap aspect ratio is ε =

h0/R, which is typically small in a parallel-plate rheometer. The corresponding continuity
equation is given by

1
r

∂

∂r
(rur) + 1

r
∂uθ

∂θ
+ ∂uz

∂z
= 0. (3.4)

Along with boundary conditions, these equations govern the motion of variable-viscosity
fluids in a parallel-plate rheometer. The typical boundary conditions for such a system
include no-slip conditions at the lower (stationary) and upper (rotating) plates, as well as
a stress-free condition at r = 1 at the gas–liquid interface.

3.2. Water absorption and transport
Along with the equations governing the fluid dynamics in the previous section, the system
further requires a transport equation to model the absorption and transport of water in the
glycerol. In particular, this transport can be modelled with an advection–diffusion equation
that is given by

∂c
∂t∗

= ∇∗ · (D∗∇∗c
)− u∗ · ∇∗c, (3.5)

where c is the mass fraction of water in the glycerol, D∗ is the diffusivity of
water in glycerol and u∗ is the dimensional fluid velocity vector. Here, D∗ is a
spatially/temporally varying function of the local water concentration c. Using the same
non-dimensionalizations as above, (3.5) in cylindrical coordinates becomes

Pe ε2 ∂c
∂t

= ε2

r
∂

∂r

(
rD

∂c
∂r

)
+ ε2

r2
∂

∂θ

(
D

∂c
∂θ

)
+ ∂

∂z

(
D

∂c
∂z

)

− Pe ε2
(

ur
∂c
∂r

+ uθ

r
∂c
∂θ

+ uz
∂c
∂z

)
, (3.6)

where D = D∗/D0 is the non-dimensional diffusivity with reference value D0 and Pe =
ΩR2/D0 is the Péclet number representing the ratio of the time scale for diffusion of water
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in the radial direction to the convective time scale. Examining (3.6), the diffusion in the z
direction is O(ε−2) larger than the radial diffusion due to the separation in length scales:
in the low-inertia, thin-gap limit, the water concentration will be approximately uniform
in the z direction.

Along with (3.6), the absorbed water concentration must satisfy certain boundary
conditions in the system. In particular, the concentration satisfies a no-flux condition at
both the upper and lower plates of the rheometer (i.e. ∂c/∂z = 0 in the parallel-plate
case). In addition, a boundary condition for the water concentration is needed at the
outer glycerol–air interface. In general, this condition could be represented by a water
flux condition such as by −D(∂c/∂r)|r=1 = jw, where the flux of water jw could be a
function of the local water concentration in the glycerol at the interface as well as the
water vapour concentration and distribution in the air near the interface. The solution of
such a flux will typically require also solving the water vapour transport problem in the
surrounding environment, since these transport processes are coupled at the interface. For
example, the transport of water vapour in the surrounding atmosphere may be affected
by the rotation speed of the rheometer, which can drive flow in the surrounding air that
may alter the vapour transport at the interface. Here, we neglect these effects and assume
that the water vapour transport in the atmosphere is fast relative to the water concentration
transport in the glycerol. This assumption is valid due to the substantially higher diffusivity
of water vapour in air than absorbed water in glycerol, provided the recirculation in the
rheometer is not significantly fast. Thus, we assume that the water mass fraction at r = 1
instantaneously reaches its saturation value based on the local RH in the surrounding air.

Considering both (3.3) and (3.6), we see how the dynamics of the problem are
fully coupled. In the fluid problem, the Navier–Stokes equations are coupled to the
water transport problem via the dependence of viscosity on water mass fraction. The
water transport problem is further coupled to the Navier–Stokes equations through the
dependence on the flow velocity. Finally, the transport is further complicated by
the dependence of diffusivity on water mass fraction. Due to this two-way coupling and the
empirical nature of both the μ(c) and D(c) relationships, it is difficult to seek theoretical
solutions to the coupled dynamics. Thus, here we primarily rely on numerical simulations
to solve the coupled transport problem.

3.3. Physical properties of glycerol–water mixtures
Detailed empirical formulas for the viscosity of a glycerol–water mixture have been
proposed by Cheng (2008) which are valid for water mass concentrations in the range
of 0 %–100 % and for temperatures ranging from 0 to 100 ◦C. The viscosity of a
glycerol–water mixture at 22 ◦C varies from around μg = 1.1 Pa s for pure glycerol down
to μw = 0.96 mPa s for pure water, spanning a range of approximately three orders of
magnitude. Here, we choose a reference viscosity value corresponding to that of pure
glycerol, μ0 = μg, such that the non-dimensional viscosity varies from an initial condition
of 1 down to as low as ∼8.73 × 10−4 if the water mass fraction were to approach 1.
The empirical relationship determined between non-dimensional viscosity and water
concentration used here is shown in figure 3(a).

The diffusivity of water in glycerol is also a function of the water mass fraction, and so
D∗ is expected to evolve as a function of both position and time as more water is absorbed
and transported throughout the system. An empirical relationship for the diffusivity of
water in glycerol has also been developed for mixtures at 25 ◦C by D’Errico et al. (2004),

968 A2-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.489


Viscosity measurements of glycerol in a rheometer

0
10–3

10–2

10–1

μ

100 102

101

100

0.2 0.4 0.6

c

D

0.8 1.0

1.0 1.26

1.22

1.18

S
p
ec

if
ic

 g
ra

v
it

y

c s
at

1.14

1.10

1.06

0.8

0.6

0.4

0.2

0
0 20 40 60

RH (%)

80 100

(b)(a)

Figure 3. (a) Empirical non-dimensional viscosity and diffusivity relationships used in this study.
(b) Saturation concentration of water in glycerol and corresponding specific gravity as functions of RH.

and is given by

D∗ = 1.024 − 0.91xg

1 + 7.5xg
× 10−9 m2 s−1, (3.7)

where xg is the mole fraction of glycerol that is related to c via

xg = Mw(1 − c)
Mw(1 − c) + Mgc

, (3.8)

where Mw is the molar mass of water and Mg is the molar mass of glycerol. For reference,
the diffusivity of water in pure glycerol (c = 0) is 1.341 × 10−11 m2 s−1, which increases
to approximately 1.024 × 10−9 m2 s−1 as the water mass fraction approaches 1. Here we
again choose a reference value equal to the diffusivity in pure glycerol D0 = Dg, such
that D varies from 1 at c = 0 up to approximately 76.4. This empirical relationship from
D’Errico et al. (2004) is also shown in figure 3(a). Finally, the saturation concentration
of water in glycerol as a function of RH is needed for the absorption boundary condition
at r = 1. These values were measured by the Glycerine Producers’ Association and are
given in table 15 of Glycerine Producers’ Association et al. (1963). For reference, these
values are plotted in figure 3(b) along with the specific gravity as functions of RH.
With the full governing equations and empirical relationships for the physical parameters
described above, we can now move on to consider the coupled fluid dynamics and water
concentration transport in a rheometer. In the following section we first review the classical
result for the axisymmetric parallel-plate rheometer with constant viscosity before moving
on to cases with variable viscosity.

3.4. Note on the assumption of constant density
Before moving on, we briefly comment on the assumption of constant density. As water
is absorbed into the glycerol, the resulting density gradients introduce the possibility
for buoyancy-driven flows. An estimate for the magnitude of such effects is given by
considering that a vertical change in density Δρ implies a radial pressure gradient of
the order of Δρgh0/R. We can balance this radial pressure gradient with a radial viscous
stress gradient μub/h2

0, where ub is the characteristic magnitude of the buoyancy-driven
flow. Thus, we have ub ∼ Δρgh3

0/μR. For buoyancy effects to be negligible, we need ub
to be small relative to the magnitude of the inertial secondary velocity components which
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are O(ρΩ2h2
0R/μ), as shown in (1.1). Thus, we need

Δρgh3
0

μR
� ρΩ2h2

0R
μ

−→ Δρ

ρ
� Ω2R2

gh0
. (3.9)

The left-hand side of this inequality has a maximum value of around 0.2 when the
saturation water concentration approaches 100 %, and so it will typically take a smaller
value depending on the RH. The right-hand side of the inequality depends on the system
parameters, but a typical value with Ω = 4.0 rad s−1, R = 2.5 cm and h0 = 0.5 mm is
approximately 2.0. Thus, the buoyancy-driven flow can be expected to be less than 10 %
of the inertial secondary flow. At larger gap heights and smaller rotation speeds, this
inequality suggests that buoyancy effects become relatively more important, and could
even dominate the dynamics. However, in the very slow rotation case, the dynamics are
nearly one-dimensional (1-D), such that the density variation is almost entirely in the radial
direction and the negligible vertical density gradient should not affect the radial pressure
gradient. So, (3.9) should be considered only as an estimate of the importance of buoyancy
effects.

4. Classical result: axisymmetric flow with constant viscosity

Before moving on to consider the full coupled dynamics of glycerol absorbing water
in a parallel-plate rheometer, we first review the classical Newtonian, constant-viscosity
flow solution in a parallel-plate rheometer. Understanding this flow is important because
it illustrates the types of secondary flows we should expect in the rheometer, and also
provides some initial insights into the non-monotonic relationship between measured
viscosities and rotation speed and gap height in the full system. The axisymmetric
parallel-plate rheometer has a well-known solution that has been previously described
by multiple authors (see e.g. Middleman 1968; Bird et al. 1987). Here, we briefly
reproduce this calculation in our notation for consistency with later sections. We consider
a parallel-plate rheometer with radius R and gap thickness h0. The lower plate is stationary
and the upper plate rotates at a rotation speed of Ω . We model the system using cylindrical
coordinates with the origin located at the centre of the bottom plate. Thus, the governing
equations are the axisymmetric and constant-viscosity forms of (3.3) and (3.4). The
corresponding boundary conditions are no-slip at both the upper and lower plates, i.e.
(ur,axi, uθ,axi, uz,axi) = (0, 0, 0) at z = 0 and (ur,axi, uθ,axi, uz,axi) = (0, r, 0) at z = 1. For
small gap heights ε � 1 a solution for the velocity and pressure can be sought in the form
of an expansion in powers of ε2. Up to O(ε4), this axisymmetric solution is given by

ur,axi(r, z) = − 1
12

rRe z(z − 1)

(
−4

5
+ z + z2

)
+ O(ε4), (4.1a)

uθ,axi(r, z) = rz − rRe2z
6300

(8 + z3(35 − 63z + 20z3)) + O(ε4), (4.1b)

uz,axi(z) = 1
30

Re z2(z − 1)2(2 + z) + O(ε4), (4.1c)

paxi(r) = 3r2

20
Re + 1

30
Re ε2z(4 − 9z + 5z3) + O(ε4). (4.1d)

Here, the subscript ‘axi’ denotes the axisymmetric case, and the expression for ur,axi
is equivalent to the result first presented by Savins & Metzner (1970), which was given
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Figure 4. Secondary velocity components ur,axi and uz,axi in a parallel-plate rheometer in the small-gap limit
(ε � 1). The radial velocity proceeds outward along the upper half of the gap, reverses at the outer edge and
proceeds radially inward along the lower half of the gap. The z component shows an upward drift along the
middle of the gap that is independent of r. Both secondary velocities are O(Re). Results correspond to (4.1).
Note that ur,axi is plotted normalized by r and Re, and uaxi satisfies incompressibility.

above in dimensional form as (1.1). The primary flow is the uθ,axi = rz component with an
O(Re2) correction, while the leading-order secondary flows in the r and z directions are
both O(Re). Since the flow of interest is axisymmetric, the primary velocity components
of interest for redistributing absorbed species at the outer edge of the rheometer are the
secondary velocity components, especially the radial component, since this will transport
absorbed water from the outer edge inwards through the gap.

A visualization of the secondary velocity components is given in figure 4. Here, the
uz,axi component shows that there is an upward drift that is independent of r throughout
the rheometer. The radial component shows that in the upper half of the gap the flow is
directed radially outwards, and in the lower half of the gap the flow is directed radially
inwards. Keep in mind that the theoretical solution presented in (4.1) must break down
near the outer edge of the rheometer where r → 1, since the lubrication approximation
fails in that region. In the true system, near the outer edge the outward-travelling flow in
the upper half of the rheometer must turn downwards for continuity and turn around to
then travel radially inwards. The width of this turning region should be O(ε), and thus is
progressively more confined at the outer edge as the gap height decreases. This effect is
not captured by (4.1), although it may have an important role in the transport of absorbed
water in the glycerol–water system.

This picture of the secondary flows appears to yield a satisfactory understanding of the
relationship between the evolving viscosity measurements and the gap height and rotation
speed, at least when the gap height is not too small. That is, for gap heights of 0.5 mm and
above, increasing either the gap height or the rotation speed will contribute to greater radial
secondary flows that pull relatively higher-water-concentration glycerol away from the
outer edge, enhancing the flux of water into the glycerol at the outer edge. This contributes
to a faster decrease in the measured viscosity as the high-water-concentration glycerol
at the outer edge generates less shear stress on the upper plate. However, this picture of
the secondary flows is inconsistent with our observed viscosity measurements at small
gap heights. In the limit of Re � 1, the secondary flows in a parallel-plate rheometer are
negligible. In this case, the transport equation simplifies to a purely 1-D radial diffusion
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problem, and the evolution of water concentration becomes independent of both the gap
height and rotation speed. Furthermore, the viscosity distribution likewise is independent
of h0 and Ω , which is inconsistent with the sharp decrease in μf /μi seen in figure 2(b) at
very small gap heights. This will motivate us later in the paper to consider the potential
role of misalignment. First, we examine in more detail the 1-D diffusive limit with variable
viscosity. As a quick point of reference, with the definition of Reynolds number given by
Re = ρgΩh2

0/μg, with the characteristic density and viscosity based on values for pure
glycerol, the experimental results presented above in figure 2 have Reynolds numbers
ranging from ∼1 × 10−6 up to ∼0.05. While these values seem small, recall that the
dimensional viscosity can vary by over three orders of magnitude, such that a locally
defined Reynolds number could be significantly larger.

5. One-dimensional diffusive limit with variable viscosity

First, we consider the evolution of the viscosity distribution and measured effective
viscosity of glycerol absorbing water in the inertialess, 1-D diffusive limit. For small
Reynolds numbers and gap heights, the axisymmetric form of (3.6) becomes

Pe
∂c
∂t

= 1
r

∂

∂r

(
rD

∂c
∂r

)
+ 1

ε2
∂

∂z

(
D

∂c
∂z

)
. (5.1)

Considering that the water concentration boundary condition at r = 1 is independent of z,
along with the no-flux conditions at the upper and lower plates, when ε � 1 it must be the
case that c is approximately independent of z, so that (5.1) further simplifies to

Pe
∂c
∂t

= 1
r

∂

∂r

(
rD

∂c
∂r

)
, (5.2)

which is simply a 1-D radial diffusion equation with variable diffusivity D(c). In this
regime, a better choice for the characteristic time scale would be the characteristic radial
diffusion time R2/D0, the use of which would yield the same equation without the Pe
factor on the left-hand side. For consistency, we continue to use the convective 1/Ω time
scale as the characteristic time scale. Here, the only boundary conditions that are needed
are symmetry at r = 0 and the saturation water mass fraction at r = 1, i.e. c(r = 1) = csat.

As the water concentration evolves, the anticipated viscosity measurement from the
rheometer can be predicted through the use of the viscosity distribution as follows.
A parallel-plate rheometer cannot measure the viscosity distribution throughout the fluid
layer, but rather simply infers an effective viscosity μ∗

eff by measuring the total torque
exerted on the upper plate as it spins. In dimensional form, the azimuthal velocity at small
gap heights is u∗

θ = Ωr∗z∗/h0. This velocity profile is valid regardless of the viscosity
distribution since c is a function of r and t only. The total torque experienced by the upper
plate is then given by

T =
∫ 2π

0

∫ R

0

μ∗Ω
h

r∗3 dr∗ dθ. (5.3)

If the viscosity is constant and uniform, the total torque on the upper plate is then

T = πμ∗ΩR4

2h
−→ μ∗ = 2hT

πΩR4 . (5.4)

The rheometer assumes a constant-viscosity fluid and reports the ‘effective’ viscosity
of the fluid that is calculated from (5.4) based on the measured torque. In the
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Figure 5. Transient non-dimensional viscosity measurements in the inertialess, 1-D, axisymmetric regime.
(a) Results simulated over 3600 s for comparison with experimental measurements. Results show substantial
decreases in measured viscosities at large csat values, but not as significant as those seen in the experiments.
The inset shows the final non-dimensional viscosity μf versus csat. (b) Results extended to much longer times
to show the final saturation of the glycerol, which corresponds to the curves levelling off. Clearly, higher values
of csat reach saturation more quickly.

experimental system, the initial condition is assumed to be pure glycerol, such that
Tinit = πμgΩR4/(2h), and we have

μ∗
eff

μg
= T(t)

Tinit
= 2h

πμgΩR4

∫ 2π

0

∫ R

0

μ∗Ω
h

r∗3 dr∗ dθ

−→ μeff = 2
π

∫ 2π

0

∫ 1

0
μr3 dr dθ, (5.5)

which simplifies to

μeff = 4
∫ 1

0
μr3 dr (5.6)

for axisymmetric flow.
Here, we perform 1-D transient simulations of (5.1) using the finite-difference method

with second-order accuracy in space and first-order accuracy in time. Convergence studies
were performed in space and time to verify the results. Using these simulations, we
compute the effective non-dimensional viscosity over time as water is absorbed at the
outer edge and diffuses radially inwards. We perform these simulations over a range
of csat values which reproduces the effect of varying RHs. First, for comparison with
experiments, the results are simulated for one hour to determine the degree of viscosity
decrease that can be achieved via pure diffusion over the experimental time scale. These
results are shown in figure 5(a). As can be seen, diffusion alone is sufficient to generate a
significant decrease in measured viscosities over this time scale, although not to the degree
seen in the experiments. For example, consider the experimental results in figure 2(c),
which were performed at a Reynolds number of Re = ρΩh2

0/μ0 = 4.6 × 10−6 and aspect
ratio of ε = h0/R = 4 × 10−3. Clearly, in such a regime the inertialess, 1-D model would
be expected to apply. However, the experimental results show a much larger decrease in
viscosity over this time scale. The RH = 72 % results (corresponding to approximately
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csat = 0.386) drop to around μ = 0.38, and the RH = 45 % results (corresponding to
csat = 0.185) drop to around μ = 0.6. However, in the 1-D limit, the corresponding
numerical predictions for csat = 0.4 and csat = 0.2 only decrease to around μ = 0.78 and
μ = 0.86, respectively.

Thus, the experiments show a much larger decrease in viscosity over this time scale
than the 1-D model with pure diffusion. Furthermore, the results shown in figure 5(a)
are clearly still evolving over this time scale, whereas in the long-time limit we expect
all of the glycerol to homogenize at the saturation concentration based on the RH.
Therefore, we extend these results to much longer times in figure 5(b), which shows that
the measured effective viscosities level off as the water concentration saturates. Here we
see the influence of the variable diffusivity on the time scale for the diffusive process.
With the characteristic diffusivity D0, the time scale for the process would be expected
to be t∗ = O(R2/D0). However, as can be seen, most of the cases have fully saturated
well before this time scale, especially at larger csat values. This is due to the enhanced
diffusion at larger water concentrations. In fact, a much better prediction for the time
scale of this 1-D diffusive process is to use the diffusivity based on csat, which we call
Dsat. The rescaled results are shown in figure 6, which shows that for each case the water
concentration in the glycerol has fully saturated over the time scale t∗ = O(R2/Dsat). For
each case, two regimes can be seen. In the early times, the water concentration in the
glycerol is non-uniform, and so the diffusive transport in the domain proceeds with a
spatially varying diffusivity coefficient. At late times, the water concentration throughout
the system has nearly equilibrated at around the saturation concentration, such that the
diffusion coefficient is nearly uniform and the results all decay exponentially with the
same rate constant. This constant can be simply calculated by considering a 1-D radial
diffusion problem with constant diffusivity (since this is nearly the case at long times),
where the transport in dimensional form is governed by

∂c
∂t∗

= Dsat
1
r∗

∂

∂r∗

(
r∗ ∂c

∂r∗

)
with

∂c
∂r∗

∣∣∣∣
r∗=0

= 0 and c(r∗ = R) = csat. (5.7)

The solution to this is given by

c(r∗, t∗) = csat +
∞∑

n=1

an exp(−Dsatt∗λ2
n)J0(λnr), (5.8)

where an are coefficients that depend on the initial condition and J0 is the zeroth-order
Bessel function of the first kind. The λn eigenvalues here are the roots of J0 divided by
the radius R. Thus, at late times we see that c − csat ∼ exp(−χ2

1 t∗Dsat/R2), where χ1 =
2.40483 is the first root of the J0 function. Thus we see the χ2

1 = 5.7832 exponential decay
seen in figure 6.

The previous results are strictly valid in the inertialess (Re � 1), small-gap (ε � 1)
and axisymmetric limits. These calculations are significantly simplified compared with
the solution for the inertial regime since (1) the water concentration profile can no longer
be assumed to be independent of z due to the secondary velocity components and (2)
the fluid velocity profiles must be recalculated continuously as the concentration profile
evolves while taking into account the spatial variations in viscosity. Nevertheless, it is clear
that we must extend our results to the inertial regime, since the 1-D diffusion-dominated
results cannot reproduce the same degree of viscosity decrease over the time scale of the
experiments. These simulations are pursued in the following section.
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Figure 6. Rescaled effective viscosities in the 1-D, inertialess, axisymmetric limit. For each case the water
concentration fully saturates approximately over the time scale t∗ = O(R2/Dsat), which is consistent with
diffusion primarily occurring at the saturation concentration diffusivity. At late times, the rescaled viscosities
all approach the saturation values exponentially with a rate constant of 5.78, consistent with the 1-D theory.

6. Inertial regime with variable viscosity

Having explored the purely diffusion-dominated 1-D axisymmetric regime in the previous
section, we now extend our results to the inertial, axisymmetric regime. Recall that in
the inertial regime, the coupled dynamics is governed by four dimensionless parameters,
which are

Pe = ΩR2

D0
, Re = ρΩh2

0
μ0

, ε = h0

R
and csat, (6.1a–d)

whereas in the diffusion-dominated case the dynamics are governed only by csat. Thus,
the system is governed by a relatively large parameter space. However, note that the ratio
μ0/(ρD0) = μg/(ρDg) is fixed for glycerol, and the Péclet number can be written as

Pe = ΩR2

D0
=
(

ρΩh2
0

μ0

)(
R2

h2
0

)(
μ0

ρD0

)
= Re

ε2

(
μ0

ρD0

)
, (6.2)

so that the Péclet number is uniquely determined by the choice of Re and ε.

6.1. Numerical methods
Numerical simulations were performed using OpenFOAM (Weller et al. 1998) with an
axisymmetric wedge-shaped mesh geometry with a wedge angle of 1◦. Local mesh
refinement was used near r = 1 to resolve the water concentration boundary layer.
A sample mesh design is shown in figure 7. Simulations were performed using a custom
in-house solver that iteratively updates the water concentration profile for 100 time
steps using a time step of 0.01 s using second-order backward time-stepping and then
recalculates the new steady-state velocity–pressure profiles using the SIMPLE algorithm
(Jang, Jetli & Acharya 1986; Barton 1998). Thus, the solver assumes that the fluid
velocity does not change much during one time step. Convergence tests were performed to
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(b)

z
r

(a) (c)

Figure 7. Sample computational mesh design for the inertial, axisymmetric simulations. The grid has been
coarsened by a factor of 3 in the r and z directions for visualization purposes. Local mesh refinement is used
near r = 1 to resolve the water concentration boundary layer. (a) Top-down view of the axisymmetric wedge
mesh geometry. (b) Side view of the wedge mesh. (c) Zoomed-in image of the local refinement near r = 1.
Several extra layers of very thin cells exist on the right-hand side which are difficult to see in order to resolve
sharp concentration gradients that can occur at the boundary when inertial effects come into play.

confirm that recalculating the velocity every 100 time steps had a negligible impact on the
calculated results compared with re-solving every time step. The solver assumes that the
velocity–pressure profiles are quasi-steady and only evolve when the water concentration
profile changes. The SIMPLE algorithm was used with relative pressure and velocity
tolerances of 1 × 10−5. Convergence tests also confirmed the results were insensitive to
these tolerances. Finally, grid resolution convergence tests were performed, and a final base
grid of 375 × 30 cells in the r × z directions was chosen. The cells within the region from
r = 1 − 2ε to 1 were all further refined by one level. Finally, the final layer of cells at r = 1
was further refined by halving three times. Using this grid, convergence tests indicate that
the errors due to spatial discretization should be less than 1 %. Torque measurements were
calculated by integrating the wall shear stress over the upper plate.

6.2. Results
Using the numerical methods described in the previous section, simulations were
performed across a range of gap heights, Re and RHs (through their proxy csat). Before
introducing the final measured viscosity values for comparison with the experiments, we
first present results illustrating the evolution and dynamics of the water concentration
field in the glycerol over a range of gap heights and rotation speeds. A comparison
of the evolving water concentration profiles at various rotation speeds is shown in
figure 8, and we give the results in dimensional form to make more clear the relationship
of the changes to the experimental results presented earlier. These simulations were
performed at csat = 0.2 and ε = (1.0 × 10−3 m)/(2.5 × 10−2 m) = 0.04 with rotation
speeds of 0.4, 1.0, 4.0 and 10.0 rad s−1. The corresponding non-dimensional parameters
for these cases are summarized in table 1. Here, the Reynolds number ranges from
Re = 4.58 × 10−4 up to 1.15 × 10−2. This seems counter-intuitive, since even the smallest
rotation speed case shows some deviation from a purely 1-D, diffusive transport, as
can be seen by the concentration variation in the z direction, whereas the relatively
small Reynolds numbers suggest inertial effects should be small for all of these cases.
However, consider that u∗

r,axi ∼ ΩRRe. Then the characteristic time for convection in
the radial direction is τconv,rad = (Ω Re)−1, while the characteristic time for diffusion
in the radial direction is τdiff ,rad = R2/D0. Thus, an appropriate radial Péclet number is
Perad = τdiff ,rad/τconv,rad = ΩR2Re/D0. These values are also tabulated in table 1. As can
be seen, even for the smallest angular velocity case with Ω = 0.4 rad s−1, the radial Péclet
number is still greater than O(103), increasing up to O(106) at 10 rad s−1. Thus, even at
relatively small Reynolds numbers, the radial transport will be dominated by convection
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Figure 8. Numerical results for the evolving water concentration profile c over time for different rotation
speeds Ω at csat = 0.2 and ε = (1.0 × 10−3 m)/(2.5 × 10−2 m) = 0.04. Here, the angular speeds are
(a) Ω = 0.4 rad s−1, (b) Ω = 1.0 rad s−1, (c) Ω = 4.0 rad s−1 and (d) Ω = 10.0 rad s−1. The corresponding
non-dimensional parameters are summarized in table 1. Here, the Reynolds number (based on the saturation
viscosity rather than μg) ranges from 9.71 × 10−3 up to 0.243 as the role of secondary (inertial) flows clearly
grows with Ω .

Table 1. Summary of the simulation parameters used in figures 8 and 10. The time-scale values τconv and τdiff
have units of seconds. Here, the parameters with ‘sat’ subscripts are calculated based on the fluid properties at
the appropriate saturation mass fraction of water, and parameters without this subscript are calculated based on
the fluid properties of pure glycerol.

due to the relatively low diffusivity coefficients. For reference, table 1 also tabulates the
non-dimensional parameters based on the viscosity and diffusivity values associated with
the saturation concentration csat rather than reference values based on pure glycerol. Here,
the Reynolds numbers are increased while both the convective and diffusive time scales
are decreased due to the reduced viscosity and increased diffusivity at increased water
concentrations.
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Figure 9. Detailed look at the glycerol–water dynamics for the case corresponding to figure 8(d) taken at
t = 1 × 104 (see table 1 for all relevant parameters). (a) Secondary velocity vectors coloured and scaled by the
magnitude of the secondary velocity superimposed on a colourmap of the water concentration profile. As can be
seen, the water begins to diffuse inward from the outer boundary, where the secondary flow pulls the absorbed
water downward and then radially inward along the bottom plate, leading to a steep concentration gradient at
the outer edge as the rotation speed is increased. (b) Full water concentration profile over a full axisymmetric
cross-section. (c–f ) Non-dimensional diffusivity coefficient, viscosity, radial velocity component and z velocity
component.

Examining the transport dynamics in figure 8, we see that the transport of water
concentration is consistent with the axisymmetric, constant-viscosity flow picture
described above. In particular, in the constant-viscosity case, flow proceeds radially
outward along the upper plate, turns downward and then flows radially inward along the
lower plate. This is shown in more detail in figure 9(a). Here, the arrows are colour-coded
and scaled by the magnitude of the secondary velocity components |u∗

sec|, and the
background is colour-coded by the water concentration profile. Here, u∗

sec is the velocity
field on the slice in the r and z directions. As can be seen, the water begins to diffuse
inwards from the outer edge, but then the secondary velocity pulls the absorbed water
down along the outer edge and then radially inwards along the bottom plate. This creates
a very thin boundary layer region near the outer edge of the rheometer, which gets thinner
as Perad increases. The full solute concentration profile corresponding to figure 9(a) is
shown in 9(b), and the corresponding dimensionless diffusivity, viscosity, radial velocity
and z velocity are shown in figures 9(c)–9( f ), respectively. This case corresponds to the
parameters previously shown in figure 8(d) with the parameters shown in table 1, and all
results are at the non-dimensional time t = Ωt∗ = (10 rad s−1)(1000 s) = 1 × 104.

As can be seen in figure 9, the regions of high water concentration correspond to the
regions of increased diffusivity and decreased viscosity. The radial velocity component
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Figure 10. Numerical results for the evolving water concentration profile c over time for different gap
heights h0 at csat = 0.5 and Ω = 4.0 rad s−1. Here, the gap heights are (a) 0.05 mm, (b) 0.1 mm,
(c) 0.2 mm, (d) 0.5 mm, (e) 0.75 mm, ( f ) 1.0 mm, (g) 1.25 mm, (h) 1.5 mm and (i) 2.0 mm. The corresponding
non-dimensional numbers are summarized in table 1. Over this parameter range, the Reynolds numbers (based
on the saturation viscosity) range from 2.30 × 10−3 up to 3.68 and the gap aspect ratio ranges from 0.002 to
0.08. Thus, these cases capture the full transition from the 1-D, diffusive limit up to the inertial regime.

resembles the flow for the axisymmetric constant-viscosity case with outward radial flow
along the upper half of the domain and inward radial flow along the lower half, except
that the magnitude of both is increased throughout the extent of the low-viscosity region.
Furthermore, at the front of the propagating front of water concentration, there is a steep
gradient in viscosity that corresponds to an upward secondary velocity due to the viscosity
gradients as seen in figure 9(d,f ).

Finally, a last illustration of the water concentration dynamics at higher csat is presented
in figure 10 as a function of gap height. These results show the evolution of the water
concentration profile over time at csat = 0.5 and Ω = 4.0 rad s−1 for gap heights ranging
from 0.05 to 2.0 mm. Again, all of the relevant non-dimensional parameters are given in
table 1 based on both the pure glycerol reference values and the saturation values. Here, the
Reynolds number based on the saturation parameters ranges from 2.30 × 10−3 up to 3.68,
representing a transition from the inertialess regime into the moderate inertial regime. The
radial Péclet numbers based on the saturation properties remain relatively high, increasing
from 1.46 × 104 up to 2.34 × 107 as the gap height increases, suggesting that the radial
transport of water is dominated by convection in these regimes. Nevertheless, the transport
at the smallest gap heights is approximately 1-D, suggesting that the Perad threshold for
this transition is at a relatively large magnitude in this particular system.

Note that the qualitative picture of the water concentration evolution is different in
figures 8 and 10. In particular, figure 10( f ) corresponds to the same gap height and rotation
speed as figure 8(c), except with an increased csat value of 0.5 versus 0.2, respectively.
While this seems like a relatively minor change, the corresponding μsat value is an order of
magnitude smaller at csat = 0.5, which leads to an order-of-magnitude stronger secondary
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Figure 11. Enhanced secondary recirculation in the low-viscosity region corresponding to larger csat values.
These results illustrate the enhanced mixing effect that is seen at early times with csat = 0.5 for the parameters
shown in figure 10( f ). At large values of csat, the local viscosity drops in regions of large c to such a degree that
the local recirculation dominates the expected secondary motions for constant-viscosity, axisymmetric flow.

flow in the region of locally low viscosity. This generates an enhanced mixing that leads
to a more homogeneously propagating front of water concentration. This can be visualized
in figure 11 for the case corresponding to figure 10( f ) at early times. As can be seen,
the local secondary recirculation in the low-viscosity region completely dominates the
expected global secondary recirculation for the axisymmetric, constant-viscosity case. In
fact, the global velocity field (the axisymmetric constant-viscosity solution) is negligible
in the figure. This enhanced local recirculation at larger csat values explains why the water
propagates as a more uniform front in that regime, as opposed to being pulled down and
inward along the lower plate as illustrated in figure 9(a) for a smaller csat value.

Finally, having characterized and visualized the coupled transport dynamics in the
parallel-plate, axisymmetric, inertial regime, we now calculate the measured effective
viscosities in these simulations to see if the proposed model can fully capture the trends
seen in the experimental results. The final measured dimensionless viscosities μf at t∗ =
3600 s are presented in figure 12 as functions of gap aspect ratio ε, saturation concentration
csat and angular rotation speed Ω . The corresponding angular rotation speeds in the figure
are 0.4, 1.0, 2.0 and 4.0 rad s−1. In the figure, the dashed lines correspond to the predictions
of the 1-D, axisymmetric, diffusion-dominated results previously described in figures 5
and 6. Note that in the experiments, the reported viscosities were non-dimensionalized by
μ∗

i , the initial measured viscosity at t = 0, and in the simulations the reported viscosities
have been non-dimensionalized by μg. Here, several key relationships and trends emerge
from the results. First, we see clearly that in every case, the results approach the 1-D
diffusion-dominated limit as ε → 0 for constant Ω , and they appear to also approach this
limit as Ω → 0 for constant ε. For a given Ω , deviations from this limit increase as ε

increases, due to enhanced inertial effects, as well as for increased csat. This latter trend
is also due to an increase in inertial effects, although indirectly through a decreasing in
the local viscosity. Furthermore, increasing Ω clearly leads to more significant deviations
from the 1-D limit due to increasing secondary inertial flows.
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Figure 12. Compilation of all measured final dimensionless viscosities μf at t∗ = 3600 s from the
axisymmetric, inertial, variable-viscosity simulations for comparison with the experimental results. Dashed
lines indicate the 1-D, inertialess, diffusion-dominated results described in the previous section. Results
are plotted separately by rotation speed with values of (a) 0.4 rad s−1, (b) 1.0 rad s−1, (c) 2.0 rad s−1 and
(d) 4.0 rad s−1. Clearly, deviations from the diffusion-dominated limit increase with gap height and angular
rotation speed due to the increase of inertial secondary flows, as well as with increasing csat due to local
reductions in viscosity (and consequent increases in inertial effects).

Comparing these results with the experimental results, the axisymmetric inertial
simulations do seem to capture many features of the experimental results. In particular,
we generally see decreased μf values at larger gap heights and larger csat values (i.e.
RH values), which are consistent with figure 2. Specifically, the numerical results in
figure 12(a) correspond to the same rotation speed (Ω = 0.4 rad s−1) as figure 2(b).
Similar trends are seen (except at small gap heights, which is discussed below), with
slightly less significant decreases in viscosity in the simulations compared with the
experiments. Increasing the rotation speed to 1.0 rad s−1 in the simulations shows
more significant viscosity decreases than the experimental results at 0.4 rad s−1. So the
experimental results at 0.4 rad s−1 agree well quantitatively with numerical predictions
slightly above 0.4 rad s−1. One trend seen in the experiments that we do not see in the
simulations is the non-monotonic relationship between viscosity decrease and angular
rotation rate seen in figure 2(d). However, we do see evidence of a non-monotonic
relationship with increasing inertial effects in the simulations. In particular, at Ω =
4.0 rad s−1 with csat = 0.1 (orange curve in figure 12d), the final measured viscosity
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first decreases and then increases with increasing gap height, demonstrating that the
axisymmetric case can demonstrate such trends.

The most significant experimental result that these simulations cannot explain is the
large decrease in measured viscosity values at small gap heights. In fact, one of the most
consistent results of the axisymmetric, inertial simulations is the approach to the 1-D,
diffusion-dominated regime at small gap heights for any angular rotation speed. Thus,
these axisymmetric simulations apparently fail to account for some effect that becomes
dominant at small gap heights. We hypothesize that this is due to misalignment effects that
only become significant at very small gap heights in practical parallel-plate rheometers. In
the next section, we perform additional simulations based on a misaligned geometry in an
attempt to validate this hypothesis.

7. Role of misalignment

In the previous section, we clearly saw that the axisymmetric, inertial, variable-viscosity
model fails to account for the sharp decrease in measured viscosity at small gap
heights. Thus, we must consider what possible sources of error could account for these
effects. A variety of experimental challenges exist for performing accurate measurements
with a rheometer, such as underfilling of the parallel-plate gap, instrument inertia and
surface tension effects (Hellström et al. 2014; Ewoldt et al. 2015). In addition to these,
there are practical sources of error associated with the mechanical uncertainties in the
rheometer itself. A key source of these errors comes from deviations in the geometry
of the gap containing the fluid. These errors in the gap geometry could arise from
non-parallelism, non-concentricity, non-flatness of the plates, non-zero slip lengths at
the upper or lower plates, edge effects at the outer edge of the rheometer or errors in
the gap-zeroing procedure (Connelly & Greener 1985; Kramer, Uhl & Prud’Homme
1987; Kalika, Nuel & Denn 1989; Henson & Mackay 1995; Davies & Stokes 2005;
Andablo-Reyes, Hidalgo-Álvarez & de Vicente 2010; Andablo-Reyes, de Vicente &
Hidalgo-Alvarez 2011). One reason the discussion of these sources of error arose was due
to the experimental observation that as gaps decreased below several hundred micrometres,
measured viscosities began to have systematic errors, typically decreasing with the gap
height as also shown in figure 2(b) (Walters 1975; Pipe & McKinley 2009).

Based on these observations, a variety of studies suggest that a key factor in this
discrepancy in our measurements and simulations could be the misalignment of the
rotating plate. Although it is commonly assumed that the plates are perfectly aligned, a
number of reports indicate that a small but finite misalignment is prevalent in parallel-plate
and cone-and-plate rheometers (Andablo-Reyes et al. 2011). In fact, the gap height
can vary over 50 μm across a few centimetres in a parallel-plate rheometer due to the
non-parallelism in the gap, causing a significant error in the viscosity measurements
in narrow-gap, high-shear-rate experiments (Davies & Stokes 2008; Pipe, Majmudar &
McKinley 2008). This is due to the fact that the misalignment introduces additional
lubrication forces in the fluid layer. A variety of semi-empirical techniques have been
developed to account for these systematic errors at small gap heights. For example, a
simple linear approximation has been proposed in which a simple gap error is defined
to correct the measured values (Connelly & Greener 1985; Dudgeon & Wedgewood
1994; Davies & Stokes 2008). Another technique involves using ultrasound time-of-flight
measurements to detect the varying thickness of the fluid layer in the case of misalignment,
which can be used to calculate the degree of misalignment (Rodríguez-López et al.
2013). A numerical solution of the flow in a misaligned parallel-plate rheometer was
also presented by Andablo-Reyes et al. (2010). Also, Clasen (2013) introduced a system
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that can self-correct non-parallelism to a degree using hydrodynamic lubrication forces.
Finally, a theoretical description of the velocity and stress profiles in a slightly misaligned
cone-and-plate rheometer was achieved by Dudgeon & Wedgewood (1994) using a domain
perturbation study in the limit of zero Reynolds number.

In this section, we consider the role of misalignment in the transport of absorbed water
throughout the glycerol, and the effects of this misalignment on the measured viscosity
values. In general, such an analysis would need fully three-dimensional simulations in a
misaligned rheometer geometry. We considered performing such simulations, but found
them to be intractable due to the extremely high computational cost of performing them.
In particular, they require 2–3 orders of magnitude more grid cells than the axisymmetric
simulations in order to resolve the water concentration boundary layer at the outer edge of
the rheometer. Furthermore, all of the meshing techniques we tried that would maintain
this resolution at the outer edge ultimately resulted in very high-aspect-ratio cells at some
point in the domain that affect resolution and greatly increase the number of iterations
needed to solve the velocity–pressure profile with the SIMPLE algorithm, which must
be repeated continuously as the water concentration field evolves. For these reasons, we
consider a simplified, depth-averaged case that is valid in the limit of small gap heights.
This model and the corresponding simulations and results are described in the following
sections.

7.1. Theory
Here, we consider a misaligned parallel-plate rheometer with radius R and gap thickness
h(r, θ, φ), where the upper plate is slightly tilted by a small angle φ. Once again, the lower
plate is stationary, and the upper plate rotates at a rotation speed of Ω . The coordinate
system and problem set-up are shown in figure 13. The boundary conditions for the system
are u = 0 at z = 0 (on the lower plate), and

ur = r cos θ sin θ sin φ tan φ, (7.1a)

uθ = r(cos2 θ sec φ + cos φ sin2 θ), (7.1b)

uz = −rε−1 sin θ sin φ, (7.1c)

at z = h(r, θ, φ) = 1 + φε−1r cos θ (the upper plate). Note that these simplify to ur =
uz = 0 and uθ = r at z = 1 as in the axisymmetric case when φ = 0. For small angles,
the angle φ can range from 0 to a maximum of ε. Thus, φ/ε ranges from 0 to 1, and
small values of φ/ε correspond to small plate deflections. Here, φ/ε = 0 corresponds
to the case of no misalignment and φ/ε = 1 corresponds to the case where the plates
come in contact at one edge. Further, recall that as before we generally also need to
apply boundary conditions at r = 1. In a practical experiment, this boundary condition
represents a fluid–air interface that is typically not flat and experiences surface tension
effects. However, in the small-gap limit, we lose the ability to impose such a boundary
condition, and we note that this contributes to the error in velocity–pressure profiles in the
O(ε) region near r = 1.

The governing equations are again the Navier–Stokes equations with variable viscosity
and the continuity equation, which are given by (3.3) and (3.4), respectively, as well
as the water concentration advection–diffusion equation given by (3.6). As mentioned
above, the numerical simulation of the full system of coupled equations in a well-resolved
three-dimensional geometry is computationally expensive. In the limit of narrow gap
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h0
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Hypothetical parallel plane

z

x
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φε–1r cos θ

θ

φ

Ω

Figure 13. Misaligned parallel-plate rheometer geometry and coordinate system. The upper plate is misaligned
by a small deflection angle φ and rotates at angular speed Ω . With z non-dimensionalized by h0 and r
non-dimensionalized by R, the z coordinate defining the upper plate is h(r, θ, φ) = 1 + φε−1r cos θ . Note
that for small angles, the angle φ can range from 0 to a maximum of ε.

heights ε � 1 and negligible inertia Re � 1, the Navier–Stokes equations simplify to

0 = −∂p
∂r

+ μ
∂2ur

∂z2 + ∂μ

∂z
∂ur

∂z
, (7.2a)

0 = −1
r

∂p
∂θ

+ μ
∂2uθ

∂z2 + ∂μ

∂z
∂uθ

∂z
, (7.2b)

0 = ∂p
∂z

. (7.2c)

Furthermore, in the thin-gap limit, the water concentration can be assumed to be
approximately uniform in the depth direction, which gives ∂c/∂z ≈ 0 and ∂μ/∂z ≈ 0.
This gives

0 = −∂p
∂r

+ μ
∂2ur

∂z2 , 0 = −1
r

∂p
∂θ

+ μ
∂2uθ

∂z2 ,

0 = ∂p
∂z

and
1
r

∂

∂r
(rur) + 1

r
∂uθ

∂θ
+ ∂uz

∂z
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (7.3a–d)

Note here that c(r, θ, t), μ(r, θ, t) and p(r, θ, t) in this limit. With the fact that ∂p/∂z = 0
in this limit, the next leading-order form of the z component of the Navier–Stokes
equations becomes

0 = μ
∂2uz

∂z2 + ∂μ

∂r
∂ur

∂z
+ 1

r
∂μ

∂θ

∂uθ

∂z
. (7.4)

By examining the form of the gap height distribution h(r, θ, φ) = 1 + φε−1r cos θ we
see that the magnitude of the perturbation is O(φ/ε). This suggests the use of a solution
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given by

ur(r, θ, z, t) =
(

φ

ε

)
ur,1(r, θ, z, t) +

(
φ

ε

)2

ur,2(r, θ, z, t) + · · · , (7.5a)

uθ (r, θ, z, t) = rz +
(

φ

ε

)
uθ,1(r, θ, z, t) +

(
φ

ε

)2

uθ,2(r, θ, z, t) + · · · , (7.5b)

uz(r, θ, z, t) =
(

φ

ε

)
uz,1(r, θ, z, t) +

(
φ

ε

)2

uz,2(r, θ, z, t) + · · · , (7.5c)

p(r, θ, t) =
(

φ

ε

)
p1(r, θ, t) +

(
φ

ε

)2

p2(r, θ, t) + · · · , (7.5d)

which is valid in the limit φ/ε � 1. Substituting this expansion into (7.3a–d) and (7.4)
and applying the boundary conditions gives

ur,1(r, θ, z, t) = z(z − 1)

2μ

∂p1

∂r
, (7.6a)

uθ,1(r, θ, z, t) = −r2z cos θ + z(z − 1)

2rμ
∂p1

∂θ
, (7.6b)

uz,1(r, θ, z, t) = − z2

12r2μ

{
6r3μ2 sin θ − (2z − 3)

[
∂μ

∂θ

∂p1

∂θ
+ r2 ∂μ

∂r
∂p1

∂r

]

+ (2z − 3)μ

[
∂2p1

∂θ2 + r
(

∂p1

∂r
+ r

∂2p1

∂r2

)]}
. (7.6c)

This procedure also yields a partial differential equation governing the pressure
distribution that is given by

μ

{
∂2p1

∂θ2 + r
[
∂p1

∂r
+ r

(
6rμ sin θ + ∂2p1

∂r2

)]}
= ∂μ

∂θ

∂p1

∂θ
+ r2 ∂μ

∂r
∂p1

∂r
. (7.7)

With some known distribution of viscosity in the system, a numerical solution of (7.7)
yields the pressure distribution in the gap. This in turn can be used to calculate the velocity
profiles from (7.5) and (7.6). The velocity profiles can then be used to update the water
concentration distribution via the advection–diffusion equation. With the assumption that
c is independent of z (valid in the small-gap limit), the solute transport equation becomes

Pe
∂c
∂t

= 1
r

∂

∂r

(
rD

∂c
∂r

)
+ 1

r2
∂

∂θ

(
D

∂c
∂θ

)
− Pe

(
ur

∂c
∂r

+ uθ

r
∂c
∂θ

)
. (7.8)

Since c is independent of z, we consider solving the depth-averaged version of this equation
instead, which is simply

Pe
∂c
∂t

= 1
r

∂

∂r

(
rD

∂c
∂r

)
+ 1

r2
∂

∂θ

(
D

∂c
∂θ

)
− Pe

(
ūr

∂c
∂r

+ ūθ

r
∂c
∂θ

)
, (7.9)
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where bars denote depth-averaged quantities, c̄ = c, D̄ = D and

ūr = 1

1 + φ

ε
r cos θ

∫ 1+(φ/ε)r cos θ

z=0
ur(r, θ, z) dz = − 1

12μ

φ

ε

∂p1

∂r
+ O

(
φ

ε

)2

, (7.10a)

ūθ = 1

1 + φ

ε
r cos θ

∫ 1+(φ/ε)r cos θ

z=0
uθ (r, θ, z) dz = r

2
− 1

12rμ
φ

ε

∂p1

∂θ
+ O

(
φ

ε

)2

.

(7.10b)

Thus, having solved the pressure distribution due to the misalignment p1 from (7.7), the
depth-averaged velocity components can be calculated from (7.10), which can in turn be
used to advect the solute concentration.

7.2. Numerical methods
We perform numerical simulations of the coupled transport equations described in the
previous section. Recall that we seek solutions of the water transport and associated
viscosity measurements in a misaligned parallel-plate rheometer that are valid at small
gap heights and in the limit of negligible inertia. The numerical approach for solving these
systems is as follows:

(i) Solve (7.7) for the pressure perturbation due to misalignment subject to the boundary
condition p → 0 at r = 1.

(ii) Calculate the depth-averaged radial and azimuthal velocity components from (7.10).
(iii) Advance the water concentration profile in time by numerically integrating (7.9) for

one or more time steps.
(iv) Calculate the new viscosity and diffusivity fields and iterate back to step (i).

We attempt a numerical implementation of this process using a finite-difference
implementation in MATLAB. However, several complications emerge due to the
extremely large Péclet numbers in the system. In particular, the diffusion of the water
concentration field is so slow that the field effectively propagates with a very sharp front.
In order to resolve this and avoid spurious oscillations in the concentration field, we
use slope-limited finite differencing based on the minmod limiter function to switch to
first-order spatial differencing at the steep gradient (Roe 1986). This avoids the oscillations
that result in a pure second-order differencing scheme and still allows nearly second-order
accuracy in space globally. The more serious difficulty that we encountered with this
numerical approach is solving (7.7) for the perturbation pressure field. These solutions
do not behave nicely due to the sharp viscosity gradients on the right-hand side of the
equation. We were not able to resolve this issue using slope limiters.

As an alternative approach and to illustrate the qualitative dynamics that can be expected
with a misaligned upper plate, we instead assume a constant-viscosity model for the
purposes of calculating the velocity profile, since this solution is well behaved. Note that
(7.7) has an analytical solution when μ = 1 which is given by

p1(r, θ) = −3
4 r
(
−1 + r2

)
sin θ. (7.11)

We use this theoretical result at constant viscosity to calculate the depth-averaged
velocities in the misaligned rheometer and use these to update the concentration profile.
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Figure 14. Depth-averaged water concentration profile at t∗ = 3600 s as a function of misalignment for
csat = 0.5 and Ω = 0.4 rad s−1. Results correspond to φ/ε values of (a) 0 (perfectly aligned), (b) 0.1, (c) 0.2,
(d) 0.5, (e) 0.75 and ( f ) 0.95 (plates are nearly contacting). As can be seen, as the misalignment increases,
the concentration profile becomes no longer axisymmetric, and there is a significant increase in total water
transport into the fluid layer from the outer edge due to the misalignment-driven secondary flows.

When calculating the effective measured viscosity and torque, we always use the viscosity
distribution that corresponds to the concentration profile. This limitation to a velocity
profile based on constant viscosity is a clear limitation of our results, but nevertheless
they capture qualitative features of the experiments that the axisymmetric model could
not predict, and we leave a full solution with evolving velocity profiles based on spatial
variation of viscosity to future work.

7.3. Results
Here, we introduce the numerical results achieved for the misaligned rheometer system
based on the methodology described in the previous section. First, we highlight the role
of the misalignment in the water concentration field in figure 14. Here, the depth-averaged
water concentration profiles are shown at t∗ = 3600 s as a function of misalignment for
csat = 0.5 with misalignment ranging from φ/ε = 0 to 0.95, where 0 is the perfectly
aligned parallel-plate case, and 1 is the limit where the plates come into contact at one
edge. As can be seen, the misaligned cases all show a non-axisymmetric concentration
profile. This is due to the non-axisymmetric secondary velocity components due to the
misalignment. In particular, the radial component ūr transports water towards or away
from the outer edge, and is ūr ∼ (φ/ε)(∂p1/∂r). With p1 ∼ sin θ , this represents a radially
inward flow on one half of the rheometer and a radially outward flow on the other half and
explains why in figure 14 the concentration profile appears to be pulled in from the right
edge and pushed towards the left edge. Furthermore, this secondary velocity component is
proportional to φ/ε, so doubling the degree of misalignment doubles the radial advective
fluxes in both directions.
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Figure 15. Final measured viscosity values μf /μi at t∗ = 3600 s as functions of the misalignment φ/ε and
csat at an angular rotation speed of 0.4 rad s−1. Dashed lines correspond to the 1-D pure diffusion limit. Results
asymptotically approach the 1-D diffusion-dominated limit as φ/ε → 0. Furthermore, results show a steep
drop-off in measured viscosity values as the misalignment increases.

In order to quantify the effect of misalignment on the measured viscosity values,
simulations were performed across a range of φ/ε and csat values. The final measured
viscosity values from these simulations are presented in figure 15. Here, the results
correspond to an angular speed of 0.4 rad s−1. The dashed lines in the figure correspond to
the 1-D diffusion-dominated regime, and the results asymptotically approach these limits
as φ/ε → 0. Furthermore, the results show a steep drop-off in measured final viscosities
at large misalignments, which possibly explains the sharp decrease in measured viscosity
in the experiments at small gap heights (e.g. figure 2b) that was not captured in the
axisymmetric model (e.g. figure 12).

Finally, a comparison between all of the three different proposed models (i.e. the
1-D pure diffusion limit, the axisymmetric inertial limit and the misaligned inertialess
small-gap limit) is shown in figure 16. Here, the dashed lines indicate the 1-D
diffusion-dominated limit, dot-dashed lines correspond to the inertial, axisymmetric
regime and the solid lines show the results for the misaligned, inertialess, small-gap limit.
Results were calculated for angular rotation speeds of 0.4 and 1.0 rad s−1. The results show
that at small gap heights, the misalignment effects dominate the inertial effects. This
becomes more clear when considering that the radial secondary velocity due to inertial
effects in an axisymmetric case is O(Re), whereas the secondary velocity components due
to misalignment are O(φ/ε). For fixed angular rotation speed, the secondary velocities
must dominate the inertial secondary velocities as the gap height decreases. Furthermore,
the results also show that the opposite is true at large gap heights. For a fixed misalignment
angle and rotation speed, φ/ε decreases as the gap height increases, whereas the inertial
effects increase, such that the large-gap regime is dominated by inertial effects. This
cross-over explains the non-monotonic relationship between μf and gap height reported
in figure 2(b). Thus, there is a critical ε value at which the measured viscosity values
switch from being misalignment-dominated to inertia-dominated. Numerical simulations
using the previously described models and numerical methods can be used to estimate this
transition, as shown in figure 16.
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Figure 16. Comparison of the final measured viscosity values at t∗ = 3600 s for the models corresponding to
each of the three regimes: (1) the 1-D axisymmetric, pure diffusion limit (dashed lines), (2) the axisymmetric,
inertial regime (dot-dashed lines) and (3) the misaligned, inertialess, small-gap limit (solid lines). Results
correspond to angular rotation speeds of (a) 0.4 rad s−1 and (b) 1.0 rad s−1. Misaligned cases are calculated
with a misalignment angle of 0.0005 rad. All cases were performed with a rheometer of radius R = 2.5 cm.

8. Comparison between experiments and simulations

Here, we provide a quantitative comparison between the experimental and numerical
results. Figure 17 shows a detailed comparison between both the transient viscosity
measurements and the final measured viscosities at t∗ = 3600 s. First, figure 17(a) shows
the transient evolution of the measured and predicted viscosities normalized by the initial
viscosity at t = 0. Solid lines correspond to the experimental measurements and are
measured at RHs of 5 %, 45 % and 72 %. Dashed lines correspond to the numerical results
based on the misalignment-dominated model and are calculated at values of csat = 0.05,
0.2 and 0.4, respectively. These results are calculated at a gap height of 0.1 mm and rotation
speed of 0.4 rad s−1. The misalignment parameter is φ/ε = 0.3, which corresponds to
a misalignment tilt angle of approximately 0.0012 rad, which is slightly higher than
typical estimates. As can be seen, the misaligned modelling is able to roughly capture
the qualitative features of the experimental measurements, as well as a rough order of
magnitude of the effects on the transient viscosities.

There are several likely sources of error in this modelling that could be improved
to achieve a better fit. First, the numerical results show a rapid decrease in the
measured viscosity at early times. This is likely due to the fact that the lubrication-style
depth-averaged modelling is not able to satisfy the boundary conditions at the outer edge
of the rheometer. Instead, the modelling predicts a relatively strong radially inward flow
at the outer boundary that rapidly pulls in absorbed water from the saturated boundary
condition. This effect would likely be lessened with a more comprehensive model of
the outer interface. Next, while the numerical predictions all begin with exactly pure
glycerol, the initial measured viscosity in the experiments actually decreases some with
increasing RH. This is due to the time it takes to prepare the experiment, in which
the glycerol is able to absorb some water from the air. The consequence of this is that
the viscosity has already decreased to a small degree in the experiments, which may
contribute to relatively stronger fluid advection and enhanced water transport. Finally,
our modelling assumes the dynamics are in either the inertia-dominated regime or
misalignment-dominated regime. In fact, there is a transition region where both inertia and
misalignment contribute to enhanced water transport relative to the pure diffusion limit.
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Figure 17. Comparison between experimental results and numerical simulations. (a) Transient viscosity
measurements normalized by the initial viscosity at RHs of 5 % (black), 45 % (grey) and 72 % (blue). Solid lines
correspond to experiments and dashed lines correspond to simulations. Numerical simulations are calculated
via the misalignment-dominated modelling and use csat = 0.05, 0.2 and 0.4, respectively, for the black, grey
and blue curves. Here, the gap height is 0.1 mm and the rotation rate is 0.4 rad s−1. (b) Measured final viscosities
μf of glycerol at t∗ = 3600 s normalized by μi with Ω = 0.4 rad s−1 and R = 2.5 cm. Symbols correspond to
experimental results at RH = 72 %, and the solid and dash-dotted blue lines correspond to predictions from the
misalignment-dominated and the inertia-dominated modelling, respectively, with csat = 0.5.

In this transition region, both models will underpredict the rate of water absorption, and
thus predict slower-than-expected rates of decrease for the viscosity.

Next, figure 17(b) shows a comparison between the experimentally measured final
viscosities (symbols) at t∗ = 3600 s and the predictions for both the misalignment-
dominated (solid blue line) and inertia-dominated (dot-dashed line) modelling. Here, Ω =
0.4 rad s−1, R = 2.5 cm, csat = 0.5 in the modelling, and RH = 72 % in the experiments.
The misalignment angle is assumed to be 0.0005 rad. As can be seen, the experimental
results demonstrate a smooth transition between the two regimes, and together both models
capture the qualitative shape of the data, as well as the rough order of magnitude of the
effects.

9. Conclusions

In this paper, we have considered the measurement of the viscosity of glycerol in a
parallel-plate rheometer. Intuitively, it can be anticipated that the viscosity must decrease
over time due to the hygroscopic nature of the fluid as it absorbs water vapour from the
atmosphere. Based on an initial understanding of the fluid dynamics in a parallel-plate
rheometer for a constant-viscosity flow, an axisymmetric model of the flow predicts that
the dynamics should be purely limited by diffusion in the thin-gap limit and become
independent of gap height. However, a sharp drop-off in measured viscosity values was
observed experimentally at small gap heights, which motivated us to reconsider the fluid
dynamics in the system and led to the hypothesis that plate misalignment could drive
additional secondary flows that might affect the transport of the water concentration
throughout the system. Ultimately, theoretical models and numerical simulations of the
coupled dynamics and measured viscosity values were achieved in three different regimes:
(1) the 1-D inertialess, diffusion-dominated regime, (2) the axisymmetric inertial regime
and (3) the misaligned, inertialess, thin-gap regime. Results confirmed that there are two
types of secondary flows that can exist in such systems. The first of these is O(Re) and
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Figure 18. Apparent instability/oscillation in the concentration profile field due to viscosity gradients from
numerical results with Ω = 10 rad s−1, csat = 0.2 and h0 = 2 mm.

corresponds to the secondary inertially driven flows in a perfectly aligned axisymmetric
parallel-plate rheometer. The other secondary flow is O(φ/ε) and is driven by the O(φ/ε)

plate misalignment. Assuming a fixed misalignment φ, then as the gap height decreases,
the O(φ/ε) misalignment flow will inevitably dominate the O(Re) inertially driven flow.

Based on the results here via comparison between experiments and numerical
simulations, as well as between simulations with parallel and misaligned plates, we argue
that the sharp decrease in measured viscosity is attributable to the secondary flows induced
by plate misalignment. The mechanism by which the misalignment results in a faster
decrease in viscosity seems to be that the secondary velocities pull the relatively high
water concentration away from the outer boundary, which steepens the concentration
gradient at the outer boundary, resulting in an increased mass flux of water into the
glycerol, which subsequently lowers the viscosity of the glycerol. These results have
relevance not only to the measurement of the viscosity of glycerol solutions (for which
care must be taken to ensure all the possible transport mechanisms are understood), but
also for our understanding of the flow in parallel-plate rheometers more generally. We
have shown that misalignment effects in particular can have a surprising critical influence
over the mass transport in such systems, especially as the gap height becomes small.
Furthermore, based on these results, it is plausible that such viscosity measurements of
glycerol in a parallel-plate rheometer could potentially be used as a technique to quantify
the degree of misalignment in the rheometer, although we leave a practical investigation
and demonstration of this technique for future work. Finally, we note that additional
complications can arise in such a system, such as the potential for the emergence of
instabilities due to viscosity gradients. We observed evidence for such effects in our
numerical results at high angular rotation speeds in some cases. For example, figure 18
shows a time series of the concentration profile for a case with Ω = 10 rad s−1, csat = 0.2
and h0 = 2 mm. It is known that viscosity stratification in shear flows can lead to instability
in certain regimes (Yih 1967; Sahu & Govindarajan 2014). However, the coupled viscosity
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distribution and velocity profile in the rheometer system are highly nonlinear, and the flow
cannot be analysed in terms of simple viscosity-stratified layers of fluid. Furthermore, at
the high rotation speeds and gap heights where we observed this instability, it is likely that
other assumptions in our proposed models will break down, especially the assumed flat
interface at the outer boundary and the predefined slip boundary conditions there. Thus,
we leave a detailed study of these intriguing instabilities for future work.
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