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Abstract. We approach the analysis of the extent of the projectivity of modules
from a fresh perspective as we introduce the notion of relative subprojectivity. A
module M is said to be N-subprojective if for every epimorphism g : B → N and
homomorphism f : M → N, there exists a homomorphism h : M → B such that
gh = f . For a module M, the subprojectivity domain of M is defined to be the collection
of all modules N such that M is N-subprojective. We consider, for every ring R,
the subprojective profile of R, namely, the class of all subprojectivity domains for R
modules. We show that the subprojective profile of R is a semi-lattice, and consider
when this structure has coatoms or a smallest element. Modules whose subprojectivity
domain is as smallest as possible will be called subprojectively poor (sp-poor) or
projectively indigent (p-indigent), and those with co-atomic subprojectivy domain are
said to be maximally subprojective. While we do not know if sp-poor modules and
maximally subprojective modules exist over every ring, their existence is determined
for various families. For example, we determine that artinian serial rings have sp-poor
modules and attain the existence of maximally subprojective modules over the integers
and for arbitrary V-rings. This work is a natural continuation to recent papers that
have embraced the systematic study of the injective, projective and subinjective profiles
of rings.

2000 Mathematics Subject Classification. 16D40, 16D50, 16D80.

1. Introduction and Preliminaries. The purpose of this paper is to initiate the
study of an alternative perspective on the analysis of the projectivity of a module,
as we introduce the notions of relative subprojectivity and assign to every module
its subprojectivity domain. A module is projective if and only if its subprojectivity
domain consists of all modules. Therefore, at this extreme, there is no difference in the
role played by the projectivity and subprojectivity domains. Interesting things arise,
however, when we focus on the subprojectivity domain of modules which are not
projective. It is easy to see that every module is subprojective relative to all projective
modules, and one can show (Proposition 2.8) that projective modules are the only
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ones sharing the distinction of being in every single subprojectivity domain. It is thus
tempting to ponder the existence of modules whose subprojectivity domain consists
precisely of only projective modules. We refer to these modules as sp-poor or, to keep
in line with [5], we sometimes use the expression p-indigent.

This paper is inspired by similar ideas and notions studied in several papers.
On the one hand, relative injectivity, injectivity domains and the notion of a poor
module (modules with the smallest possible injectivity domain) have been studied in
[1, 10, 15]. Dually, relative projectivity, projectivity domains and the notion of a p-
poor module have been studied in [13, 15]. On the other hand, in [15] the authors
name a class of modules an i-portfolio (resp. p-portfolio) if it coincides with the
injectivity (resp. projectivity) domain of some module. Then they proceed to define the
injective profile (resp. projective profile) of a ring R, an ordered structure consisting
of all the i-portfolios (resp. p-portfolios) in Mod -R. In this paper, we study these
concepts in the context of subinjectivity and subprojectivity domains, thus obtaining
the ordered invariants siP(R) and spP(R), the subinjective and subprojective profile
of R respectively. We study some of its properties, such as the existence of coatoms and
their relations with the lattice of torsion theories in Mod -R.

One of the first things that comes to the surface in this type of study is the potential
existence of modules which are least injective or projective possible with respect to
whichever measuring approach one may be using. Injectively and projectively poor
modules have been studied in [1, 10, 13, 15]. Aydoğdu and López-Permouth in [5]
modify in a subtle yet significant way the notion of relative injectivity to obtain relative
subinjectivity. They also study subinjectivity analogs of poor modules, calling them
indigent. Here, we study the projective analog of relative subinjectivity and indigent
modules. In order to emphasize the analogy between poor and indigent modules, we
also call indigent modules subinjectively poor, or si-poor for short. In this same spirit,
we call the subprojective analog of indigent modules either p-indigent or sp-poor.

We depict the different analogies between the different ways of measuring the
injectivity and projectivity of a module in the following diagram.

Relative injectivity
i-poor modules

i-portfolios
iP(R)

Relative projectivity
p-poor modules

p-portfolios
pP(R)

Relative subinjectivity
indigent (= si-poor) modules

si-portfolios
siP(R)

Relative subprojectivity
p-indigent (= sp-poor) modules

sp-portfolios
spP(R)

Before tackling the rest of the paper, we finish the section with a review of some of
the needed background material. Throughout, R will denote an associative ring with
identity and modules will be unital right R-modules, unless otherwise explicitely stated.
As usual, we denote by Mod -R the category of right R-modules. If M is an R-module,
then rad(M), Soc(M) and pr.dim(M) will respectively denote the Jacobson radical,
socle and projective dimension of M. The Jacobson radical of a ring R will be denoted
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by J(R). A ring R is called a right V-ring if every simple R-module is injective; a right
hereditary ring if submodules of projective modules are projective or, equivalently, if
quotients of injective modules are injective; a right perfect ring if every module has a
projective cover; a semi-primary ring if J(R) is nilpotent and R/J(R) is a semi-simple
artinian ring; and a right coherent ring if every finitely generated right ideal is finitely
presented or, equivalently, if products of flat left R-modules are flat.

In [15], torsion theory is used as a tool in the study of relative injectivity
and projectivity. Such notions are also employed here, so, for easy reference, we
recall them now. A torsion theory � is a pair of classes of modules (T ,F)
such that (i) Hom(M, N) = 0 for every M ∈ T , N ∈ F ; (ii) if Hom(A, N) = 0 for
all N ∈ F , then A ∈ T ; and (iii) if Hom(M, B) = 0 for all M ∈ T , then B ∈ F .
In this situation, T and F are called the torsion class and torsion-free class
of � respectively. A class of modules T is the torsion class of some torsion
theory if and only if it is closed under quotients, extensions and arbitrary direct
sums. Similarly, a class of modules F is the torsion-free class of some torsion
theory if and only if it is closed under submodules, extensions and arbitrary
direct products. If C is a class of modules, then �C := (TC,FC), where FC = {N ∈
Mod -R : Hom(C, N) = 0 for every C ∈ C} and TC = {M ∈ Mod -R : Hom(M, N) =
0 for every N ∈ FC} is said to be the torsion theory generated by C. Similarly, �C =
(T C,FC) where T C = {M ∈ Mod -R : Hom(M, C) = 0 for every C ∈ C} and FC =
{N ∈ Mod -R : Hom(M, N) = 0 for every M ∈ T C} is said to be the torsion theory
cogenerated by C, [17, Chapter VI]. The torsion theory �C (resp. �C) can also be
characterized as the smallest torsion theory such that every object in C is torsion (resp.
torsion-free). If M ∈ Mod -R, we write �M and �M for �{M} and �{M} respectively.

Recall that a module M is said to be quasi-projective if it is projective relative
to itself. Over a right perfect ring R, every quasi-projective module M satisfies the
following conditions:

(D1) For every submodule A of M, there is a decomposition M = M1 ⊕ M2

such that M1 ≤ A and A ∩ M2 	 M.
(D2) If A ≤ M is such that M/A is isomorphic to a direct summand of M,

then A is a direct summand of M.
(D3) If M1 and M2 are direct summands of M with M1 + M2 = M, then

M1 ∩ M2 is a direct summand of M.
Modules satisfying (D1) are called lifting, see [9]. Modules satisfying (D1) and (D2)

are called discrete, while modules satisfying (D1) and (D3) are called quasi-discrete.
Every discrete module is quasi-discrete, as it is the case that (D2) ⇒ (D3), [16, Lemma
4.6]. It is not the case that every projective module is lifting, as, for example, � is
not a lifting �-module. However, if R is right perfect, then every projective module is
discrete, cf. [16, Theorem 4.41]. Every quasi-discrete module decomposes as a direct
sum of modules whose every submodule is superfluous, see [16, Theorem 4.15].

For additional concepts and results not mentioned here, we refer the reader to [3,
4, 14].

2. Subprojectivity and the subprojectivity domain of a module

DEFINITION 2.1. Given modules M and N, M is said to be N-subprojective if
for every epimorphism g : B → N and for every homomorphism f : M → N, then
there exists a homomorphism h : M → B such that gh = f . The subprojectivity
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domain, or domain of subprojectivity, of a module M is defined to be the collection

Pr
−1(M) := { N ∈ Mod -R : M is N-subprojective }.

The domain of subprojectivity of a module is a measure of projectivity of that
module. Just as with projectivity domains, a module M is projective precisely when
Pr

−1(M) is as large as possible (i.e. equal to Mod -R.)
Before we proceed, we need to introduce two additional notions.

DEFINITION 2.2. Let C ⊆ Mod -R. We say that C is a subprojective-portfolio, or
sp-portfolio for short, if there exists M ∈ Mod -R such that C = Pr

−1(M). The class
spP(R) := {C ⊆ Mod -R : C is an sp-portfolio} will be named the subprojective profile,
or sp-profile, of R.

Our first lemma says that, in order for M to be N-subprojective, one only needs to
lift maps to projective modules that cover N, to free modules that cover N or even to
a single projective module that covers N.

LEMMA 2.3. Let M, N ∈ Mod -R. Then the following conditions are equivalent.
(1) M is N-subprojective.
(2) For every f : M → N and every epimorphism g : P → N with P projective, there

exists h : M → P such that gh = f .
(3) For every f : M → N and every epimorphism g : F → N with F free, there exists

h : M → F such that gh = f .
(4) For every f : M → N there exists an epimorphism g : P → N with P projective

and a morphism h : M → P such that gh = f .

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are clear. To show (4) ⇒ (1),
assume (4) and let f : M → N be a morphism and g : B → N be an epimorphism.
By (4), there exist an epimorphism g : P → N and a morphism h : M → P such that
gh = f . Since P is projective, there exists a morphism h : P → B such that g = gh. Then
hh : M → B and ghh = gh = f . Hence, M is N-subprojective. �

Using the preceding lemma, we can show that a module M is projective if and only
if it is M-subprojective, thus ruling out the possibility of a non-trivial subprojective
analogue to the notion of quasi-projectivity.

PROPOSITION 2.4. For any module M, the following are equivalent:
(1) M is projective.
(2) M ∈ Pr

−1(M).

Proof. The implication (1) ⇒ (2) is clear. For (2) ⇒ (1), put M = N and f = 1M ,
the identity morphism on M in the condition of Lemma 2.3 (condition 4), to see that
M is a direct summand of a projective module. Hence, M is projective. �

Some modules can be shown easily to belong to a subprojectivity domain.

PROPOSITION 2.5. If HomR(M, A) = 0, then A ∈ Pr
−1(M).

Proof. If HomR(M, A) = 0, then given any epimorphism g : C → A if we let h :
M → C be the zero mapping, then gh = 0. Hence, A ∈ Pr

−1(M). �
As an easy consequence of Proposition 2.5, we have the following.

COROLLARY 2.6. Let M and A be right R-modules. Then,
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(1) If rad(M) = M and rad(A) = 0, then M is A-subprojective.
(2) If M is singular and A is non-singular, then M is A-subprojective.
(3) If M is semi-simple and Soc(A) = 0, then M is A-subprojective.

Proposition 2.5 is also instrumental in figuring out the next example, where we see
that sometimes the conditioned study in that proposition actually characterizes certain
subprojectivity domains. This subject will be picked up again later in Proposition 3.2.

EXAMPLE 2.7. We see that in the category of �-modules, Pr
−1(�) consists precisely

of the abelian groups granted by Proposition 2.5 for, if there is a non-zero morphism
f : � → M, let π : F → M be an epimorphism with F free. Since there are no non-zero
morphisms from � to F , we cannot lift f to a morphism � → F , so M �∈ Pr

−1(�).
Consequently, the subprojectivity domain of � consists precisely of the class of reduced
abelian groups. Note that a similar technique can be used to find the subprojectivity
domain of any divisible abelian group. We further explore this phenomena in Section
3 of this paper.

It is a natural question to ask how small Pr
−1(M) can be. The next proposition

shows that the domain of subprojectivity of any module must contain at least the
projective modules, and the projective modules are the only ones that belong to all
sp-portfolios.

PROPOSITION 2.8. The intersection
⋂

Pr
−1(M), running over all R-modules M, is

precisely {P ∈ Mod -R | P is projective}.
Proof. To show the containment ⊆, suppose M is a module which is subprojective

relative to all R-modules. Then, in particular, M ∈ Pr
−1(M). So by Proposition 2.4,

M is projective.
To show the containment ⊇, let P be a projective module and M be any R-module.

Let g : B → P be an epimorphism and f : M → P be a homomorphism. Now, since P
is projective, g splits and so there exists a homomorphism k : P → B such that gk = 1P.
Then g(kf ) = (gk)f = f and so by definition P ∈ Pr

−1(M). Since M was arbitrary, the
result follows. �

Proposition 2.8 provides a lower bound on how small the domain of subprojectivity
of a module can be. If a module does achieve this lower bound, then we will call it
suprojectively poor.

DEFINITION 2.9. A module M is called subprojectively poor, sp-poor, or p-indigent,
if its subprojectivity domain consists of only projective modules.

Note that it is not clear whether sp-poor modules over a ring R must exist. Section 4
will be devoted to this problem, but first we go deeper into our study of subprojectivity.

The following several propositions show that subprojectivity domains behave
nicely with respect to direct sums.

PROPOSITION 2.10. Let {Mi}i∈I be a set of R-modules. Then, Pr
−1(

⊕
i∈I Mi) =⋂

i∈I Pr
−1(Mi), that is, the subprojectivity domain of a direct sum is the intersection of

the subprojectivity domains of the summands.

Proof. To show the containment ⊆, let N be in the subprojectivity domain
of

⊕
i∈I Mi and fix j ∈ I . Let g : B → N be an epimorphism and f : M → N

be a homomorphism. Let pj :
⊕

i∈I Mi → Mj denote the projection map and
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ej : Mj → ⊕
i∈I Mi denote the inclusion map. Since N ∈ Pr

−1(
⊕

i∈I Mi), there exists a
homomorphism h′ :

⊕
i∈I Mi → B such that gh′ = fpj. Letting h := h′ej : Mj → B, it

is straightforward to check that gh = f . Hence, N ∈ Pr
−1(Mj).

To show the containment ⊇, let N be in the subprojectivity domain of Mi for every
i ∈ I , let g : B → N be an epimorphism, and let f :

⊕
i∈I Mi → N be a homomorphism.

Since for each j ∈ I , N ∈ Pr
−1(Mj) then ∃hj : Mj → B such that f ej = ghj. Letting

h := ⊕
i∈I hi :

⊕
i∈I Mi → B, then

gh =
⊕

i∈I

ghi =
⊕

i∈I

f ei = f
⊕

i∈I

ei = f.

Hence, N ∈ Pr
−1(⊕i∈I Mi). �

Note that Proposition 2.10 tells us that spP(R) is a semi-lattice with the biggest
element, namely Mod -R, the subprojectivity domain of any projective R-module. In
view of Proposition 2.8, spP(R) has the smallest element if and only if R has an sp-poor
module.

PROPOSITION 2.11. If N ∈ Pr
−1(M), then every direct summand of N is in Pr

−1(M).

Proof. Suppose A is a direct summand of N, and let g : C → A be an epimorphism
and f : M → A be a homomorphism. Consider the epimorphism g ⊕ 1 : C ⊕ N/A →
A ⊕ N/A ∼= N, where 1 : N/A → N/A is the identity map. Since N ∈ Pr

−1(M), there

exists a homomorphism ĥ : M → C ⊕ N/A such that (g ⊕ 1)ĥ = ef , where e : A → N
is the inclusion map. Therefore,

g(pĥ) = p(g ⊕ 1)ĥ = p(ef ) = f,

where p : N → A denotes the projection map. Hence, A ∈ Pr
−1(M). �

PROPOSITION 2.12. If Ai ∈ Pr
−1(M) for i ∈ {1, · · · , m}, then

⊕m
i=1 Ai ∈ Pr

−1(M).

Proof. By induction, it is sufficient to prove the proposition when m = 2. Let g :
C → A ⊕ B be an epimorphism and f : M → A ⊕ B be a homomorphism. Since A ∈
Pr

−1(M), there exists a homomorphism h1 : M → C such that pAgh1 = pAf , where
pA : A ⊕ B → A is the projection map. So pA(gh1 − f ) = 0 and hence Im(gh1 − f ) ⊂
0 ⊕ B ∼= B. Since B ∈ Pr

−1(M), there exists a homomorhism h2 : M → g−1(0 ⊕ B) ⊂
C such that gh2 = gh1 − f . Let h := h1 − h2. Then

gh = gh1 − gh2 = gh1 − gh2 − f + f = gh2 − gh2 + f = f.

Hence, A ⊕ B ∈ Pr
−1(M). �

PROPOSITION 2.13. If M is finitely generated and Ai-subprojective for every i ∈ I,
then M is

⊕
i∈I Ai-subprojective.

Proof. Let f : M → ⊕
i∈I Ai be a homomorphism and g : C → ⊕

i∈I Ai be an
epimorphism. Let X := {m1, . . . , mk} be a set of generators for M. Then there exists
a finite index set J ⊂ I such that f (X) ⊂ ⊕

j∈J Aj. By Proposition 2.12, there exists
a homomorphism h : M → C such that gh(mi) = f (mi) for all i ∈ {1, . . . , k}. Since X
generates M, gh = f , as hoped. �
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We do not know if the subprojectivity domain of a module is, in general, closed
under arbitrary direct sums. However, we have some information regarding when it is
closed under arbitrary direct products. If the subprojectivity domain of every module
is closed under products, then, by Proposition 2.8, the class of projective modules is
closed under products. By [8, Theorem 3.3], this means that R is a right perfect, left
coherent ring. This condition is enough to ensure that subprojectivity domains are
closed under products.

PROPOSITION 2.14. Let R be a ring. The following conditions are equivalent.
(1) R is a right perfect, left coherent ring.
(2) The subprojectivity domain of any right R-module is closed under arbitrary

products.

Proof. (2) ⇒ (1) follows from the discussion in the preceding paragraph. For
(1) ⇒ (2), let M ∈ Mod -R, and let {Nλ}λ∈� be a set of modules in Pr

−1(M). Let
f = (fλ)λ∈� : M → ∏

λ∈� Nλ. For every λ ∈ �, be gλ : Pλ → Nλ be an epimorphism
with Pλ projective. By hypothesis, there exists hλ : M → Pλ such that fλ = gλhλ. Let
h = (hλ)λ∈� : M → ∏

λ∈� Pλ, and g :
∏

λ∈� Pλ → ∏
λ ∈ �Nλ be defined by g((xλ)λ∈�)

= (gλ(xλ))λ∈�. It is a routine to check that g is an epimorphism and gh = f . Note
that, since R is right perfect and left coherent,

∏
λ∈� Pλ is projective. By Lemma 2.3

(condition 4), M is
∏

λ∈� Nλ-subrojective. �
Similarly, recall that R is said to be right perfect if submodules of projective

modules are projective. If every sp-portfolio is closed under submodules, then R must
be right hereditary. The next proposition tells us that the converse of this statement is
also true.

PROPOSITION 2.15. Let R be a ring. The following conditions are equivalent.
(1) R is right hereditary.
(2) The subprojectivity domain of any right R-module is closed under submodules

Proof. (2) ⇒ (1). If the subprojectivity domain of any right R-module is closed
under submodules, then, by Proposition 2.8, the class of projective modules is closed
under submodules. Then R is right hereditary. For (1) ⇒ (2), let M be a right R-module,
K ∈ Pr

−1(M) and N ≤ K . Let f : M → N. We can consider f as a morphism from
M to K with image in N. Let g : P → K be an epimorphism with P projective. Then
there exists h : M → P such that gh = f . Now, let P′ = g−1(N) ≤ P. Since R is right
hereditary, P′ is projective. Note that h(M) ≤ P′, and g(P′) = N. By Proposition 2.3
(condition 4), N ∈ Pr

−1(M). �
In general, the subprojectivity domain of a module is not closed with respect to

quotients. Consider for example the �-modules, M = �/(2), A = � and B = 2�. Since
A and B are projective, by Proposition 2.8, A, B ∈ Pr

−1(M). But M = A/B is not
projective, so by Proposition 2.4, A/B /∈ Pr

−1(M). Using similar arguments, note that
Pr

−1(M) is closed under quotients if and only if M is projective.

3. Subprojectivity domains and torsion-free classes. Hereditary pretorsion classes
are an important tool in the study of the injective and projective profiles of a ring
R, see [15]. For this reason, it seems reasonable to see if torsion-theoretic notions or
techniques may help in the study of spP(R). Our next result tells us that it is torsion-free
classes that play a role in the study of this semi-lattice.
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Proposition 2.5 tells us that, for every module M, the torsion-free class generated
by M, FM is contained in Pr

−1(M). In Example 2.7 we found that in the category
of �-modules one actually has that F� = Pr

−1(�). Our next goal is to characterize
those subprojective portfolios for which this phenomenon happens. First, we give a
definition.

DEFINITION 3.1. Let C ∈ spP(R). We say that C is a basic sp-portfolio if there exists
M ∈ Mod -R such that C = Pr

−1(M) = {N ∈ Mod -R : Hom(M, N) = 0}.
As a quick example, note that Mod -R is always a basic sp-portfolio as Mod -R =

Pr
−1(0). Moreover, if R is a cogenerator for Mod -R (e.g. a QF-ring) then the only

basic subportfolio is Mod -R.
It is clear that if C is a basic sp-portfolio and M is a module as in Definition 3.1,

then Hom(M, P) = 0 for every projective module P. The following proposition tells us
that this condition is indeed sufficient for Pr

−1(M) to be basic.

PROPOSITION 3.2. Let C ⊆ Mod -R be an sp-portfolio. The following conditions are
equivalent.

(1) C is basic.
(2) There exists a module M such that C = Pr

−1(M) and Hom(M, R) = 0.

Proof. (1) ⇒ (2) is clear. We show (2) ⇒ (1). Let N be a module such that
Hom(M, N) �= 0, and let f : M → N be a non-zero morphism. Let p : F → N be an
epimorphism with F free. By (2), Hom(M, F) = 0, so f cannot be lifted to a morphism
M → F , so N �∈ Pr

−1(M). Hence, Pr
−1(M) is basic. �

Note that if C = Pr
−1(M) is basic, then it does not follow that Hom(M, R) =

0. For example, by proposition, if M ∈ Mod -R then M and M ⊕ R have the same
subprojectivity domain, while it is always the case that Hom(M ⊕ R, R) �= 0.

As a consequence of Proposition 3.2, we can list the subprojectivity domain of
some classes of modules.

(1) Pr
−1(�pn ) = {M ∈ Mod-� : M does not have elements of order p}.

(2) Pr
−1(

⊕
p prime �p) = {M ∈ Mod-� : Soc(M) = 0} = {M ∈ Mod-� : t(M) =

0}.
(3) Pr

−1(�p∞ ) = {M ∈ Mod-� : �p∞ is not isomorphic to a submodule of M}.
As we have said, for every module M, the class {N ∈ Mod -R : Hom(M, N) = 0}

is a torsion-free class, that is, it is closed under submodules, extensions and arbitrary
direct products. Then we have the following consequence of Proposition 3.2.

COROLLARY 3.3. Let M be a module such that Hom(M, R) = 0. Then, Pr
−1(M) is

closed under arbitrary products, submodules and extensions.

The module �p∞ exhibits an interesting behaviour. It is not projective, but its
subprojectivity domain is in some sense large. We formalize this in the following
definition.

DEFINITION 3.4. Let M be an R-module. We say that M is maximally subprojective
if Pr

−1(M) is a coatom in spP(R).

PROPOSITION 3.5. Let M be a module such that Pr
−1(M) = {K ∈ Mod -R :

K does not have a direct summand isomorphic to M}. Then M is maximally subproject-
ive.
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Proof. Assume N is a module with Pr
−1(M) � Pr

−1(N). If N ∼= M ⊕ K , then
Pr

−1(M) � Pr
−1(N) = Pr

−1(M) ∩ Pr
−1(K) ⊆ Pr

−1(M), a contradiction. Hence, N
does not have direct summands isomorphic to M. By our assumptions, N ∈ Pr

−1(M) �

Pr
−1(N), so N is N-subprojective, that is, N is projective. Hence, M is maximally

subprojective. �

COROLLARY 3.6.
(1) �p∞ is a maximally subprojective �-module.
(2) For any ring R, if S is a simple injective non-projective module over any ring R,

then S is maximally subprojective.

Proof. Condition (1) is clear from the examples after Proposition 3.2. For condition
(2), if S is a simple injective non-projective module, then Hom(S, R) = 0, for otherwise
S would be a summand of a projective module. Then Pr

−1(S) is basic. Finally, note
that those modules M for which Hom(S, M) = 0 are precisely the modules that do not
contain a direct summand isomorphic to S. Then S is maximally subprojective. �

COROLLARY 3.7. Let R be a non-semi-simple right V-ring. Then R has maximally
subprojective modules.

Our next result tells us that every sp-portfolio is basic if and only if every sp-portfolio
is a torsion-free class and describes precisely the rings for which these conditions hold.
To state it, we need the following known result.

PROPOSITION 3.8. [(see e.g. [18])] Let R be a ring. The following conditions are
equivalent.

(1) R is a right hereditary, right perfect, left coherent ring.
(2) R is a semi-primary, right hereditary, left coherent ring.

We will use this result freely throughout the paper, most notably in Propositions
3.9, 4.7, 4.8 and 4.19.

PROPOSITION 3.9. Let R be a ring. The following are equivalent.
(1) R is a semi-primary, right hereditary, left coherent ring.
(2) Every sp-porfolio is basic.
(3) Every sp-portfolio is a torsion-free class.

Proof. (2) ⇒ (3) is clear. (3) ⇒ (1) follows because torsion-free classes are
closed under arbitrary intersections, so the class of projective modules is a torsion-
free class, cf. Proposition 2.8. Finally, for (1) ⇒ (2), let M be a right R-module.
Since R is right hereditary, right perfect, left coherent, the class of projective
modules is closed under direct products and submodules. Let N = ⋂{Ker(f ) : f :
M → P, and P is projective}. M/N is projective and N is the smallest submodule
of M that yields a projective quotient. Now, M ∼= M/N ⊕ K . If Hom(K, R) �= 0 then
K has a projective quotient and we can find a submodule of M properly contained in
N that yields a projective quotient of M, a contradiction. Hence, Hom(K, R) = 0, so
Pr

−1(K) is basic, and Pr
−1(M) = Pr

−1(M/N) ∩ Pr
−1(K) = Pr

−1(K). �

Note that if we ignore (2) in Proposition 3.9, the equivalence (1) ⇔ (3) can be
easily obtained from Propositions 2.14 and 2.15.
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The use of torsion-theoretic techniques can also be applied to study the notion of
subinjectivity as defined in [5].

DEFINITION 3.10. Let I ⊆ Mod -R. We say that I is a subinjective portfolio, or
si-portfolio for short, if there exists M ∈ Mod -R such that I = In

−1(M). The class
siP(R) := {I ⊆ Mod -R : I is an si-portfolio} will be called the subinjective profile, or
si-profile of R. By [5, Proposition 2.4 (1)], siP(R) is a semi-lattice with the biggest
element.

Analog to Proposition 2.5, we have the following result that tells us that for every
module M the torsion class cogenerated by M T M is contained in In

−1(M).

PROPOSITION 3.11. Let M, N ∈ Mod -R. If Hom(N, M) = 0, then N ∈ In
−1(M).

Motivated by Proposition 3.11, we have the following definition.

DEFINITION 3.12. We say that an si-portfolio I is basic if there exists a module M
for which I = In

−1(M) = {N ∈ Mod -R : Hom(N, M) = 0}.
PROPOSITION 3.13. Let I ⊆ Mod -R be an si-portfolio. The following conditions are

equivalent.
(1) I is basic.
(2) There exists M ∈ Mod -R such that I = In

−1(M) and Hom(E, M) = 0 for every
injective module E.

If R is right noetherian, this happens if and only if Hom(E, M) = 0, where E =⊕{E : E is an indecomposable injective}.
Proof. (1) ⇒ (2) is clear from [5, Proposition 2.3]. Now assume condition (2), and

let N ∈ Mod -R be such that Hom(N, M) �= 0. Then there exists a non-zero f : N → M
that cannot be extended to a morphism f : E(N) → M. Hence, N �∈ In

−1(M). The last
assertion is clear. �

It is again worth noting that if I = In
−1(M) is basic, it does not follow that

Hom(E, M) = 0 for every injective module E. For example, if E0 is any injective
module, it follows from [5, Proposition 2.4 (2)] that M and M ⊕ E0 have the same
subinjectivity domain, while it is always the case that Hom(E0, E0 ⊕ M) �= 0.

EXAMPLE 3.14. The subinjectivity domain of � is In
−1(�) = {N ∈ � - Mod :

Hom(N, �) = 0} = {N ∈ � - Mod : � is not isomorphic to a direct summand of N}.
Clearly, � is not an injective (= divisible) �-module. However, it is proved in [15]

that In
−1(�) is a coatom in the injective profile of �. Interestingly enough, In

−1(�) is
also a coatom in the subinjective profile of �.

DEFINITION 3.15. Let M ∈ Mod -R. We say that M is maximally subinjective if
In

−1(M) is a coatom in the subinjective profile of R.

PROPOSITION 3.16. Let M be an R-module such that In
−1(M) = {N ∈ Mod -R :

M is not isomorphic to a direct summand of N}. Then M is maximally subinjective.

Proof. Let K be a module such that In
−1(M) � In

−1(K). Note that if K ∼= L ⊕
M, then In

−1(K) = In
−1(L) ∩ In

−1(M) ⊆ In
−1(M), a contradiction. Hence, M is not

isomorphic to a direct summand of K , so K ∈ In
−1(M) � In

−1(K), that is, K is K-
subinjective. Therefore, K is injective and M is maximally subinjective. �
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Again, note that Mod -R = In
−1(0) is always a basic si-portfolio. If Mod -R has

an injective generator (e.g. a right self-injective ring), then Mod -R is the only basic
si-portfolio. The next proposition tackles the extreme opposite case, that is, when every
si-portfolio is basic.

PROPOSITION 3.17. Let R be a ring. The following conditions are equivalent.
(1) R is a right hereditary, right noetherian ring.
(2) Every si-portfolio is basic.
(3) Every si-portfolio is a torsion class.

Proof. (2) ⇒ (3) ⇒ (1) is clear. For (1) ⇒ (2), assume R is right hereditary,
right noetherian and let M ∈ Mod -R. Then M = d(M) ⊕ r(M), where d(M) is a
divisible part of M, and r(M) is its reduced part. Since r(M) does not have injective
submodules, Hom(E, r(M)) = 0 for every injective module E. Then, In

−1(M) is basic
and In

−1(M) = In
−1(d(M)) ∩ In

−1(r(M)) = In
−1(r(M)). �

Now, assume R is a right hereditary, right noetherian ring. Then the class E of
injective modules is a torsion class. Let F denote its corresponding torsion-free class.
Then M ∈ F if and only if Hom(E, M) = 0 for every E ∈ E, that is, if and only if
In

−1(M) = {N ∈ Mod -R : Hom(N, M) = 0}. Then a module K ∈ F is indigent if and
only if {N ∈ Mod -R : Hom(N, K) = 0} = E if and only if K is a cogenerator of the
torsion theory (E,F). With these observations, we have proved the following result.

PROPOSITION 3.18. Let R be a right hereditary right noetherian ring, and let � =
(E,F) be the torsion theory where E is the class of injective modules. Then module M
is si-poor if and only if M/d(M) is a cogenerator of �. In particular, R has an si-poor
module if and only if � can be cogenerated by a single module.

As an application of Proposition 3.18, we show that si-poor modules exist over a
hereditary finite dimensional algebra over an algebraically closed field k = k. Recall
that, over such an algebra A, in mod-A we have the Auslander–Reiten translate τ ,
where τM is the k-dual of the transpose of M. The Auslander–Reiten translate has
several interesting properties, a number of which can be found in [4, Chapter IV].

COROLLARY 3.19. Let A be a hereditary finite dimensional algebra over an
algebraically closed field k, and let E be the direct sum of indecomposable injectives.
Then τE is an si-poor module, where τ denotes the Auslander–Reiten translate.

Proof. Since E is injective, Ext1
A(E, E) = 0. Since A is hereditary, pr.dim(E) ≤ 1.

The number of non-isomorphic indecomposable summands of E equals the rank of
the Grothendieck group K0(A). Then E is a tilting A-module, see [4, Corollary VI.4.4].
It follows that (Gen(E), Cogen(τE)) is a torsion theory [4, Theorem VI.2.5]. Note that
Gen(E) is the class of injective modules. Hence, τE is an indigent module. �

EXAMPLE 3.20. Let A be the path algebra of the quiver

1 �� 2 3�� �� 4 .

The indecomposable projectives are P(1) = K → K ← 0 → 0, P(2) = 0 →
K ← 0 → 0, P(3) = 0 → K ← K → K , and P(4) = 0 → 0 ← 0 → K ; and the
indecomposable injectives I(1) = K → 0 ← 0 → 0, I(2) = K → K ← K → 0,
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I(3) = 0 → 0 ← K → 0 and P(4) = 0 → 0 ← K → K . The Auslander-Reiten quiver
of A, �(A), is

1100

����
��

��
��

� 0011

����
��

��
��

�τ
��

0100

�����������

����
��

��
��

� 1111

�����������

����
��

��
��

�τ
�� 0010τ

��

0111

�����������

����
��

��
��

� 1110

�����������

����
��

��
��

�τ
��

0001

�����������
0110τ

��

�����������
1000τ

��

where we represent each module by its dimension vector. Now the sum of
indecomposable injectives is E = 1000 ⊕ 1110 ⊕ 0010 ⊕ 0011, so τE = 0110 ⊕ 0111 ⊕
1111 ⊕ 1100 is si-poor.

4. Bounds in the subprojectivity domain of a module. In this section, we investigate
both upper and lower bounds that one may impose on the subprojectivity domain of a
module. Recall that a module is said to be sp-poor, or p-indigent, if its subprojectivity
domain consists precisely of projective modules. We will show next that this condition
may be softened with equivalent results.

PROPOSITION 4.1. Consider the following conditions on module M.

(1) Pr
−1(M) = {P ∈ Mod -R : P is projective}.

(2) Pr
−1(M) ⊆ {P ∈ Mod -R : P is quasi-projective}.

(3) Pr
−1(M) ⊆ {P ∈ Mod -R : P is discrete}.

(4) Pr
−1(M) ⊆ {P ∈ Mod -R : P is quasi-discrete}.

Then, conditions (1) and (2) are equivalent, and the four conditions are equivalent if R
is a right perfect ring.

Proof. (1) ⇒ (2) is clear. Assume condition (2). Let K ∈ Pr
−1(M), and let P be a

projective module that covers K . By Proposition 2.12, K ⊕ P ∈ Pr
−1(M). Then K ⊕ P

is quasi-projective, so K is P-projective and hence projective. If R is right perfect, then
every quasi-projective module is discrete (cf. [16, Theorem 4.41]), so we have (1) ⇒ (2)
⇒ (3) ⇒ (4). To show (4) ⇒ (1), assume condition (4) and let K ∈ Pr

−1(M). Then K
is quasi-discrete, so by [16, Theorem 4.15] there exists a decomposition K = ⊕

i∈I Ki,
where each Ki is a quasi-discrete hollow module. We show that each Ki is projective.
Indeed, let P be the projective cover of Ki. Since R is perfect, P is quasi-discrete,
so P = ⊕

j∈J Pj, where each Pj is a projective hollow module. By Proposition 2.11,

each Pj is in Pr
−1(M). Then Pj ⊕ Ki ∈ Pr

−1(M), so Pj ⊕ Ki is quasi-discrete. Then by
[16, Theorem 4.48] Ki is Pj-projective. Since R is right perfect, projectivity domains
are closed under arbitrary direct sums [3, Exercise 7.16], which implies that Ki is
P-projective. Then Ki is projective. �
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Note that if R is not right perfect, then the implication (2) ⇒ (3) does not hold,
as, by [16, Theorem 4.41], a ring is right perfect if and only if every quasi-projective
right module is discrete.

DEFINITION 4.2. A ring R is called right manageable if there exist a set S of non-
projective right R-modules such that for every non-projective R-module M, there exists
A ∈ S such that A is isomorphic to a direct summand of M. For convenience, we refer
to the set S as the manageable set associated with R.

Recall that a ring R is said to be �-cyclic if every right R-module is a direct sum
of cyclic modules. See [11, Chapter 25].

EXAMPLE 4.3. If R is a right �-cyclic ring, then R is right manageable. In particular,
an artinian serial ring is both right and left manageable.

PROPOSITION 4.4. Every manageable ring R has an sp-poor module.

Proof. Let S be a manageable set of modules associated with R. Let X = ⊕
A∈S A.

We claim that X is sp-poor. To see this, let B ∈ Pr
−1(X). If B is not projective, then

there exists C ∈ S such that C is isomorphic to a direct summand of B. By Proposition
2.11, C ∈ Pr

−1(X). By Proposition 2.10, C ∈ Pr
−1(C) and by Proposition 2.4, C is

projective, a contradiction. Then B is projective and X is sp-poor. �
If R is an artinian chain ring then Proposition 4.4 implies that the direct sum of

non-projective cyclic right R-modules is sp-poor. The next proposition tells us that,
in fact, for such a ring every non-projective right R-module is sp-poor. This is an
interesting discovery giving us a glance into the phenomenon of a ring R having no
subprojective middle class. It should be noted that artinian chain rings also fail to
have a subinjective middle class [5]. The study of rings without a projective or injective
middle class has been undertaken in [1, 10, 13, 15].

PROPOSITION 4.5. If R is an artinian chain ring, then every non-projective module is
sp-poor.

Proof. Since R is an artinian chain ring, every R-module is a direct sum of cyclic
uniserial modules. Consequently, it suffices to consider cyclic modules by Propositions
2.10 and 2.11. Because R is an artinian chain ring, the ideals of R are zero or the
powers J(R)n of J(R), the Jacobson radical of R. Moreover, if p ∈ J(R) but p /∈ J(R)2,
then J(R)n = pnR for every n ≥ 0. Hence, we have the finite chain for some positive
integer n:

R ⊃ pR ⊃ p2R ⊃ . . . ⊃ pnR = 0.

Therefore, it is enough to show that pkR is sp-poor for every positive integer k.
Let A = pkR, where k �= 0 and let g : R → pkR be the quotient map. If k > m,

then let f : A → pmR be the inclusion map. Assume there exists h : A → R such that
gh = f . Since R is a chain ring, either Ker g ⊂ Im h or Im h ⊂ Ker g. If Im h ⊂ Ker g,
then gh = 0, a contradiction. Hence, Ker g ⊂ Im h. But since g is not monic, Ker g �= 0.
Hence, there is a non-zero element x ∈ A such that 0 = gh(x) = f (x), a contradiction.
Thus, pmR /∈ Pr

−1(A).
If k < m, then consider the homomorphism f : A → pmR, where f (pk) = pm.

Assume there exists h : A → R such that gh = f . But then pm = f (pk) = gh(pk) =
g(1)pm ∈ p(2m)R, a contradiction. Thus, pmR /∈ Pr

−1(A).
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Finally, we note that by Proposition 2.4, pkR /∈ Pr
−1(pkR), as pkR is not

projective. �

EXAMPLE 4.6. If p is a prime, then �/pi� is a p-indigent
(
�/pk�

)
-module for every

i < k.

Now we investigate the existence of sp-poor modules over a semi-primary, right
hereditary, left coherent ring. We choose this class of rings because it is precisely when
the projective modules form a torsion-free class P, see Proposition 3.8.

PROPOSITION 4.7. Let R be a semi-primary, right hereditary, left coherent ring. Let
P be the torsion-free class consisting of the projective R-modules, and let T be the
corresponding torsion class. Then R has an sp-poor module if and only if there exists a
module M that generates (T,P).

Proof. Assume that there exists a module M that generates (T,P). Then, since
(T,P) is a torsion theory, the class {N : Hom(M, N) = 0} = P. Then M is sp-poor.
Now, assume M is an sp-poor module. Let M′ be the smallest module that yields a
projective quotient, so M ∼= M/M′ ⊕ N and Pr

−1(M) = Pr
−1(N), with N ∈ T. Now

Pr
−1(N) is basic, and Pr

−1(N) = P. Therefore, N is a generator of (T,P). �

Now we investigate the existence of an sp-poor �-module. Note that � is not
perfect, so we cannot apply the preceding proposition. In fact, we have the following.

PROPOSITION 4.8. Let R be a ring which is not semi-primary, or not right hereditary,
or not left coherent. If there exists an sp-poor module M, then Hom(M, R) �= 0.

Proof. If Hom(M, R) = 0, then Pr
−1(M) is a torsion-free class. But this cannot

happen, as the class of projective modules is either not closed under submodules or
not closed under arbitrary direct products. Then Hom(M, R) �= 0. �

COROLLARY 4.9. If M is an sp-poor �-module, then Hom�(M, �) �= 0 and,
consequently, Hom�(M, N) �= 0 for every abelian group N.

Since � is a principal ideal domain, the last corollary tells us that if M is an sp-poor
�-module, then M ∼= � ⊕N, and Pr

−1(M) = Pr
−1(�) ∩ Pr

−1(N) = Pr
−1(N), so N is

also an sp-poor �-module. Iterating the process and taking a direct limit, we have the
following result.

COROLLARY 4.10. Let M be a p-indigent �-module. Then there exists a submodule
N ≤ M such that N ∼= �(�).

Our next goal is to show that the �-modules T = ∏
i(� /pi �) and S =(∏

i(� /pi �
)
/
(⊕

i � /pi �)
)

are not sp-poor, where p1 < p2 < . . . are the rational primes
in increasing order. To do so, we will need the following result, which can be found in
[12]. For each i ∈ �, let ei ∈ �� be the standard unit vectors in ��, that is, ei(j) = δij,
the Kronecker delta.

PROPOSITION 4.11. Every homomorphism f : �� → � is completely determined by
its action on �(�). In particular, if f (ei) = 0 for all i, then f = 0.

PROPOSITION 4.12. Hom(T, �) = 0.
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Proof. Let f ∈ Hom(T, �). Define P = �� and g : P → T by [g(α)](i) := α(i) +
pi � ∈ � /pi �; that is

(α1, α2, . . .) �→ (α1 + p1 �, α2 + p2 �, . . .).

Then g is epic and fg ∈ Hom(P, �).
Fix k ∈ �. Then g(pkek) = 0. Hence, 0 = (fg)(pkek) = pk(fg)(ek) ∈ �. Hence,

(fg)(ek) = 0.
So what we have shown is that (fg)(ei) = 0 for all i, and so by the last statement

of Proposition 4.11, fg = 0. Since g is epic, it follows that f = 0, which concludes the
proof. �

PROPOSITION 4.13. Hom(S, �) = 0.

Proof. Let f ∈ Hom(S, �). Let h : T → S be the epic mapping each element to its
equivalence class. Then f h ∈ Hom(T, �). By Proposition 4.12, f h = 0. Since h is epic,
it follows that f = 0, which concludes the proof. �

From Propositions 4.12 and 4.13, we conclude that both S and T are not sp-poor
�-modules. In view of Corollary 4.10, another natural candidate for an sp-poor �-
module is the Baer–Specker group ��. However, we do not know if this is the case.
Also note that, by [14, Lemma 2.8], the group �� / �(�) is also not p-indigent.

Now we consider a lower bound on Pr
−1(M), which is inspired by [2], where

they define a module M to be strongly soc-injective if, for every N ∈ Mod -R, every
morphism f : Soc(N) → M can be extended to a morphism f : N → M. It is not hard
to see that the requirement of M to be strongly soc-injective is equivalent to saying
that SSMod -R ⊆ In

−1(M).

DEFINITION 4.14. Let M ∈ Mod -R. We say that M is strongly soc-projective if
SSMod -R ⊆ Pr

−1(M).

Of course, a strongly soc-projective module need not be projective, as shown by the
�-module ��. However, in the category of abelian groups, a finitely generated strongly
soc projective module is projective.

PROPOSITION 4.15. Let M be a finitely generated abelian group such that every
semi-simple module is in Pr

−1(M). Then M is projective.

Proof. By the Fundamental Theorem of Finitely Generated Abelian groups, M ∼=
�n ⊕ �p

α1
1

⊕ · · · ⊕ �pαn
n . If αi �= 0 for some i, then �pi �∈ Pr

−1(M), a contradiction. Then,
M ∼= �n is projective. �

If R is a semi-perfect ring, then every simple module has a projective cover, which
has to be a local module, that is, with only one maximal submodule. In this case, we
have the following proposition.

PROPOSITION 4.16. Let R be a semi-perfect ring and let M be a right R-module.
Assume S is a simple module such that S ∈ Pr

−1(M). Then, either Hom(M, S) = 0 or
M = P(S) ⊕ K, where P(S) stands for the projective cover of S.

Proof. Assume Hom(M, S) �= 0, and let f : M → S be a non-zero morphism.
By hypothesis, we can lift this morphism to a morphism f : M → P(S). Now, f (M)
cannot be contained in the unique maximal ideal of P(S), which is the kernel of
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the epimorphism P(S) → S. Then f (M) = P(S) and, by the projectivity of P(S), we
conclude that M = P(S) ⊕ K . �

COROLLARY 4.17. Let R be a semi-perfect ring and let M be a finitely generated right
R-module of finite uniform dimension that is subprojective with respect to every simple
(equivalently, with respect to every semi-simple) module. Then M is projective.

Proof. Iterating the process of Proposition 4.16, and using the fact that M has
finite uniform dimension, we have that M = P ⊕ K , with P projective and K has no
non-zero morphisms to a simple module. If K �= 0, then K has maximal submodules,
a contradiction. Hence, M = P �

Note that the conclusion of Corollary 4.17 may hold even if R is not semi-perfect.
For example, by Proposition 4.15, it holds for the ring of integers �.

If we assume that R is right perfect, we can drop the finitely generated assumption
in Corollary 4.17, as the existence of a maximal submodule of K is guaranteed by the
conditions on R. Then we have the following.

COROLLARY 4.18. Let R be a right perfect ring and let M be a right R-module of
finite uniform dimension that is subprojective with respect to every semi-simple module.
Then M is projective.

If, moreover, we assume that our ring is semi-primary, right hereditary, left
coherent, we can also remove the finite uniform dimension assumption in Corollary
4.18.

PROPOSITION 4.19. Let R be a semi-primary, right hereditary, left coherent ring. Then
right module M is projective if and only if it is strongly soc-projective.

Proof. As we’ve seen, in this case every module has the smallest module that
yields a projective quotient. Then we can decompose every module M as M ∼= P ⊕ X ,
with P projective and X a module without projective quotients. Moreover, since R is
right perfect, every non-zero module has maximal submodules, cf. [7]. Then if X �= 0
there exists a simple module S such that Hom(X, S) �= 0. Since Pr

−1(M) = Pr
−1(X),

S ∈ Pr
−1(X). This implies, by Proposition 4.16, that P(S) is a direct summand of X , a

contradiction. Hence, X = 0 and M ∼= P is projective. �
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