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Abstract

We determine the structure of a nonabelian group G of odd order such that some automorphism
of G sends exactly (l/p)|G| elements to their cubes, where p is the smallest prime dividing \G\.
These groups are close to being abelian in the sense that they either have nilpotency class 2
or have an abelian subgroup of index p.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 E 36.

1. Introduction

Let G be a group and let n be a fixed non-zero integer. An n-automorphism of
G is an automorphism which sends every element of G to its nth power. If G
has an n-automorphism for n = —1,2 or 3, it is well known that G is abelian.
On the other hand, Miller [8] has shown that for every other value of n ^ 1 there
exists a non-abelian group admitting a non-trivial n-automorphism.

For a finite non-abelian group G and for n = — 1,2 and 3, there remains the
problem of determining how large a proportion of the elements of G can be sent
to their nth powers by an automorphism, and also of determining the structure
of the groups for which these maximal proportions are achieved. For n = - 1
and 2, these problems were solved by Manning [7], Liebeck and MacHale [2], and
Liebeck [4]. (See also MacHale [5], and [3].) Concerning n = 3, the following
results are proved in MacHale [6].
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(i) No automorphism of G can send more than (3/4)\G\ elements to their
cubes.

(ii) G has an automorphism cubing exactly (3/4) |G| elements if and only if
\G : Z(G)\ = 4 and Z(G) has no elements of order 3, where Z(G) is the centre
ofG.

(iii) If \G\ is odd and p is the least prime dividing \G\, then no automorphism
of G can send more than (l/p)|G| elements to their cubes.

In this paper we settle the outstanding case arising from (iii) above by classi-
fying all non-abelian groups G of odd order with an automorphism a which sends
exactly (l/p)|G| elements to their cubes, where p is the least prime dividing \G\.

Let T = Ta = {x € G\xa = x3)} and F = Fa = {x G G\xa = x}. The
classification theorem depends on whether F is trivial or not.

THEOREM, (i) If\F\ = 1, then G is nilpotent of class 2, \G'\ = p, GpnG' = 1
and p > 5.

(ii) / / \F\ / 1, then T is an abelian subgroup of index p in G and there exists
f €F, f <£T, such that f has order p. Moreover (|T|, 3) = 1.

These conditions are necessary and sufficient. Thus, as in the cases n = — 1
and 2, the groups in question are close to being abelian in that they either have
small nilpotency class or an abelian subgroup of small index.

2. Notation

Throughout, G will denote a finite group of odd order. Any notation not
explicitly defined is standard and conforms to that of [1].

3?p the set of all finite groups with order divisible by the prime p but by no
smaller prime.

a an automorphism of G,
Ta = T, the set {x € G|xa = x3},
Fa = F, the subgroup {x € G|xa = x},
Gp the subgroup generated by the pth powers of elements of G,
|x| the order of the element x EG,
xG the conjugacy class of G containing x,
Z{G) = Z, the centre of G.

3. Preliminary results

The following remarks are at once obvious.
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(i) T H F = 1, since \G\ is odd .

(iii) No element of T has order divisible by 3.
(iv) If A is a subgroup of G, maximal in T, then (A)a = A and A is abelian,

since the resctriction of a to A is a 3-automorphism of A.

LEMMA 3.1. IfGe%andH<iG with \H\ = p, then H c Z{G).

PROOF. Let H = (h). Now all the conjugates of h lie in H and their number,
being a divisor of \G\, is either 1 or p. Since the identity is not conjugate to h, h
has exactly one conjugate. Thus h is central and the result follows.

LEMMA 3.2. ifteT, CG{t) = CG{t3).

PROOF. If tg = gt then t3g — gt3. Conversely, if t3g — gt3 then applying the
automorphism a" 1 , t(ga~1) = (ga'1^. Since the correspondence g <-»• g{a-1)
is one-to-one, the result follows.

LEMMA 3 .3 . If a is fixed-point-free, then any conjugacy class ofG contains
at most one element ofT.

PROOF. For g G G, t G T, suppose that g~1tg G T. Then (g~1tg)a =
(g~1tg)3, whence [ff(</a)-1 ,t3] — 1. By Lemma 3.2, [ff(ffO!)~"1,£] = 1, and since
a is fixed-point-free, this implies [g, t] — 1, as claimed.

LEMMA 3.4. If' G G ̂ , has k conjugacy classes, then

PROOF. G has \G : G'\ irreducible representations of degree 1 and all other
ones have degrees at least p. The degree equation, \G\ = X ) * - ! ^ , now gives
\G\ > \G : G'\ + (k-\G: G'|)p2, from which the result follows.

LEMMA 3.5. IfGe&pand \F\ > 1, then Tfx = Tf2 implies / i = f2, for
/ i , / 2 £ F. In this case G = TF = FT and \F\ = p.

PROOF. Suppose fx = tf2, for t € T. Applying a, we have / i =t3f2 = t2fx.
Since \G\ is odd, t = 1 and / i = f2. Now any / e F , / / l , has order at least p
soG = T u T / U - U Tp-1. Thus G = TF and \F\ = p. Similarly, G = FT.
We assume from now on that G is a non-abelian group in %?p (p > 2) and some
automorphism a of G satisfies p |Ta | = p\T\ = \G\.
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4. Case where \F\ = 1

We assume throughout this section that a is fixed-point-free. In this case we
claim that T cannot be a subgroup, so suppose otherwise. Then \G : T\ = p,
T<G and so T consists of complete conjugacy classes in G. Then, by Lemma
3.3, T C Z(G), G/Z(G) is cyclic and G is abelian, a contradiction.

Suppose that G has k conjugacy classes. Then, by Lemma 3.3, k > |T|, so
k/\G\ > \T\/\G\ = 1/p. By Lemma 3.4

whence \G'\ < p + 1. Since G e ^ , and p is odd, |G'| = p. By Lemma 3.1,
G' C Z(G), so G is nilpotent of class 2.

Next, we show p ^ 3, so suppose p = 3. Let a, b € T be such that [a, b] ^ 1.
Such a pair of elements exists since otherwise T is a subgroup, a contradic-
tion. Since G' is characteristic in G and a is fixed-point-free, [a, b]2 = [a, b]a =
[a3, ft3] = [a,6]9. Thus [a,b]7 = 1 and so [a,b] = 1, a contradiction. Thus p > 5.

We now claim that Z — Z(G) <£ T, so suppose otherwise. Since then G' c
Z C T, G' C T. If a, b e T, [a, b] ^ 1 then

Thus [a,6]6 = 1, which forces [a,b] = 1, since \G\ is odd and T has no elements
of order 3. This contradiction shows Z </LT.

Let Z* = Z D T. Then Z* is a subgroup of Z with \Z : Z*\ = p. To see
this, consider Zf n T for any < € T. Let z € Z. Now zt G T -«• (zt)3 = zotf3 *s>
za = z

z <* z e Z*. Thus Zt n T = Z*t. If |Z : Z*\ > p, then |T| < (l/p)|G|,
a contradiction. For a, b € T, if 1 ^ [a, 6] = c then c generates G', and c ^ Z*,
since then c3 = ca = [a3,63] = c9 and c = 1. Thus, Z = Z* x G'.

Finally, we show that Gp C\G' = 1. Now, since G has class 2, for all t € T,
x e G, [tp,x] = [t,x]p = 1, so tp e Z n T = Z*. Thus, for all a,6 € T,
(a6)P = aP&"[&,a]p<p-1)/2 = rfb", since p is odd. Thus Gp C Z*, so GTlG' = 1.

We can now state a structure theorem in the case F = 1.

THEOREM 4.1 . Necessary and sufficient conditions that a non-abelian group
G G8?P (p > 2) have an automorphism a such that \Fa\ = 1 and p\Ta\ = G are

(i) G is nilpotent of class 2 tw't/i |G'| = p,
(ii) GP n G' = 1

and
(iii) p > 5.

PROOF. We have already established the necessity of these conditions. Sup-
pose that G is a group which satisfies (i)-(iii). Then G/Z is an elementary
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abelian p-group and Z - Z* x G', where Gp C Z* C G. Thus G/Z -
{Zai,..., Zak, Zxi,..., Zxk), w h e r e [xi, Xj] - [ai,dj] — 1 for all i,j = 1 , . . . , k;
[ai,Xj} = 1 (i # j ) ; [ai,Xi] = c {i = l,...,k), w h e r e (c) = G'. P u t A =
(ai,... ,a,k,Z*). Then every element g € G is uniquely expressible as g =
ac'xf •••xl", where a E A, 0 < s < p - 1, 0 < & < p {i = l,...,Jk). The
map a defined by

ga = {acax\l • • • as«*)a = a3c9sz?91 • • • x3<?*

defines an automorphism of G. Moreover, p\Ta\ = G because, given any a E A
and integers 91, . . . ,?* , there is exactly one s, 0 < s < p, such that ga — gz.
Finally, we note that \Ga\ = 1 since p > 5.

5. Groups in which p\T\ = \G\ and |F| ^ 1

The analysis in this section resembles section 4B of Liebeck [4]. However, it
differs in detail and the outcome is different.

Up to the end of this section we shall assume the following conditions: G E
S?p (p > 2) is a non-abelian group, a E Aut(G) with p\T\ = p\Ta\ = \G\ and

By Lemma 3.5, \F\ = p, so if F = (/) we have the disjoint union

(0) G = T U Tf U • • • U T/""1 = T U fT U • • • U ft^T.

LEMMA 5.2. The conjugacy class containing f has no elements in T.

PROOF. Suppose there exists g EG such that g~lfg € T. By (0), g = tfr,
for t E T and some integer r. Thus {f~Tt~1ftfr)a = (f~rt~1ftfr)3, whence
r2ft2 = fz. Applying a, we have t~6fte = f3, from which / = r4ft4, and so
t'1 ft = f, since \G\ is odd. Finally, t~2ft2 = f — f3, so / = 1, a contradiction.

LEMMA 5.3. The conjugacy class oftET either has one element in T when
[t,f] = 1, or has exactly p elements in T, when [t,f] ^ 1. These elements are

PROOF. Let g e G and t € T with g~Hg € T. Then from (g~1tg)a =
{g^tg)3 we find that [(ga)g-\t3} = 1, implies [(ga)^1,*] = 1. But g = txf

r

for some *i € T and some integer r, so (tifr)a(t1f
r)-1t = <(i1/ r)a(ti/ r)~1.

This simplifies to t\t = tt\, so tit = tt\ and g~*tg = f~rtfr, which proves the
assertion of the lemma.
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LEMMA 5.4. Suppose thatT is not a subgroup ofG. Ifx,y andxy all belong
to T, then xy = yx.

PROOF. Suppose x,y and xy belong to T. Then since \xy\ — \yx\, we have
3 f Ml2/||zy||2/a;|- Applying a, we obtain (xy)3 = x3y3, so

(i) W 2 = xV

By (0), yx = ft, for some / € F, t € T, and applying a, we get y3x3 = ft3 =
ft.t2 = yxt2. Thus x~1y2x3 = t2 = x~1(y2x2)x. Now conjugating (1) by y~2

gives (y3xy~2)2 = y2x2 and substituting gives t — x~ly3xy~2x, since t2 — u2

implies t = u. Hence yx — ft = fx~1y3xy~2x, so

(2)

Applying a to

(3)

(2) we get

yz

y9

= fx ly x.

= fx~3y9x3

Combining (2) and (3) yields y6 = x~1y~3x~2y9x3 — (yx)~1(y~2x~2)y9x3 —
(yx)-3y9x6 from (1). Thus (yx)3 = y9x3j/"6 = y9x3y3y~9 = [y9(xy)y-9]3.
Since 3 f |a;j/||j/a;|, we conclude that yx = y9xyy~g so xys — y6x and xy — yx.

LEMMA 5.5 . Suppose that T is not a subgroup ofG. Let A be a subgroup of
G maximal in T. Then there exists a coset decomposition

G = A\jAfU---U Afv~x U Agx U • • • U Agn

such that

(i) Af>nT = 4>,j = l,2,...,p-l, and

(ii) \A9inT\ = \CA(9i)\ = \A\/p, i = l , 2 , . . . , n .

PROOF, (i) is a consequence of (0).
(ii) Clearly, exactly 1/p of the elements of A U Af U • • • U Afv~x belong to

T. For t € T\A we have At n T = CA(t)t by Lemma 5.4. Since A is abelian
and maximal in T, CA(At) = CA(t) is a proper subgroup of A. Consequently
\Ag fl T\ < \A\/p for all g € G\A. It follows that every coset Agi must have
exactly 1/p of its elements in T, otherwise the condition p\T\ = \G\ is violated.
Hence \Ag{ HT\ = \A\/p for i = 1,2, . . . ,n.

We now proceed to prove the following result, which, together with the corol-
lary below and Theorem 4.1 establishes the characterisation theorem stated at
the outset.
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THEOREM 5.6. IfGeS?p(p>2)is non-abelian and has an automorphism
a such that Fa ^ 1 and p\T\ — \G\, then T is a subgroup of G.

PROOF. We proceed by induction on \G\. Assume first that Z* - Z{G)C\T ^
1. It is clear that Z* is an a-invariant normal subgroup of G. If G" c Z*, then
for all a, b € T by "bilinearity"

[a, 6]3 = [a, b}a = [aa, 6a] = [a3, b3} = [a, 6]9.

This implies that [a,b] = 1 as \G\ is odd and T has no element of order 3. We
may infer that T is a subgroup of G.

If G/Z* = (FZ*/Z*)(T/Z*) is non-abelian, it satisfies all hypotheses of the
theorem, in view of the statement (iii) in the introduction and Lemma 3.5. Thus
by induction T/Z* and hence T are groups. We may therefore assume that
Z" = 1.

We claim that there is a g G G such that \gG HT\ = p and \gG\ < p2. Assume
the contrary. If \xG D T\ ^ p for some 1 / i e G, then either xG n T = 0 or
\xG n T\ = 1 and \xG\ = \G : CG{x)\ > p, by Lemma 5.3. We know that Z* = 1
and G € ^, , so from \G\ = p\T\ (and our assumption) we may conclude that
the union of all conjugacy classes of G intersecting T trivially contains at most
p - 1 elements. Combining Lemmas 5.2 and 3.5 we obtain that F = Z(G) is this
union with 1 added.

Since a induces on G/F a 3-automorphism by (0), we get G' C F. Now for
all a, b € T, [a, b] = [a, b]a = [a3,63] = [a, 6]9, implying that [a, b] - 1. It follows
that G is abelian, a contradiction.

Hence there is a g 6 G such that \gG D T\ = p and |<7G| < p2. By Lemmp;
5.3, A = CG(9) does not contain F, whence A D F = 1. In view of Lemma
3.2, A is a-invariant. For any a € A there exist j such that a/J € T by (0), so
(o/J)3 = (afj)a = aap implies {fja)2 = a^aa € A. It follows that fja € A
and P € A D F — 1, whence j = 0 and a&T. Thus A c T, so A is abelian. We
claim that 4̂ = T.

Assuming the contrary we have p < \G : A\ < p2. Since G € 3?p, \G : A\ =
|<7G| must be a prime q, say. In particular, A is a maximal subgroup of G.
There exists t € T\A. By Lemma 5.5, \CA(t)\ = \A\/p. On the other hand,
Q?(CU(0) 2 (-4)0 = G. Since Z* = 1, we obtain CA{t) = 1, |4 | = p and
|G| = pq. But now 4 and F are conjugate in G (Sylow), contradicting Lemma
5.2. The proof is complete.

From the proof of Theorem 5.6 we have

COROLLARY 5.7. A non-abelian group G G 3/v (p > 2) has an automorphism
a such that F ^ 1 and T is a subgroup of index p in G if and only if G has
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an abelian subgroup A of index p with (|A|,3) = 1 and an element f € G\A of
order p.
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