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Abstract

We determine the structure of a nonabelian group G of odd order such that some automorphism
of G sends exactly {1/p)|G| elements to their cubes, where p is the smallest prime dividing |G|.
These groups are close to being abelian in the sense that they either have nilpotency class 2
or have an abelian subgroup of index p.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 E 36.

1. Introduction

Let G be a group and let n be a fixed non-zero integer. An n-automorphism of
G is an automorphism which sends every element of G to its nth power. If G
has an n-automorphism for n = —1,2 or 3, it is well known that G is abelian.
On the other hand, Miller (8] has shown that for every other value of n # 1 there
exists a non-abelian group admitting a non-trivial n-automorphism.

For a finite non-abelian group G and for n = —1,2 and 3, there remains the
problem of determining how large a proportion of the elements of G can be sent
to their nth powers by an automorphism, and also of determining the structure
of the groups for which these maximal proportions are achieved. For n = —1
and 2, these problems were solved by Manning (7], Liebeck and MacHale {2], and
Liebeck [4]. (See also MacHale [5], and [3].) Concerning n = 3, the following
results are proved in MacHale [6].
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(i) No automorphism of G can send more than (3/4)|G| elements to their
cubes.

(if) G has an automorphism cubing exactly (3/4)|G| elements if and only if
|G : Z(G)| = 4 and Z(G) has no elements of order 3, where Z(G) is the centre
of G.

(iii) If |G| is odd and p is the least prime dividing |G|, then no automorphism
of G can send more than (1/p)|G| elements to their cubes.

In this paper we settle the outstanding case arising from (iii) above by classi-
fying all non-abelian groups G of odd order with an automorphism o which sends
exactly (1/p)|G| elements to their cubes, where p is the least prime dividing |G|.

Let T =T, = {z € Glza = 2%)} and F = F, = {z € G|za = z}. The
classification theorem depends on whether F' is trivial or not.

THEOREM. (i) If|F| =1, then G is nilpotent of class 2, |G'| = p, GPNG' =1
andp > 5.

(i) If |F| # 1, then T 1is an abelian subgroup of indez p in G and there exists
fE€F, f&T, such that f has order p. Moreover (|T|,3) = 1.

These conditions are necessary and sufficient. Thus, as in the cases n = —1
and 2, the groups in question are close to being abelian in that they either have
small nilpotency class or an abelian subgroup of small index.

2. Notation

Throughout, G will denote a finite group of odd order. Any notation not
explicitly defined is standard and conforms to that of [1].

Z, the set of all finite groups with order divisible by the prime p but by no
smaller prime.

a an automorphism of G,

Ty =T, the set {z € G|za = 1%},

F, = F, the subgroup {z € G|za = z},

GP? the subgroup generated by the pth powers of elements of G,

|z| the order of the element z € G,

78 the conjugacy class of G containing z,

Z(G) = Z, the centre of G.

3. Preliminary results

The following remarks are at once obvious.
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(i) TN F =1, since |G| is odd.

(i) (T)a=T.

(iii) No element of T has order divisible by 3.

(iv) If A is a subgroup of G, maximal in T, then (A)a = A and A is abelian,
since the resctriction of o to A is a 3-automorphism of A.

LEMMA 3.1. IfG€ &, and H <G with |H| = p, then H C Z(G).

PROOF. Let H = (h). Now all the conjugates of h lie in H and their number,
being a divisor of |G|, is either 1 or p. Since the identity is not conjugate to h,h
has exactly one conjugate. Thus h is central and the result follows.

LEMMA 3.2. IfteT, Cg(t) = Ce(t®).

PROOF. If tg = gt then t3g = gt3. Conversely, if t3g = gt3 then applying the
automorphism a!, t(ga~!) = (ga~!)t. Since the correspondence g — g(a~?!)
is one-to-one, the result follows.

LEMMA 3.3. If o 18 fized-point-free, then any conjugacy class of G contains
at most one element of T'.

PROOF. For g € G, t € T, suppose that g~ 1tg € T. Then (g7 'tg)a =
(9~ tg)3, whence [g(ga)~!,t3] = 1. By Lemma 3.2, [g(ga)~!,t] = 1, and since
« is fixed-point-free, this implies [g,t] = 1, as claimed.

LEMMA 3.4. If G € &, has k conjugacy classes, then

k 1 p2—1]
— < = 1+=—-].
|Gl p’*’[ G|

PROOF. G has |G : G'| irreducible representations of degree 1 a.nd all other
ones have degrees at least p. The degree equation, |G| = E, 1 ,, now gives
|G| > |G : G') + (k — |G : G'|)p?, from which the result follows.

LEMMA 3.5. IfG € &, and |F| > 1, then T fy = T fa implies f1 = fa, for
fi,fa€F. In this case G=TF = FT and |F| =

PROOF. Suppose f; = tfs, for t € T. Applying o, we have f; =t3f; =t2f;.
Since |G| is 0odd, t =1 and f, = fo. Now any f € F, f # 1, has order at least p
$0G=TUTfU---UTfP~1, Thus G = TF and |F| = p. Similarly, G = FT.
We assume from now on that G is a non-abelian group in &, (p > 2) and some
automorphism a of G satisfies p|To| = p|T| = |G|.
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4. Case where |F| =1

We assume throughout this section that « is fixed-point-free. In this case we
claim that T cannot be a subgroup, so suppose otherwise. Then |G : T} = p,
T <« G and so T consists of complete conjugacy classes in G. Then, by Lemma
3.3, T C Z(G), G/Z(G) is cyclic and G is abelian, a contradiction.

Suppose that G has k conjugacy classes. Then, by Lemma 3.3, k > |T}, so
k/|G| > |T|/|G| = 1/p. By Lemma 3.4

1 pP—-1] _ 1

»? [1+ G| ] 2

whence |G'| < p+ 1. Since G € &, and p is odd, |G’| = p. By Lemma 3.1,
G' C Z(G), so G is nilpotent of class 2.

Next, we show p # 3, so suppose p = 3. Let a,b € T be such that [a,b] # 1.
Such a pair of elements exists since otherwise T' is a subgroup, a contradic-
tion. Since G’ is characteristic in G and a is fixed-point-free, [a,b)? = [a,bla =
[a3, 53] = [a,5]°. Thus [a,b]” = 1 and so [e,b] = 1, a contradiction. Thus p > 5.

We now claim that Z = Z(G) ¢ T, so suppose otherwise. Since then G’ C
ZCcT,G'cT.Ifa,beT,[a,b] #1 then

[a,b]a = [a,b]? = [a®,b®] = [a, b]°.

Thus [a, b]® = 1, which forces [a, ] = 1, since |G| is odd and T has no elements
of order 3. This contradiction shows Z ¢ T.

Let Z* = ZNT. Then Z* is a subgroup of Z with |Z : Z*| = p. To see
this, consider Zt N T for any ¢t € T. Let 2 € Z. Now 2t € T & (2t)° = zat® &
za=23 e z¢€ 2*. Thus ZtNT = Z*t. If |Z : Z*| > p, then |T| < (1/p)IG|,
a contradiction. For a,b € T, if 1 # [a,b] = ¢ then ¢ generates G’, and ¢ ¢ Z*,
since then ¢® = ca = [a3,6%] =c® and ¢ = 1. Thus, Z = Z* x G'.

Finally, we show that GP N G’ = 1. Now, since G has class 2, for all ¢t € T,
z €G, [tha] =[tz]P =1,s0tP € ZNT = Z*. Thus, for all a,b € T,
(ab)? = aPbP[b, a]P(P~1)/2 = aPp? since p is odd. Thus G C Z*, 30 GPNG' = 1.

We can now state a structure theorem in the case F = 1.

THEOREM 4.1. Necessary and suffictent conditions that a non-abelian group
G € &, (p > 2) have an automorphism a such that |F,| = 1 and p|T,| = G are
(i) G s nilpotent of class 2 with |G'| = p,
(i) GP NG =1
and
(iii) p > 5.

PROOF. We have already established the necessity of these conditions. Sup-
pose that G is a group which satisfies (i)-(iii). Then G/Z is an elementary
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abelian p-group and Z = Z* x G’, where G C Z* C G. Thus G/Z =
(Zas,...,Zag,Zz,,..., Zzk), where [z;,z;] = [ai,a] =1 foralli,7 =1,...,k;
lai,zj] =1 (i # j); [a,,z,] =c¢ (it =1,...,k), where (c) = G'. Put A =
(@1,...,ak,2Z*). Then every element g € G is uniquely expressible as g =
ac’zd ---z*, wherea € A,0< 8<p-1,0<¢ <p(i=1...,k). The
map o defined by

ga = (ac’z{ ---z*)a = a3cg"z3q‘ e a:iq"
defines an automorphism of G. Moreover, p|T,| = G because, given any a € A
and integers qi,...,qx, there is exactly one s, 0 < s < p, such that ga = g5.
Finally, we note that |G,| = 1 since p > 5.

5. Groups in which p|T| = |G| and |F| # 1

The analysis in this section resembles section 4B of Liebeck [4]. However, it
differs in detail and the outcome is different.

Up to the end of this section we shall assume the following conditions: G €
% (p > 2) is a non-abelian group, a € Aut(G) with p|T| = p|T| = |G| and
F=F, #1.

By Lemma 3.5, |F| = p, so if F = (f) we have the disjoint union

(0) G=TUTfU---UTfP1=TUfTu---UfrIT.
LEMMA 5.2. The conjugacy class containing f has no elements in T.

PROOF. Suppose there exists g € G such that g~1fg € T. By (0), g = tf7,
for t € T and some integer r. Thus (f~"t~'ftfT)a = (f~"t~!ftf")3, whence
t=2ft2 = f3. Applying a, we have t~6ft® = f3, from which f =t~ ft4, and so
t=1ft = f, since |G| is odd. Finally, t=2ft2 = f = f3, so f = 1, a contradiction.

LEMMA 5.3. The conjugacy class of t € T either has one element in T when
[t,f] = 1, or has ezactly p elements in T, when [t, f] # 1. These elements are
fitfr,r=0,1,...,p—-1.

PROOF. Let g € G and t € T with g~'tg € T. Then from (¢~ 'tg)a =
(97 'tg)3® we find that [(go)g~!,t%] = 1, implies [(ga)g~!,t] = 1. But g = ¢, f"
for some t; € T and some integer 7, so (t;f")a(t1f7) "1t = t(t1f )a(tfT) 1.
This simplifies to t3t = tt2, so t;¢t = tt; and g~'tg = f~"tf", which proves the
assertion of the lemma.
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LEMMA 5.4. Suppose that T 13 not a subgroup of G. If z,y and zy all belong
to T, then zy = yzx.

PROOF. Suppose z,y and zy belong to 7. Then since |zy| = |yz|, we have
3 t |z|ly|lzy||yz|- Applying a, we obtain (zy)2 = z3y3, so

(1) (yz)2 = a:2y2

By (0), yz = ft, for some f € F, t € T, and applying a, we get y3z2 = ft2 =
ftt? = yzt?. Thus z7'y%23 = t2 = 27(y?2?)z. Now conjugating (1) by y~2

gives (y3zy~2)% = y2z? and substituting gives t = 2~ y3zy 2z, since t2 = u?

implies ¢t = u. Hence yz = ft = fz~1y3zy 2z, so
(2) ¥’ = fzly’s.
Applying a to (2) we get

(3) y° = fa7%°c°.

Combining (2) and (3) yields y® = 27 'y~3272y%3 = (yz) 1 (y 227 2)y%3 =
(yz)~%y°2° from (1). Thus (y2)* = y%2%~° = 4?z%%y~° = [?(zy)y~®°.
Since 3 { |zy||yz|, we conclude that yz = y°zyy~2 so zy® = y®z and zy = y=.

LEMMA 5.5. Suppose that T is not a subgroup of G. Let A be a subgroup of
G mazimal tn T. Then there ezists a coset decomposition

G=AUAfU---UAfF"1UAg U - UAg,

such that
() AffiNnT=¢,7=1,2,...,p—1, and
(i) |[4g: NT| = [Calg:)| = |Al/p, t = 1,2,...,n.

PROOF. (i) is a consequence of (0).

(ii) Clearly, exactly 1/p of the elements of AU Af U ---U AfP~! belong to
T. For t € T\A we have At NT = C4(t)t by Lemma 5.4. Since A is abelian
and maximal in T, C4(At) = C4(t) is a proper subgroup of A. Consequently
|Ag N T| < |A]/p for all g € G\A. It follows that every coset Ag; must have
exactly 1/p of its elements in T, otherwise the condition p|T| = |G| is violated.
Hence |AgiNT| = |A|/p fori=1,2,...,n.

We now proceed to prove the following result, which, together with the corol-
lary below and Theorem 4.1 establishes the characterisation theorem stated at
the outset.
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THEOREM 5.6. IfG €, (p > 2) is non-abelian and has an automorphism
a such that Fy # 1 and p|T| = |G|, then T is a subgroup of G.

PROOF. We proceed by induction on [G|. Assume first that Z* = Z(G)NT #
1. It is clear that Z* is an o-invariant normal subgroup of G. If G’ C Z*, then
for all a,b € T by “bilinearity”

[a,b]® = [a,b]a = [ac, ba] = [a3,b%] = [a, B]°.

This implies that [a,b] = 1 as |G| is odd and T has no element of order 3. We
may infer that T is a subgroup of G.

If G/Z* = (FZ*/Z*)(T/Z*) is non-abelian, it satisfies all hypotheses of the
theorem, in view of the statement (iii) in the introduction and Lemma 3.5. Thus
by induction T/Z* and hence T are groups. We may therefore assume that
Z* =1.

We claim that there is a g € G such that [¢¢ NT| = p and |¢¢| < p?. Assume
the contrary. If [z N T| # p for some 1 # z € G, then either z° NT = & or
|z NT| =1 and |z¢| = |G : Cg(z)| > p, by Lemma 5.3. We know that Z* = 1
and G € &, so from |G| = p|T| (and our assumption) we may conclude that
the union of all conjugacy classes of G intersecting 7" trivially contains at most
p— 1 elements. Combining Lemmas 5.2 and 3.5 we obtain that F = Z(G) is this
union with 1 added.

Since a induces on G/F a 3-automorphism by (0), we get G’ C F. Now for
all a,b € T, [a,b] = [a,b]a = [a%, b3] = [a, b]°, implying that [a,d] = 1. It follows
that G is abelian, a contradiction.

Hence there is a g € G such that |¢° N T| = p and |¢®| < p?. By Lemma
5.3, A = Cg(g) does not contain F, whence ANF = 1. In view of Lemma
3.2, A is o-invariant. For any a € A there exist 7 such that af’ € T by (0), so
(af?)3 = (af’)a = a®*f7 implies (f7a)? = a~laa € A. It follows that fia € A
and f/ € ANF =1, whence j=0and a € T. Thus A C T, so A is abelian. We
claim that A="T.

Assuming the contrary we have p < |G : A| < p?. Since G € &, |G : A| =
|g¢| must be a prime g, say. In particular, A is a maximal subgroup of G.
There exists t € T\A. By Lemma 5.5, |C4(t)] = |A|/p. On the other hand,
Cs(Calt)) 2 (A,t) = G. Since Z* = 1, we obtain Ca4(t) = 1, |A| = p and
|G| = pg. But now A and F are conjugate in G (Sylow), contradicting Lemma
5.2. The proof is complete.

From the proof of Theorem 5.6 we have

COROLLARY 5.7. A non-abelian group G € &, (p > 2) has an automorphism
a such that F # 1 and T is a subgroup of index p tn G if and only if G has
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an abelian subgroup A of index p with (|A},3) = 1 and an element f € G\A of
order p.
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