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Abstract

We consider an insurance model, where the underlying point process is a Cox process.
Using a martingale approach applied to diffusion processes, finite-time Lundberg inequal-
ities are obtained. By change-of-measure techniques, Cramér–Lundberg approximations
are derived.
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1. Introduction

Björk and Grandell [2] derived by a ‘martingale approach’a general (infinite-time) Lundberg
inequality when the occurrence of the claims is described by a Cox process. They applied this
general result to the ‘independent jump intensity’ and ‘Markov renewal intensity’ cases and
got rather explicit results. Both of these classes contain Markovian intensities and in those
(Markovian) cases they considered a ‘modified’martingale approach in order to obtain improved
Lundberg inequalities. Grandell [5, appendix] derived finite-time Lundberg inequalities in
the above cases of Markovian intensities. All results referred to in [2] can also be found
in [5]. Embrechts et al. [3] extended the finite-time results for Markovian intensities to
non-Markovian intensities within the classes mentioned. Their method is to ‘Markovize’ by
introducing auxiliary processes and to apply the theory of piecewise-deterministic Markov
processes. Similar results were proved by Schmidli [14] for the more general case where the
intensity levels build a Markov renewal process. Grigelionis [7], [8] extended that approach,
so that, for example, diffusion intensities were also included. A series of conditions similar to
the conditions used in the present paper have to be fulfilled in [7] and [8].

It is well known that any stochastic process can be approximated by Markov renewal
processes. We could therefore argue that considering Cox models with a piecewise constant
intensity is sufficient for applications. However, Cox models are often motivated by an auxiliary
process driving the intensity. This auxiliary process typically describes some state of nature
or of the economy. We would therefore expect that changes of these states should occur
continuously, maybe accompanied by shocks. We therefore consider in this paper intensities of
diffusion type. For simplicity, we consider only one-dimensional diffusion Markov processes.
The approach used, however, could easily be generalised to multidimensional diffusions.

Let (�, F , P) be a complete probability space on which all stochastic quantities are defined.
It is assumed to carry the following independent objects: (i) a point process N = {Nt ; t ≥ 0}
with N0 = 0; (ii) a sequence {Uk}∞1 of independent and identically distributed random variables,
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40 J. GRANDELL AND H. SCHMIDLI

having common distribution function F , with F(0) = 0 and mean value µ. The risk process,
X, is defined by

Xt = ct −
Nt∑

k=1

Uk

( 0∑
k=1

Uk := 0

)
, (1.1)

where c is a positive real constant. If N is a stationary point process with intensity α, i.e. E[Nt ] =
αt , then E[Xt ] = ct − E[Nt ] E[Uk] = (c − αµ)t . The relative safety loading ρ is defined
by ρ = (αµ)−1(c − αµ). Let h(r) := ∫ ∞

0 erz dF(z) − 1. Assume that the distribution F(x)

is light tailed, i.e. that there exists r∞ > 0 such that h(r) ↑ +∞ as r ↑ r∞ (we allow for the
possibility that r∞ = +∞). This means that the tail of F decreases at least exponentially
fast, and, thus, heavy-tailed distributions like the lognormal and the Pareto distributions are
excluded. It is easily seen that h(0) = 0, and that h is increasing, convex, and continuous on
(−∞, r∞).

Let Tu be the time of ruin with initial capital u, i.e. Tu = inf{t ≥ 0 | u + Xt < 0}. We have

�(u, t) := P{u + X(s) < 0 for some s ∈ (0, t]} = P{Tu ≤ t}
and

�(u) := P{u + X(s) < 0 for some s > 0} = P{Tu < ∞}.
In order to simplify the presentation, from now on we assume that all processes are càdlàg,
i.e. right continuous and the limits from the left exist. For any process Y = {Yt ; t ≥ 0}, the
natural filtration F

Y = (F Y
t ; t ≥ 0) is the smallest right-continuous filtration F such that Yt is

Ft -measurable for all t ≥ 0.
The rest of this paper is organised as follows. In Section 2 Cox models are introduced and

the martingale approach is discussed. In Section 3 we review change-of-measure techniques
that are useful in order to prove Cramér–Lundberg approximations. In Section 4 that approach
is, by way of example, applied to Ornstein–Uhlenbeck intensities. We show that it is possible
to verify the conditions we need in our general results. The example of Section 4.1 has also
been treated in [11], where the Lundberg inequalities were also obtained.

2. Cox models

Let λ = {λt ; t ≥ 0} be a nonnegative stochastic process. We call it the intensity process.
Define �t := ∫ t

0 λ(s) ds. Let Ñ be a homogeneous Poisson process with rate 1 independent
of �. The claim number process N is given by Nt = Ñ�t . Then N is a Cox process. A Cox
model is a risk process X, cf. (1.1), where N is a Cox process.

For stationary intensity processes, we let α = E[λ1] and rλ(t) = cov[λs, λs+t ]. It readily
follows that E[Nt ] = αt and var[Nt ] = αt + var[�t ]. Hence, a natural measure of the vari-
ability of � is σ 2

�, defined by σ 2
� := limt→∞ t−1 var[�t ] = ∫ ∞

−∞ rλ(t) dt , provided that the
integral is well defined. A detailed discussion of Cox processes and their impact on risk theory
can be found in [5, Chapter 4].

We will now consider Cox models where the intensity process is generated by a Markov
diffusion process Z,

dZt = a(Zt ) dt + b(Zt ) dWt, Z0 = z,

where a(z) and b(z) are Lipschitz continuous functions. Let �(·) be a nonnegative monotone
function on the state space. Then the intensity process is defined by λt = �(Zt ).
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Now we consider the vector-valued process Y given by Yt = (Xt , Zt , t), which is a Markov
process. The generator, A, of Y is given by

Af (x, z, t) = c
∂f (x, z, t)

∂x
+ �(z)

∫ ∞

0
(f (x − y, z, t) − f (x, z, t)) dF(y)

+ a(z)
∂f (x, z, t)

∂z
+ 1

2
b2(z)

∂2f (x, z, t)

∂z2 + ∂f (x, z, t)

∂t
, (2.1)

provided that f is twice continuously differentiable with respect to z, and continuously differ-
entiable with respect to x and t .

For fixed r , we look for a positive F
Y -martingale M of the form

Mt = e−θtg(Zt )e
−rXt , (2.2)

with a twice continuously differentiable function g. Without loss of generality, we assume that
E[g(Z0)] = 1. For f (x, z, t) = e−rxg(z)e−θt , we obtain (see (2.1))

Af (x, z, t) = [−crg(z) + �(z)h(r)g(z) + a(z)g′(z) + 1
2b2(z)g′′(z) − θg(z)

]
e−rx−tθ ,

and, thus, in order that Af (x, z, t) = 0, g is a solution to

1
2b2(z)g′′(z) + a(z)g′(z) − [θ + cr − �(z)h(r)]g(z) = 0. (2.3)

In general, (2.3) is hard to solve. Suppose, however, that we found a positive solution g and a
θ -value. Obviously, θ will depend on r , and since r will be the ‘important’ parameter, we write
θ(r) in order to make this dependence explicit. Suppose further that θ(0) = 0 (which always
holds if Z is stationary), and that θ(r) is well defined, differentiable, and convex. We can now
obtain estimates of the ruin probability by a martingale technique, first introduced in [4], and
described in detail in [3] and [6]; therefore, we will only give the main steps.

Choose y and y such that 0 ≤ y ≤ y < ∞, and consider yu ∧ Tu, which is a bounded
F

Y -stopping time. Since M is positive, it follows by optional stopping that

1 = EF Y
0 [M(yu ∧ Tu)] ≥ EF Y

0 [M(Tu) | yu < Tu ≤ yu]PF Y
0 {yu < Tu ≤ yu}.

Since u + X(Tu) ≤ 0 on {Tu < ∞}, we obtain

PF Y
0 {yu < Tu ≤ yu} ≤ exp{−u min(r − yθ(r), r − yθ(r))}

EF Y
0 [g(Z(Tu)) | yu < Tu ≤ yu]

.

Provided that EF Y
0 [g(Z(Tu)) | yu < Tu ≤ yu] is bounded away from 0, we obtain

�(u, yu) − �(u, yu) ≤ C1 exp{−u min(r − yθ(r), r − yθ(r))}
for some constant C1 < ∞. Define the finite-time Lundberg exponent R(y, y) by

R(y, y) = sup
r≥0

min(r − yθ(r), r − yθ(r)),

yielding the finite-time Lundberg inequality

�(u, yu) − �(u, yu) ≤ C1e−R(y,y)u. (2.4)

Assume that θ(r) = 0 has a positive solution R and that θ(r) < ∞ for some r > R. Set
fy(r) = r − yθ(r). Let ry denote the solution to f ′

y(ry) = 0. We call y0 := 1/θ ′(R) the
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critical value. Then (see [3])

R(y, y) =

⎧⎪⎨
⎪⎩

R if y ≤ y0 ≤ y,

fy(ry) if y ≤ y0,

fy(ry) if y0 ≤ y.

We have R(y, y) > 0 if y ≤ y0 or y0 ≤ y. For y = 0 and y → ∞, we obtain

�(u) ≤ C1e−Ru, (2.5)

which is the ‘ordinary’ Lundberg inequality with R the Lundberg exponent. A complication
that may occur is if θ(r) is defined for r ∈ [0, r̃] only, and θ(r̃) < 0. Since in that case y0 is
not defined, we consider only the infinite-time case. Provided that C1 < ∞, (2.5) holds with
R = r̃ .

3. The change-of-measure technique

Suppose that the martingale M given by (2.2) is well defined. Then E[Mt ] = 1 and Mt > 0.
It is therefore possible to define the equivalent measure Q on F Y

t by Q{A} = EP[Mt ; A]. It is
possible to extend the measure Q to F . It follows that, for any stopping time T and any set
A ∈ FT such that A ⊂ {T < ∞}, the formula Q{A} = EP[Mt ; A] holds. For an introduction
to change-of-measure techniques, see [1, pp. 160–168], [9], or [13, Chapter 10].

Let h̃(r) = h(r) + 1. The next result gives us the law of the risk process under the measure Q.
A proof can be found in [12].

Lemma 3.1. Suppose that the martingale M defined by (2.2) is well defined and that g is twice
continuously differentiable. Then the process Y = (X, Z, t) is a Cox model under the measure
Q with intensity process λ̃t = �(Zt )h̃(r) and claim size distribution dF̃ (x) = erx dF(x)/h̃(r).
The process Z is a Markov diffusion process with generator

Ãf = ga + b2g′

g
f ′ + 1

2
b2f ′′ (3.1)

on the set of twice continuously differentiable functions f .

Typically, the function θ(r) will be convex. Since EQ[Xt ] = EP[Xtg(Zt )e−rXt e−θ(r)t ], we
have, provided that the derivative and expectation can be interchanged,

0 = d

dr
EP[g(Zt )e

−rXt e−θ(r)t ] = EP

[(
d

dr
g(Zt )

)
e−rXt e−θ(r)t

]
− EQ[Xt ] − tθ ′(r).

Typically, dividing by t and letting t → ∞, the first term on the right-hand side will vanish.
Thus, t−1 EQ[Xt ] will converge to −θ ′(r). Hence, the safety loading condition will not be
fulfilled for r ≥ r0, where r0 is the solution to θ ′(r) = 0. This means that Q{Tu < ∞} = 1 if
and only if r ≥ r0.

Expressing the ruin probability under the measure Q yields

�(u) = EQ

[
1

g(ZTu)
er(XTu+u)eθ(r)Tu; Tu < ∞

]
e−ru.

Choosing r = R, the ruin probability simplifies to

�(u) = EQ

[
1

g(ZTu)
eR(XTu+u)

]
e−Ru.
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Note that θ ′(R) > 0 by convexity and, thus, R > r0. By the definition of Tu, XTu + u < 0. If
EQ[1/g(ZTu)] can be bounded from above, a Lundberg inequality is found.

Let f (u) = EQ[eR(XTu+u)g(ZTu)]. Suppose first that Z0 = z for some fixed z. Choose
ε > 0 such that S := inf{t > 0 : |Zt − z| = ε} is finite almost surely. Let S0 = 0 and
S1 := inf{t > S : Zt = z}. Then S1 is a regeneration time. In the same way we define a
sequence of regeneration times {Sn}. Now let S+ = inf{Sn : XSn < 0}. Then {(X(S+ + t) −
X(S+), Z(S++t), t); t ≥ 0} follows the same law as Y . But the initial capital is u+X(S+) < u.
In principle, it would then follow from the renewal theorem that f (u) is converging as u → ∞.
Unfortunately, Tu < S+ is possible, and the equation to consider is

f (u) = EQ

[
1

g(ZTu)
eR(XTu+u); Tu ≤ S+

]
+ EQ[f (u + X(S+)); Tu > S+].

Theorem 3.1. Suppose that M is a martingale and that Q{Tu < ∞} = 1. Suppose further that
Z is Harris recurrent, that the functions

EQ

[
1

g(ZTu)
eR(XTu+u); Tu ≤ S+

]
and Q{Tu ≤ S+}

are directly Riemann integrable, and that Q{Tu ≤ S+ | X(S+) = −y} is continuous in u. Then
limu→∞ �(u)eRu = C for some C ∈ (0, ∞).

Proof. The result follows from Theorem 2 of [15].

Remark 3.1. Note that the constant C depends on the initial distribution. In general, if g(z)

is chosen such that EP[g(Z0)] = 1 under the stationary initial distribution then, for any other
initial distribution P̃, say, we obtain the limit with C̃ = Ẽ[g(Z0)]C.

Now let 0 ≤ y ≤ y < ∞, and consider �(u, yu) − �(u, yu). With the change of measure
we can express this as

�(u, yu) − �(u, yu) = EQ

[
1

g(ZTu)
er(XTu+u)eθ(r)Tu; yu < Tu ≤ yu

]
e−ru.

If 0 < r < R then θ(r) < 0 and

EQ

[
1

g(ZTu)
er(XTu+u); yu < Tu ≤ yu

]
e−(r−yθ(r))u

≤ �(u, yu) − �(u, yu)

≤ EQ

[
1

g(ZTu)
er(XTu+u); yu < Tu ≤ yu

]
e−(r−yθ(r))u. (3.2)

If R < r < r∞ then θ(r) > 0 and

EQ

[
1

g(ZTu)
er(XTu+u); yu < Tu ≤ yu

]
e−(r−yθ(r))u

≤ �(u, yu) − �(u, yu)

≤ EQ

[
1

g(ZTu)
er(XTu+u); yu < Tu ≤ yu

]
e−(r−yθ(r))u.

The discussion in [3] then yields (2.4). If y > y0 then the exponent R(y, y) does not depend
on y. By letting y → y in (3.2) we can show that R(y, y) is in fact the Lundberg exponent,
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i.e. the best possible exponent in an exponential inequality. An analogous argument shows that
R(y, y) is the Lundberg exponent in the y < y0 case.

4. Ornstein–Uhlenbeck intensities

We now turn to an example, and show how the results of Sections 2 and 3 can be applied
to concrete models. Consider an Ornstein–Uhlenbeck process Z. That is, the solution to
dZt = −aZt dt + b dWt . Let Z0 be normally distributed with mean 0 and variance b2/(2a).
Then Z is a stationary Gaussian process with E[Zt ] = 0 and cov[Zs, Zs+t ] = (b2/2a)e−a|t |;
see also [13, p. 562]. The Ornstein–Uhlenbeck process is the only stationary Gaussian Markov
process.

In Figure 1 we illustrate a ‘standard’ Ornstein–Uhlenbeck process (a = 1, b = √
2) by a

randomly generated realization. The illustrations in Sections 4.1 and 4.3 will be based upon
this realization.

Assume that �(·) is a twice continuously differentiable function. Then it follows from Itô’s
formula that

dλt = [−a�′(Zt )Zt + 1
2b2�′′(Zt )

]
dt + b�′(Zt ) dWt.

4.1. Intensity of the form λt = Z 2
t

Consider �(z) = z2. In Figure 2 we plot the intensity process. The corresponding Cox
process is discussed in [10, pp. 225–228]. In this case we have

dλt = [−2aZ2
t + b2] dt + 2bZt dWt = [−2aλt + b2] dt + 2b

√
λt sgn(Zt ) dWt.

It follows that λ is a Markov process. Equation (2.3) reduces to

1
2b2g′′(z) − azg′(z) − [θ(r) + cr − z2h(r)]g(z) = 0. (4.1)

We tryg(z) = κekz2
for some k < a/b2. The restriction is in order to ensure that E[g(Z0)] < ∞.

From E[g(Z0)] = 1 we find that κ = √
1 − b2k/a. Since

g′(z) = 2zkg(z) and g′′(z) = (4z2k2 + 2k)g(z),

(4.1) reduces to

1
2b2(4z2k2 + 2k) − 2az2k − (θ(r) + cr) + z2h(r) = 0,

−1.0

−0.5

0.0

0.5

1.0
1.5

0 102 4 6 8

Figure 1: Randomly generated Ornstein–Uhlenbeck process with a = 1 and b = √
2.
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0 2 4 6 8

Figure 2: Randomly generated Ornstein–Uhlenbeck intensity with a = 1 and b = √
2.

which implies that

2b2k2 − 2ak + h(r) = 0, (4.2)

b2k = θ(r) + cr.

The solutions to (4.2) are k = a/(2b2) ± √
a2/(4b4) − h(r)/(2b2), corresponding to θ(0) = a

and 0, respectively. Thus, we must have

k = a

2b2 −
√

a2

4b4 − h(r)

2b2 , θ(r) = a − √
a2 − 2b2h(r)

2
− cr,

and

κ =

√√√√1

2
+

√
1

4
− b2h(r)

2a2 .

Standard techniques show that M defined by (2.2) really is a martingale.
Note that k and θ(r) are real only for r ≤ r̃ , where r̃ is the solution to h(r) = a2/2b2. Since

g(z) ≥ κ and k < a/2b2 for all r < r̃ , the ruin estimate goes through without any problems.
We conclude that R exists if a > 2cr̃ .

Let us now consider the process under the measure Q. We have already seen that Z is still
a Markov diffusion process. From (3.1) we find that the generator is

Ãf (z) = −κekz2
az + b22kzκekz2

κekz2 f ′(z) + 1

2
b2f ′′(z) = −(a − 2kb2)zf ′(z) + 1

2
b2f ′′(z).

Hence, under Q, the process Z is an Ornstein–Uhlenbeck process with the same diffusion
coefficient b and drift −√

a2 − 2b2h(r)z. We see that Z will revert to its mean more slowly
than under P if r > 0. The (stationary under Q) drift of the process X under Q is then

c − b2

2
√

a2 − 2b2h(r)
h̃(r)

h′(r)
h̃(r)

= −θ ′(r),

proving the result obtained intuitively in Section 3. Suppose now that R exists. Then, by
convexity, θ ′(R) > 0 and Q{Tu < ∞} = 1. Lundberg’s inequality then becomes

�(u) = EQ

[
1

g(ZTu)
eR(u+XTu)

]
e−Ru < κ−1e−Ru. (4.3)
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In the same way we obtain the two finite-time Lundberg inequalities

�(u, yu) < κ−1e−R(0,y)u (y < y0), (4.4)

�(u) − �(u, yu) < κ−1e−R(y,∞)u (y > y0). (4.5)

Here we write R(y, ∞) to visualise that we let y → ∞ because R(y, y) is independent of y if
y ≥ y0.

Let us now turn to the Cramér–Lundberg approximation. For simplicity, we assume that
θ(r) is well defined for some r > R.

Proposition 4.1. Let Z be an Ornstein–Uhlenbeck process, and let �(z) = z2. Suppose that
θ(r) is well defined for some r > R. There exists a constant C > 0 such that, for any initial
distribution,

lim
u→∞ �(u)eRu = C EP[g(Z0)],

where g(z)ekz2
is normed such that Es

P[g(Z0)] = 1 for the stationary initial distribution.

Proof. It is well known that the Ornstein–Uhlenbeck process is Harris recurrent. We leave
it to the reader to show that the other conditions of Theorem 3.1 are fulfilled.

Since α = E[Z2
t ] = b2/(2a), it is natural to let b2 = 2aα. Then rλ(t) = 2α2e−2a|t | and

σ 2
� = 2α2/a. The realization in Figure 2 corresponds to α = 1 and a = 1.

With this choice of parameters we obtain

θ(r) = a

2

(
1 −

√
1 − 4αh(r)

a

)
− cr,

which is a convex function. We have

θ ′(r) = αh′(r)√
1 − (4αh(r))/a

− c

and, thus, θ ′(0) = αµ − c. Since

a

4α
= h(r̃) ≥ eµr̃ − 1 > µr̃,

we obtain, in the case of a positive safety loading,

θ(r̃) = a

2
− cr̃ >

a

2
− c

a

4αµ
= a

4
(1 − ρ).

Thus, θ(r̃) > 0, at least for ρ ≤ 1, i.e. θ(r) = 0 has a positive solution R and θ(r) < ∞ for
some r > R.

For exponentially distributed claims, we have r̃ = a/(aµ + 4αµ) and θ(r̃) > 0 for ρ <

1 + a/(2α). By routine calculations we obtain

R = a + α(1 + ρ)

2αµ(1 + ρ)

(
1 −

√
1 − 4ραa

(a + α(1 + ρ))2

)
for ρ < 1 + a

2α
.

https://doi.org/10.1239/jap/1318940454 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940454


Ruin probabilities 47

4.2. Intensity of the form λt = m + Z 2
t

Consider �(z) = m + z2. Then (2.3) reduces to

1
2b2g′′(z) − azg′(z) − [θ(r) + cr − mh(r) − z2h(r)]g(z) = 0.

In comparison with (4.1) this just means that θ(r)+cr is replaced by θ(r)+cr −mh(r). Thus,
the same function g(z) works, and the only change is that

θ(r) = mh(r) + a − √
a2 − 2b2h(r)

2
− cr.

Remark 4.1. The risk process X can be written as X1 + X2, where X1 is the process considered
in Section 4.1 and X2 is an independent classical risk process with intensity m. The martingale
M is then of the form M = M1M2, with the Mi being obvious martingales. It then immediately
follows that M is a martingale, and X under Q is the same type of process. The Lundberg
inequalities and the Cramér–Lundberg approximation now readily follow.

Since α = m + b2/(2a), we set m = (1 − p)α and b2 = 2paα, where 0 ≤ p ≤ 1. Then
rλ(t) = 2p2α2e−2a|t | and σ 2

� = 2p2α2/a, and

θ(r) = (1 − p)αh(r) + a

2

(
1 −

√
1 − 4pαh(r)

a

)
− cr.

We have (cf. Section 4.1) θ ′(0) = (1 − p)αh′(0) + pαh′(0) − c = αµ − c. Furthermore, for
h(r̃) = a/(4pα), we obtain

θ(r̃) = (1 − p)a

4p
+ a

2
− cr̃ ≥ (1 − p)a

4p
+ a

2
− c

a

4αµ

(1 − p)a

4p
+ a

4
(1 − ρ).

Thus, θ(r̃) > 0, at least for ρ < 1/p.

4.3. Intensity of the form λt = (m + Zt)
2

Consider the intensity �(z) = (m + z)2. In this case λ is not Markovian. The intensity
process is illustrated in Figures 3 and 4.

Equation (2.3) reduces to

1
2b2g′′(z) − azg′(z) − [θ(r) + cr − (m + z)2h(r)]g(z) = 0. (4.6)

We try g(z) = κek1z+k2z
2

for some k2 < a/b2. Since

g′(z) = (k1 + 2zk2)g(z),

g′′(z) = [(k1 + 2k2z)
2 + 2k2]g(z) = (k2

1 + 2k2 + 4k1k2z + 4k2
2z2)g(z),

(4.6) reduces to

1
2b2(k2

1 + 2k2 + 4k1k2z + 4k2
2z2) − a(k1 + 2zk2)z

− [θ(r) + cr] + m2h(r) + 2mzh(r) + z2h(r)

= [2b2k2
2 − 2ak2 + h(r)]z2 + [2b2k1k2 − ak1 + 2mh(r)]z

+ 1
2b2k2

1 + b2k2 + m2h(r) − [θ(r) + cr]
= 0.
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Figure 3: Randomly generated Ornstein–Uhlenbeck intensity with a = 1 and m = b =
√
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Figure 4: Randomly generated Ornstein–Uhlenbeck intensity with m =
√

1
3 , a = 1, and b = 2/

√
3.

This implies that
2b2k2

2 − 2ak2 + h(r) = 0, (4.7)

2b2k1k2 − ak1 + 2mh(r) = 0,

1
2b2k2

1 + b2k2 + m2h(r) = θ(r) + cr.

Equation (4.7) agrees with (4.2), and we obtain

k2 = a

2b2 −
√

a2

4b4 − h(r)

2b2 , k1 = 2mh(r)√
a2 − 2b2h(r)

,

and

θ(r) = m2h(r) + a − √
a2 − 2b2h(r)

2
+ 2b2m2h2(r)

a2 − 2b2h(r)
− cr.

Note that θ(0) = 0. It turns out that M defined by (2.2) is a martingale.
Let us now consider the process Z under the measure Q. From the generator (3.1) we find

that
Ãf (z) = [b2k1 − (a − 2b2k2)z]f ′(z) + 1

2b2f ′′(z).
Thus, the process {Zt − b2k1/(a − 2k2b

2)} is an Ornstein–Uhlenbeck process. We therefore
obtain the same model as before with the same diffusion coefficient b, drift −(a −2k2b

2)z, and
m̃ = ma2/[a2 − 2b2h(r)]. Here the point to which λ returns is also larger, i.e. the risk process
becomes more dangerous.
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It now follows as in Section 4.1 that the Lundberg inequalities (4.3), (4.4), and (4.5) hold.
In the same way as in Theorem 4.1 we obtain the Cramér–Lundberg approximation.

Proposition 4.2. Let Z be an Ornstein–Uhlenbeck process, and let �(z) = (m+ z)2. Suppose
that θ(r) is well defined for some r > R. There exists a constant C > 0 such that, for any initial
distribution, limu→∞ �(u)eRu = C EP[g(Z0)], where g(z) = κek1z+k2z

2
is normed such that

Es
P[g(Z0)] = 1 for the stationary initial distribution.

Since α = m2 + b2/(2a), we set m2 = (1 − p)α and b2 = 2paα. Then we have

rλ(t) = 4(1 − p)pα2e−a|t | + 2p2α2e−2a|t |, σ 2
� = 8(1 − p)pα2

a
+ 2p2α2

a
,

and

θ(r) = (1 − p)αh(r) + a

2

(
1 −

√
1 − 4pαh(r)

a

)
+ 4(1 − p)pα2h2(r)

a − 4pαh(r)
− cr.

For given values of α and a, the asymptotic variance σ 2
� is maximised by p = 2

3 , while it
equals the m = 0 (or p = 1) case for p = 1

3 . The choice of parameters in Figures 3 and 4
correspond to α = 1, a = 1, and p = 1

3 and 2
3 , respectively.

We have (cf. Section 4.2) θ ′(0) = αµ + 0 − c. For (1 − p)p �= 0, it is seen that θ(r) → ∞
as r ↑ r̃ , and, thus, θ(r) = 0 always has a positive solution. Since g(z) ≥ g(−k1/(2k2)) > 0,
the ruin estimates go through without problems.
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