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Abstract

The authors begin by presenting a brief survey of the various useful methods of solving certain
integral equations of Fredholm type. In particular, they apply the reduction techniques with
a view to inverting a class of generalized hypergeometric integral transforms. This is observed
to lead to an interesting generalization of the work of E. R. Love [9]. The Mellin transform
technique for solving a general Fredholm type integral equation with the familiar //-function
in the kernel is also considered.
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1. Introduction and definitions

Buschman [1] and Erdelyi [2] solved certain integral equations involving
the Legendre functions. Integral equations containing hypergeometric func-
tions in their kernels were considered, among others, by Higgins [6], Love
([8], [9]), Prabhakar [11], and Srivastava and Buschman [15]. (See also Love
et al. [10].) In particular, Love [9] solved a Fredholm type integral equation:

(l.D [T-^rbF(a,b;c;-^)mdt = g{x) (* > 0)
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by certain procedures using fractional calculus. A similar type of integral
equation has also been considered by Prabhakar and Kashyap [12]. Our
purpose in this paper is to present, in some detail, a systematic discussion of
the various methods of solvability of certain interesting cases of the integral
equation:

( L 2 )oc
/°° r'HJfg \A(x/t)m\ fi' aM f(t) dt = g(x) (0 < x < oo),
Jo L \°j> Pjh,Ql

where Hp U [z | . . . ] denotes the familiar //-function of Fox [3, p. 408]
which is defined as a contour integral of Mellin-Barnes type. (For full def-
inition and other related details of this function, see [4] and [16]; see also
Equations (2.2) and (2.3) below.)

The symbolic form (a. , a.), p, used in (1.2) and elsewhere in this paper,
abbreviates the set of parameters

(a,, a , ) , . . . ,{ap,ap), P e N - {1, 2, 3, . . . } ,

the set being empty when P = 0. Also, the Mellin-Barnes contour inte-
gral representing the //-function in (1.2) converges absolutely and defines an
analytic function for

(1.3) \ug(A)\<^nQ,

where
M Q N p

(1.4) « = ! > ; - E fij + Haj- E aj>°-
j=\ j=M+\ j=\ j=N+\

We denote by sf the space of all functions / which are well defined on
R = [0, oo) with the additional constraints that

(i) feV°°(R),
(ii) k<r\

(iii)

Furthermore, we suppose that sf corresponds to the space of good func-
tions (see Lighthill [7, p. 15]) defined on the whole real line (-oo, oo).

The Riemann-Liouville fractional integral (of order ft) is defined by

(1.5) <?-"{/(*)} =O^{/(Z)} = j ^ y j\z - Wf~lf{w) dw

where . ^ { / ( z ) } = <f>{z) is understood to mean that <f> is a locally integrable
solution of f(z) = .Sr~'"{0>(z)}, implying that 311 is the inverse of the
fractional integral operator 3'^. (Whenever necessary, we shall simply
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[3] Integral equations of Fredholm type 3

write 3l~>l for QSS^ for the Riemann-Liouville fractional integral operator
defined by Equation (1.5) above.)

The Weyl fractional integral (of order v ) is defined by

2. Preliminary results

We first prove the following result which will be required in proving
Theorem 1 below.

LEMMA 1. Let

(i) P, Q, M, N be positive integers such that 1 < M < Q and
0<N <P;

(ii) Re(A) > Re(fc); Re[A: + m(bj/Pj)] > 0 (j = 1, . . . , M); m > 0;
(iii) |arg(y4)| < (l/2)7tQ, where Q is given by (1.4).

(2.1)

= t

PROOF. The assertion (2.1) of Lemma 1 is derivable from a more gen-
eral result given by Raina [13, p. 40, Equation (3.3)], which involves the
//-function of two variables (cf. [16]). However, for the convenience of the
interested reader, we present here a direct proof of Lemma 1.

Let co(t) denote the first member of the assertion (2.1). Then, making use
of (1.6) and the definition of the //-function [16, p. 3]:

, . . , TIM,N

(2-2) HpQ

where Sf is a suitable contour of Mellin-Barnes type in the complex s-plane,
and

(2 3)
n i-
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we find that

Assuming the inversion of the order of integration in (2.4) to be permissible
by absolute (and uniform) convergence of the integrals involved above, we
have

<2-5' « "

The inner integral in (2.5) can be evaluated under hypothesis (ii) of Lemma
1, and we obtain

.,, ,. ,,. t~k

(2.6) ^t)

which yields the second member of (2.1) by means of definitions (2.2) and
(2.3).

Finally, the //-functions occurring in (2.1) exist (and are analytic) under
hypotheses (i) and (iii) of Lemma 1, and the Weyl fractional integral on the
left-hand side of (2.1) converges absolutely under hypothesis (ii). Thus the
assertion (2.1) of Lemma 1 holds true as stated already.

Next we apply Lemma 1 to prove an integral relation, involving the
//-function.

THEOREM 1. Under the sufficient conditions (i), (ii), and (iii) of Lemma 1,

f°° -k M,N+l N / v / , V » | ( l - f c » m)> (aj>aj)l,l

(2.7)

/0 " L V^> ^ i i , e

provided further that f e J / a«<3? x > 0.

PROOF. Let / denote the first member of the assertion (2.7) of Theorem
1. Then, by Lemma 1 and the definition (1.6), we have
(2.8)
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The change in the order of integration is assumed to be permissible just as
in the proof of Lemma 1.

Now, by appealing to definition (1.5), (2.8) gives

(2.9) / = ?g\\fy
Jo L \uj >

which is precisely the right-hand member of (2.7). This completes the proof
of Theorem 1.

3. Solution of a hypergeometric form of the integral equation (1.2)

We now search for methods by which we can find the solution of a certain
hypergeometric form of the integral equation (1.2). A formidable method of
inverting (1.2) is to use the reduction technique by means of which a given
integral equation may be reduced to some simpler (and easily invertible)
integral transform with the aid of results derived in the preceding sections.

To this end, we notice immediately that Theorem 1 yields a relationship
expressing a certain generalized hypergeometric transform in terms of a gen-
eralized Stieltjes transform (see, for example, [14, p. 119]). Indeed, we set
aj = 1 (; = 1, . . . , P) and /? = 1 (j = I, ... , Q), and modify the parame-
ters of the //-functions in such a way that use can be made of the relationship
(cf., for example, [16, p. 18]):
(3.1)

IP \ ( i - a . , i ) i n ' = i n a - ) a i > - - - > a p ;
P,Q+l\z\(O n Cl — h \) ~ rrG Ttu \ p Q ~Z

L v"> l) > \ l uj > l)i Q-i I lT_i 1 \b•) u h •
" • / - ' ) ' L y i > ••• > U Q >

on the left-hand side of (2.7), and of the simpler relationship [16, p. 18]:

(1 -X, 1)'

on the right-hand side of (2.7). Thus the following result emerges from
Theorem 1.

COROLLARY 1. Let a, b, and c be complex parameters such that

Re(c) > Re(b) > 0.

Also let meN and f e s/ .
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Then, for all x > 0,

f
0 £

(3.3)

"~ c&b-c{f(t)}rl s {m

where

ii A\ M i\ M A + l X + m-\\
(3.4) A(m;A) = | - , - 7 ; r , . . . , — J J J — ] (m € N).

We are now in a position to explicitly obtain the solution of the integral
equation (3.3) which is a particular (hypergeometric) case of the integral
equation (1.2). Our final result is contained in

THEOREM 2. Let a, b, and c be complex parameters such that

Re(a) > 1 and Re(c) > Re(b) > 0.

Suppose also that m e N and f e sf .
Then, for all x > 0 and g esrf , the integral equation

(3.5)

?e solution given by

(3.6) /(x) = m^-f c { x " " - 1 ^ {(1 +x) Bm LntX*[g{x)]}} ,

where

(3.7) LnlfX^J
PROOF. In view of Corollary 1, we may write (3.5) in the form:

/•oo .am—c
(3.8) T(a)^ {xm + r)a3!b-c{f{t)}dt = g{x).

A slight change in the variable on the left side (or using the linear functional
relationship of Srivastava [14, p. 119]) gives

(3.9) - ^ / —r-m ur(&b~Cf)(tl/m)dt = g(x),
m Jo (x +1)
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where, for convenience, we write [cf. Equation (1.5)]

O.io) (3fb-cf)(ti/m) = afrS {ntl/m)}.

Now apply the following result of Love [9, p. 281]:

(3.U)

where 3>p~ {<p{t)} is assumed to exist, and

is assumed to be locally integrable on the interval [0, oo) for p > 0, q > 0,
and Re(/>) > 1. We thus find from (3.9) that

(3.12) - [°°(x + O " 1 ^ " 1 {ta-lH1-c)/m2>Lc{f(tl/m)}\ dt = g(xl/m).
M JO *• '

By appealing appropriately to Theorem 9 of Widder [18, p. 345] concerning
the inversion of the Stieltjes transform, we get
(3.13)

where g(x1/m) as a function of x is operated upon by Ln x and then x is
replaced by t. The solution (3.6) now follows from (3.13).

For m = 1, Theorem 2 is seen to correspond to a result given by Love [9,
p. 284] under less stringent conditions.

4. Use of other methods

The solution of the integral equation (3.5) can be derived by other methods
also. In fact, a solution of the main integral equation (1.2) involving the
//-function in the kernel is obtainable by resorting to the application of Mellin
transforms (see Gupta and Mittal [5]). Thus, on replacing / by 3lx~ f in
(2.7), and applying (2.1), we have
(4.1)

° \ - k, m), {a , a ), p l ^k-k, , , . . , ,.

Multiplying both sides of (4.1) by xs~l, and integrating with respect to x
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from 0 to oo, we have
(4.2)

-F
Jo-F
Jo

xs g(x)dx

( T xs~XHM'N+x \A(x/t)m\{lk'm)AaJ'aJ)i'p] dx\dt
Jo P + K Q + j j ^ a

where we have assumed the absolute (and uniform) convergence of the inte-
grals involved, with a view to justifying the inversion of the order of integra-
tion.

Now evaluate the inner integral in (4.2) by a simple change of variables,
followed by an appeal to the familiar results (cf., for example, [4] and [16,
p. 15]):

, . , , Z " 0 0 S - I T T M , N \ I ( a , a ) ,

(4.3) / x Hp ' \ z x \ ) J J'i'
Jo L \uj > "jh.

where, for convergence, Q > 0 , |arg(z)| < (l/2)7rQ, and
(4.4) - min{Re(Zy^.)} < Re(s) < min{Re[(l - a,)/^]}

(; = 1 , . . . , M ; / = 1 , . . . , # ) ,

S(s) and Q being given by (2.3) and (1.4), respectively. We thus find from
(4.2) that

j0
dt,

where q>(s) is given by (4.2).
Inverting (4.5) by applying the Mellin inversion theorem [17, p. 46], we

have

(4.6) 3fx-k{f(t)} - %- lim

Operating upon both sides by 3Sk~x , (4.6) gives us

which finally yields

(4.8) f{x)=r^-r\im [e(-s/m)]-ix-sg>(s)ds

as the solution of the integral equation (1.2), provided that the involved
interchange is permissible. The above details may be summarized in
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[9] Integral equations of Fredholm type 9

T H E O R E M 3 . / / f { t ) e sf, 2 f k ~ k { f { t ) } exists, m > 0 , x > 0 , \arg(A)\
< (l/2)7rn, Q > 0 (Q being given by (1.4)), and Re(X) > Re(fc) > 0, then
the solution of the integral equation (4.1) is given by (4.8), provided further
that

(4.9)
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