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1. Notation and outline of the paper.

1.1. Notation. Throughout the paper we shall work over an algebraically
closed field K of characteristic p = 0 or p > 2 and use the basic terminology of
bialgebras A(m|n), general linear supergroups GL(m|n), Schur superalgebras S(m|n)
and superderivations ijD from papers [6, 8]. All modules considered in this paper will
be left modules and all superderivations will be right superderivations. In this paper
we shall only work with G = GL(2|2) and S(2|2) and can therefore describe them in a
down-to-earth fashion as follows.

Start by defining the parity |i| of symbols i = 1, . . . , 4 by |1| = |2| = 0 and
|3| = |4| = 1, and the parity |cij| of an element cij by |cij| = |i| + |j| (mod 2). Elements
of parity 0 will be called even and that of parity 1 will be called odd. Let A = A(2|2)
be a commutative superalgebra freely generated over K by elements cij for 1 ≤ i, j ≤ 4,
where c11, c12, c21, c22, c33, c34, c43 and c44 are even and c13, c14, c23, c24, c31, c32, c41

and c42 are odd. The superalgebra A has a structure of a bialgebra given by co-
multiplication δ : A → A ⊗ A defined as δ(cij) = ∑

k cik ⊗ ckj. The superalgebra A has
a natural grading given by the total degree and is a direct sum A = ⊕r≥0A(2|2, r) of
its homogeneous components A(2|2, r). Each component A(2|2, r) is a coalgebra and
its dual A(2|2, r)∗ is the component S(2|2, r) of degree r of the Schur superalgebra
S(2|2) = ⊕r≥0S(2|2, r). The localization of A(2|2) by elements d12 = c11c22 − c12c21

and d34 = c33c44 − c34c43 is the coordinate superalgebra K [G] of the general linear
supergroup G. The general linear supergroup G is a group functor from the category
SAlgK of commutative superalgebras over K to the category of groups represented by
its coordinate ring K [G], that is G(A) = HomSAlgK (K [G], A) for A ∈ SAlgK . Here for
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g ∈ G(A) and f ∈ K [G] we define f (g) = g(f ). Modules over Schur superalgebra S(2|2)
correspond to polynomial representations of G.

In order to study the structure of G-modules, we will use the superalgebra of
distributions Dist(G) of G described in Section 3 of [3]. Denote Dist1(G) = (K [G]/m2)∗,
where ∗ is the duality HomK (−, K) and m is the kernel of the augmentation map ε of the
Hopf algebra K [G], and by eij the elements of Dist1(G) determined by eij(chk) = δihδjk

and eij(1) = 0. Denote the parity of eij to be sum of parities |i| of i and |j| of j. Then eij

belongs to the Lie superalgebra Lie(G) = (m/m2)∗, which is identified with the general
linear Lie superalgebra gl(m|n). Under this identification eij corresponds to the matrix
unit which has all entries zeroes except the entry at the position (i, j), which is equal to
one. The commutation relations for the matrix units eij are given as

[eab, ecd ] = eadδbc + (−1)(|a|+|b|)(|c|+|d|)ecbδad .

Let U� be the universal enveloping algebra of gl(m|n) over the field of complex
numbers. Then the Kostant �-form U� is generated by elements eij for odd eij, e(r)

ij = er
ij

r!

for even eij and
(eii

r

) = eii(eii−1)...(eii−r+1)
r! for all r > 0.

We will consider all G-modules as left modules and use the terminology of right
superderivations ijD of A(2|2) defined on generators ckl as (ckl)ljD = ckj and (ckl)ijD =
0 for l 
= i. There is a surjective map Dist(G) → S(2|2, r) explicitly described in
Lemma 4.2 of [6]. Composition of this map with the representation S(2|2, r) →
EndK (A(2|2, r)) given by a left action of S(2|2, r) on A(2|2, r) gives a left action
of Dist(G) on A(2|2, r). Under this action, the generators eij, e(t)

ij and
(eii

t

)
of

Dist(G) correspond to jiD, jiD(t) and
(

iiD
t

)
, respectively, where ijD(t) = ijDt

t! and
(

iiD
t

) =
iiD(iiD−1)...(iiD−t+1)

t! – for more details, see Section 4 of [6]. Therefore, the action of
S(2|2, r) on A(2|2, r) is completely determined by right superderivations ijD. While
doing computations, we extend the superderivations ijD of A(2|2) to superderivations
of A(2|2)d = K [G]. Since the simple module LS(2|2)(λ) is included in the costandard
module ∇S(2|2)(λ), which in turn is included in A(2|2, r) (by Proposition 3.1 of [6]), we
conclude that the action of S(2|2, r) on LS(2|2)(λ) is completely determined using the
action of superderivations ijD.

Let Gev � GL(2) × GL(2) be an even supersubgroup of G, Lie(Gev) � gl(2) × gl(2)
be the corresponding Lie algebra of Gev and S = sl(2) × sl(2). Let B be the lower
triangular Borel subsupergroup of G. Fix a dominant weight λ = (λ1, λ2|λ3, λ4) of G,
that is λ1 ≥ λ2 and λ3 ≥ λ4. Following [8], we denote by H0

G(λ) the induced G-module
H0(G/B, Kλ), where Kλ is the one-dimensional (even) B-supermodule corresponding
to the weight λ. Finally, using the restriction of B to Gev, denote by H0

Gev
(λ) the induced

Gev-module corresponding to the weight λ. The induced Gev-module H0
Gev

(λ),
denoted by V , can be identified with the subspace of superalgebra K [c11, c12, c21, c22,

c33, c34, c43, c44] generated by polynomials

dλ2
12ca

11cλ1−λ2−a
12 dλ4

34cb
33cλ3−λ4−b

34 ,

where d = d12 = c11c22 − c12c21, d34 = c33c44 − c34c43 and 0 ≤ a ≤ λ1 − λ2, 0 ≤ b ≤
λ3 − λ4. The induced G-supermodule H0

G(λ) can be described explicitly using the
isomorphism φ : H0

Gev
(λ) ⊗ K [c13, c14, c23, c24] → H0

G(λ) defined in [8, Lemma 5.2, and
p. 163]. This isomorphism φ is given by

φ(d12) = d12, φ(c11) = c11, φ(c12) = c12,

https://doi.org/10.1017/S0017089512000869 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000869


SIMPLE MODULES FOR SCHUR SUPERALGEBRA S(2|2) 697

φ(c13) = c22c13 − c12c23

d
= y13, φ(c14) = c22c14 − c12c24

d
= y14,

φ(c23) = −c21c13 + c11c23

d
= y23, φ(c24) = −c21c14 + c11c24

d
= y24,

φ(c33) = c33 − c31y13 − c32y23 = z1, φ(c34) = c34 − c31y14 − c32y24 = z2

and

φ(d34) = (c33 − c31y13 − c32y23)(c44 − c41y14 − c42y24)

−(c34 − c31y14 − c32y24)(c43 − c41y13 − c42y23) = x.

Then the supermodule H0
G(λ) has a basis

w(a, b, ε13, ε14, ε23, ε24) = dλ2 ca
11cλ1−λ2−a

12 xλ4 zb
1zλ3−λ4−b

2 yε13
13 yε14

14 yε23
23 yε24

24

with a, b as before and ε13, ε14, ε23, ε24 ∈ {0, 1}. The weight of w(a, b, ε13, ε14, ε23, ε24)
is

(λ2 + a − ε13 − ε14, λ1 − a − ε23 − ε24|λ4 + b + ε13 + ε23, λ3 − b + ε14 + ε24).

We shall write va,b for w(a, b, 0, 0, 0, 0) and v = vλ1−λ2,λ3−λ4 . Then v is the highest
vector of the simple G-module L(λ).

1.2. Outline of the paper. We will now explain the basic approach of the paper.
For analogous results for S(2|1) and S(3|1) see [4] and [7].

The basis of our investigation is the description of the Gev-module structure of
H0

G(λ) and its simple submodule L(λ). Although it would be natural to describe the
Gev-module structure using the Lie algebra Lie(Gev) � gl(2) × gl(2), it is easier to work
with modules over the Lie algebra S = sl(2) × sl(2), since the S-weights are described
by only two parameters (instead of four for Lie(Gev)). The structure of Gev-modules
can be easily retrieved once their S-module structure is known. One advantage of
this approach is exhibited in Section 4.1, where we use a certain isomorphism �V of
S-modules.

If the characteristic p of the ground field K is bigger than two, then using the
Steinberg Theorem (see Theorem 4.4 of [5]), it is enough to determine the structure of
the simple S(2|2)-module LS(2|2)(λ) for λ restricted, that is when λ1 − λ2, λ3 − λ4 < p.
If λ is restricted, then the action of even elements e(pr)

ij ∈ Dist(G) for r > 0 on H0
G(λ)

is trivial. Since the Gev-structure of H0
ev(λ) is known, the G-structure of H0

G(λ) is then
determined completely by the action of superderivations ijD.

In Section 1 we compute the action of superderivations ijD on elements in H0
Gev

(λ)
and on elements φ(X12). Furthermore, we define the concept of atypicality of the
weight λ (extending the classical definition of Kac from characteristic zero case).

The module H0
G(λ) decomposes into a direct sum of S-submodules F0(λ) ⊕

F1(λ) ⊕ F2(λ) ⊕ F3(λ) ⊕ F4(λ), where the submodule Fk(λ), which will be called the
k-floor, is given as a K-span of all vectors w(a, b, ε13, ε14, ε23, ε24), where

∑4
i=0 εi4 = k.
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Equivalently, Fk(λ) is spanned by vectors of weights μ = (μ1, μ2|μ3, μ4) such that
k = λ1 + λ2 − μ1 − μ2 = μ3 + μ4 − λ3 − λ4. Clearly, each Fi(λ) is a S-module. Denote
by Y a four-dimensional S-module spanned by elements y13, y14, y23 and y24. Then
F0(λ) = V ,F1(λ) = V ⊗ Y , F2(λ) = V ⊗ (Y ∧ Y ), F3(λ) = V ⊗ (Y ∧ Y ∧ Y ) and
F4(λ) = V ⊗ (Y ∧ Y ∧ Y ∧ Y ). The complete description of the S-module structure
of each floor Fi will be carried out in Sections 2 through 5.

In order to describe LS(2|2)(λ), we will use the Poincaré–Birkhoff–Witt (PBW)
theorem, and corresponding to our choice of the Borel subsupergroup B, we order the
generators of Dist(G) as follows: e(r)

ij for i < j first, followed by
(eii

r

)
and e(r)

ij for i > j, and
then by odd eij, where i > j. The simple module LS(2|2)(λ) is generated by the vector
v. The elements e(r)

ij ∈ Dist(G) for i < j act trivially on v and elements
(eii

r

)
and e(r)

ij
for i > j applied to v generate the module V . Using the previously discussed action
of Dist(G) on A(2|2, r), we conclude that LS(2|2)(λ) is generated by V and its images
under compositions of superderivations ijD for i < j. We can identify these images with
elements of various floors Fk. Since the superderivations ijD supercommute, the maps
φ1 : F1(λ) → F1(λ) given by

va,b ⊗ yij �→ (va,b)ijD,

φ2 : F2(λ) → F2(λ) given by

va,b ⊗ (yi1j1 ∧ yi2j2 ) �→ (va,b)i1j1 Di2j2 D,

φ3 : F3(λ) → F3(λ) given by

va,b ⊗ (yi1j1 ∧ yi2j2 ∧ yi3j3 ) �→ (va,b)i1j1 Di2j2 Di3j3 D,

and φ4 : F4(λ) → F4(λ) given by

va,b ⊗ (y13 ∧ y23 ∧ y14 ∧ y24) �→ (va,b)13D23D14D24D

are well defined. It is easy to check that they are S-morphisms. We will compute images
φ1(F1), φ2(F2), φ3(F3) and φ4(F4) in Sections 2 through 5. These images together with V
constitute the whole module LS(2|2)(λ).

In each Section 2 through 5 we follow this procedure: We first determine primitive
vectors in characteristics zero, then we establish the S-module structure of each floor.
Special care is taken in the cases when either λ1 − λ2 or λ3 − λ4 is equal to p − 2 or
p − 1, since in these cases H0

G(λ) is not semi-simple as an S-module. Afterwards we
compute the S-module structure of the image φk(Fk(λ)).

Finally, in Section 6 we combine the results of preceding sections and determine
the character and dimension of the simple module LS(2|2)(λ).

2. Basic formulas.

2.1. Basic formulas for S(2|2). It is clear that V = H0
Gev

(λ) = L(λ) is an
irreducible S-module if λ is restricted.
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LEMMA 2.1. The action of superderivations 12D, 21D, 13D, 14D, 23D, 24D, 34D
and 43D on elements d, x, c11, c12, y13, y23, y14, y24, z1 and z2 is given in the following
table.

12D 21D 13D 14D 23D 24D 34D 43D
d 0 0 dy13 dy14 dy23 dy24 0 0
x 0 0 xy13 xy14 xy23 xy24 0 0

c11 c12 0 c11y13 + c12y23 c11y14 + c12y24 0 0 0 0
c12 0 c11 0 0 c11y13 + c12y23 c11y14 + c12y24 0 0
y13 0 −y23 0 −y13y14 y13y23 −y23y14 y14 0
y23 −y13 0 y23y13 −y13y24 0 −y23y24 y24 0
y14 0 −y24 −y14y13 0 y13y24 y14y24 0 y13
y24 −y14 0 y23y14 y24y14 −y24y23 0 0 y23
z1 0 0 z1y13 z2y13 z1y23 z2y23 z2 0
z2 0 0 z1y14 z2y14 z1y24 z2y24 0 z1

Proof. It is straightforward computation using the properties (ckl)ijD = δlickj, where
δli is the Kronecker delta, and (ab)ijD = (−1)|ijD||b|(a)ijDb + a(b)ijD, where the symbol
| | denotes the parity. �

As a consequence, we obtain the following fundamental formulas.

LEMMA 2.2.

(va,b)12D = ava−1,b,

(va,b)21D = (λ1 − λ2 − a)va+1,b,

(va,b)13D = (λ2 + λ4 + b + a)va,by13 + ava−1,by23 + (λ3 − λ4 − b)va,b+1y14,

(va,b)14D = (λ2 + λ3 − b + a)va,by14 + ava−1,by24 + bva,b−1y13,

(va,b)23D = (λ1 + λ4 + b − a)va,by23 + (λ1 − λ2 − a)va+1,by13 + (λ3 − λ4 − b)va,b+1y24,

(va,b)24D = (λ1 + λ3 − b − a)va,by24 + (λ1 − λ2 − a)va+1,by14 + bva,b−1y23,

(va,b)34D = bva,b−1,

(va,b)43D = (λ3 − λ4 − b)va,b+1.

Proof. It follows by repeated applications of Lemma 2.1. �
Other identities of interest are

dy13y23 = c13c23, dy14y24 = c14c24, d(y13y24 + y14y23) = c13c24 + c14c23.

2.2. Further notation. The simple S-module of the highest weight μ and the
highest vector w shall be denoted either by L(μ) or L(w) depending on the
circumstances.

Denote λ1 − λ2 = A and λ3 − λ4 = B. Further, denote ω12 = λ1 − λ2, ω34 =
λ3 − λ4, ω13 = λ1 + λ3 + 1, ω14 = λ1 + λ4, ω23 = λ2 + λ3 and ω24 = λ2 + λ4 − 1.

If p = 0, then we shall write δij = 0 if ωij = 0 and δij = 1 otherwise, and δ1
ij = 1 if

ωij = 1 and δ1
ij = 1 otherwise. If p > 2, then we denote δij = 0 if ωij ≡ 0 (mod p) and

δij = 1 otherwise, and δ1
ij = 0 if ωij ≡ 1 (mod p) and δ1

ij = 1 otherwise.

DEFINITION 2.3. A weight λ is called typical if δ13δ14δ23δ24 = 1,
λ is called 13-atypical if δ13 = 0 but δ14δ23δ24 = 1,
λ is called 14-atypical if δ14 = 0 but δ13δ23δ24 = 1,
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λ is called 23-atypical if δ23 = 0 but δ13δ14δ24 = 1,
λ is called 24-atypical if δ24 = 0 but δ13δ14δ23 = 1,
λ is called (13,14)-atypical if δ13 = δ14 = 0 but δ23δ24 = 1,
λ is called (13,23)-atypical if δ13 = δ23 = 0 but δ14δ24 = 1,
λ is called (13,24)-atypical if δ13 = δ24 = 0 but δ14δ23 = 1,
λ is called (14,23)-atypical if δ14 = δ23 = 0 but δ13δ24 = 1,
λ is called (14,24)-atypical if δ14 = δ24 = 0 but δ13δ23 = 1,
λ is called (23,24)-atypical if δ23 = δ24 = 0 but δ13δ14 = 1,
λ is called (13,14,23,24)-atypical if δ13 = δ14 = δ23 = δ24 = 0.

It is easy to see that if p = 0, then every dominant weight λ is either typical,
14-atypical, 23-atypical, 24-atypical or (14,23)-atypical.

If p > 2, then weights of all the above atypical types are possible. In this case
observe the following. If λ is 13-atypical, then B 
≡ p − 1 (mod p). If λ is 23-atypical,
then B 
≡ p − 1 (mod p) and A 
≡ p − 1 (mod p). If λ is 24-atypical, then A 
≡ p − 1
(mod p). If λ is (13, 14)-atypical, then B ≡ p − 1 (mod p) and A 
≡ p − 1 (mod p). If λ

is (13,23)-atypical, then A ≡ p − 1 (mod p) and B 
≡ p − 1 (mod p). If λ is (14,24)-
atypical, then A ≡ p − 1 (mod p) and B 
≡ p − 1 (mod p). If λ is (23,24)-atypical,
then B ≡ p − 1 (mod p) and A 
≡ p − 1 (mod p). If λ is (13, 24)-atypical, then A + B ≡
p − 2 (mod p) and A, B 
≡ p − 1 (mod p). If λ is (14, 23)-atypical, then A ≡ B (mod p)
and A, B 
≡ p − 1 (mod p). If λ is (13,14, 23, 24)-atypical, then A, B ≡ p − 1 (mod p).

Furthermore, denote v ∼ w if and only if both v,w 
= 0 and one of them is a
constant multiple of the other.

3. First floor.

3.1. Characteristic zero. In order to describe V ⊗ Y as an S-module, consider
the following elements:

l1 = vAB ⊗ y23,
l2 = vAB ⊗ y24 − vA,B−1 ⊗ y23,
l3 = vAB ⊗ y13 + vA−1,B ⊗ y23,
l4 = vAB ⊗ y14 + vA−1,B ⊗ y24 − vA,B−1 ⊗ y13 − vA−1,B−1 ⊗ y23.

LEMMA 3.1. The module V ⊗ Y is isomorphic to the direct sum L(l1) ⊕ δ34L(l2) ⊕
δ12L(l3) ⊕ δ12δ34L(l4).

Proof. The vectors l1, l2, l3 and l4 are primitive vectors. A dimension count
completes the argument. �

The image of the first floor under the action of superderivations is given in the
following Proposition.

PROPOSITION 3.2. Let φ1 : V ⊗ Y → V ⊗ Y be a morphism of S-modules given by
v ⊗ yij �→ (v)ijD. Then the image φ1(V ⊗ Y ) ∼= δ23L(l1) ⊕ δ34δ24L(l2) ⊕ δ12δ13L(l3) ⊕
δ12δ34δ14L(l4).

Proof. We compute φ1(l1) = ω23l1, φ1(l2) = ω24l2, φ1(l3) = ω13l3, φ1(l4) = ω14l4,
and the claim follows. �

3.2. Characteristic p. Assume that the weight λ is restricted.
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The question of describing the S-module structure of V ⊗ Y is related to a classical
problem of decomposing the tensor product of a simple module and the natural or
dual of the natural module over the general linear group GL(n). These questions were
studied in [2] in relation to a complete reducibility criterion, primitive vectors and
socles of the tensor products of the above type. In particular, costandard filtrations of
these modules were described in [2, p. 88].

We will only need a description of the tensor product of the simple module with the
natural module for G+ = GL(2). Actually we will only determine its explicit structure
over S+ = sl(2). Assign to a G+-weight λ+ = (λ1, λ2) its corresponding restricted
S+-weight A = λ1 − λ2 < p.

Let V+ be a simple S+-module generated by an element v+
A of the highest

S+-weight A. Then the dimension of V+ is A + 1 and V+ is a span of vectors v+
A−i for

0 ≤ i ≤ A such that (v+
A−i)12D = (A − i)v+

A−i−1, (v+
A−i)21D = iv+

A−i+1, and 12D(pk) and

21D(pk) for k ≥ 1 act trivially.
Denote by W+ the two-dimensional S+-module which is a K-span of

elements w+
1 and w+

−1 for which (w+
1 )21D = 0, (w+

−1)21D = w+
1 , (w+

1 )12D = w+
−1,

(w+
−1)12D = 0, and 12D(pk) and 21D(pk) for k ≥ 1 act trivially.

The following lemma describes the S+-module structure of V+ ⊗ W+. Although
it is a classical result, we include it here for the convenience of the reader.

LEMMA 3.3. The S+-module structure of the module V+ ⊗ W+ is given as follows.
If A = 0, then V+ ⊗ W+ ∼= U+

1 , where U+
1 = 〈u+

1 = v+
A ⊗ w+

1 〉, is a simple
S+-module.

If 0 < A < p − 1, then V+ ⊗ W+ ∼= U+
1 ⊕ U+

2 , where U+
1 is as above and U+

2 =
〈u+

2 = v+
A−1 ⊗ w+

1 − v+
A ⊗ w+

−1〉, is a simple S+-module.
If A = p − 1, then V+ ⊗ W+ has a composition series

U+
3

|
V+ ⊗ W+ = U+

1

|
U+

2

,

where U+
1 , U+

2 as above, and U+
3 = 〈u+

3 = v+
A ⊗ w+

−1〉 is a simple S+-module.

Proof. Since (u+
1 )21D = 0, u+

1 is a primitive vector of the highest weight A + 1. If
A = 0, then dimensions of both V+ ⊗ W+ and U+

1 are equal to 2.
If A > 0, then (u+

2 )21D = 0 shows that u+
2 is a primitive vector of the highest

weight A − 1 and dimension A. Assume 0 < A < p − 1. Then the dimension of U+
1

is A + 2, and the dimensions of U+
1 and U+

2 add up to the dimension of V+ ⊗ W+.
Since (u+

1 )12D 
∼ u+
2 , Ext1

S+ (U+
1 , U+

2 ) = 0, and the S+-module structure of V+ ⊗ W+

follows.
Assume now A = p − 1. Then (u+

3 )21D = u+
1 shows that u+

3 is a primitive vector of
weight A − 1 and dimension p − 2. The vector u+

1 is primitive of weight p and L(u+
1 )

has dimension 2 (and is spanned by u+
1 and (u+

1 )12D(p)). Since u+
2 is a primitive vector

of weight A − 1 and dimension p − 2, dimensions of U+
1 , U+

2 and U+
3 add up to the

dimension of V+ ⊗ W+. Finally, (u+
1 )12D = −u+

2 implies that the S+-module structure
of V+ ⊗ W+ is as stated. �
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The even supergroup Gev of G is a product of two copies of GL(2), the first
copy (based on letters 1 and 2) can be be identified with G+ and we can denote the
second copy (based on letters 3 and 4) by G−. Assign to a G−-weight λ− = (λ3, λ4) its
corresponding restricted S− = sl(2)-weight B = λ3 − λ4 < p. Then we can define V−

and W− analogously to V+ and W+ and obtain the following analogous result for the
S−-module structure of V− ⊗ W−.

LEMMA 3.4. The S−-module structure of the module V− ⊗ W− is given as follows.
If B = 0, then V− ⊗ W− ∼= U−

1 , where U−
1 = 〈u−

1 = v−
B ⊗ w−

1 〉, is a simple S−-
module.

If 0 < B < p − 1, then V− ⊗ W− ∼= U−
1 ⊕ U−

2 , where U−
1 as above and U−

2 =
〈u−

2 = v−
B−1 ⊗ w−

1 − v−
B ⊗ w−

−1〉, is a simple S−-module.
If B = p − 1, then V− ⊗ W− has a composition series

U−
3
|

V− ⊗ W− = U−
1
|

U−
2

,

where U−
1 , U−

2 as above, and U−
3 = 〈u−

3 = v−
B ⊗ w−

−1〉 is a simple S−-module.

Now we are ready to describe the S-module structure of the first floor.

PROPOSITION 3.5. The S-module V ⊗ Y is described as follows.
(1) If A, B < p − 1, then V ⊗ Y ∼= L(l1) ⊕ δ34L(l2) ⊕ δ12L(l3) ⊕ δ12δ34L(l4).
(2) If A = p − 1 and B < p − 1, then V ⊗ Y ∼= L5 ⊕ δ34L6. Here the indecompo-

sable module L5 is given as

L(l5)
|

L5 = L(l1)
|

L(l3)

,

where l5 = vA,B ⊗ y13. The indecomposable module L6 is given as

L(l6)
|

L6 = L(l2)
|

L(l4)

,

where l6 = −vA,B−1 ⊗ y13 + vA,B ⊗ y14.
(3) If A < p − 1 and B = p − 1, then V ⊗ Y ∼= L7 ⊕ δ12L8. Here the indecompo-

sable module L7 is given as

L(l7)
|

L7 = L(l1)
|

L(l2)

,
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where l7 = vA,B ⊗ y24. The indecomposable module module L8 is given as

L(l8)
|

L8 = L(l3)
|

L(l4)

,

where l8 = vA−1,B ⊗ y24 + vA,B ⊗ y14.
(4) If A = B = p − 1, then V ⊗ Y ∼= L9 has the composition series

L(l9)
� �

L(l5) L(l7)
� � � �

L(l6) L(l1) L(l8)
� � � �

L(l2) L(l3)
� �

L(l4)

of simple S-modules, where l9 = vA,B ⊗ y14.

Proof. There is an isomorphism of S-modules W+ ⊗ W− and Y which sends
w+

1 ⊗ w−
1 �→ y23, w+

1 ⊗ w−
−1 �→ y24, w+

−1 ⊗ w−
1 �→ −y13 and w+

−1 ⊗ w−
−1 �→ −y14.

For an S-module V of the highest weight (A, B) there is an isomorphism V ∼=
V+ ⊗ V−, where V+ and V− are defined as above.

The claim follows from Lemmas 3.3 and 3.4 using the standard properties of tensor
products. �

3.3. Image under φ1. The structure of the S-module φ1(V ⊗ Y ) is given as follows.

PROPOSITION 3.6. The following statements describe S-modules isomorphic to
V1 = φ1(V ⊗ Y ).

If A, B < p − 1, then V1
∼= δ23L(l1) ⊕ δ34δ24L(l2) ⊕ δ12δ13L(l3) ⊕ δ12δ34δ14L(l4).

Assume A = p − 1 and B < p − 1. If λ is typical, then V1
∼= V ⊗ Y . If λ is (13, 23)-

atypical, then V1
∼= L(l3) ⊕ δ34L6. If λ is (14, 24)-atypical, then V1

∼= L5 ⊕ δ34L(l4).
Assume A < p − 1 and B = p − 1. If λ is typical, then V1

∼= V ⊗ Y . If λ is (13, 14)-
atypical, then V1

∼= L7 ⊕ δ12L(l4). If λ is (23, 24)-atypical, then V1
∼= L(l2) ⊕ δ12L8.

Assume A = B = p − 1. If λ typical, then V1
∼= V ⊗ Y . If λ is (13, 14, 23, 24)-

atypical, then V1
∼=

L(−l6 + l8)
� �

L10 = L(l2) L(l3)
� �

L(l4)

.

https://doi.org/10.1017/S0017089512000869 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000869


704 A. N. GRISHKOV AND F. MARKO

Proof. Assume first that A, B < p − 1. The images of generators l1, l2, l3 and l4 of
V ⊗ Y were determined earlier. The image V1

∼= δ23L(l1) ⊕ δ34δ24L(l2) ⊕ δ12δ13L(l3) ⊕
δ12δ34δ14L(l4) as in the characteristic zero case.

Next assume that A = p − 1 and B < p − 1. The images of additional primitive
vectors under φ1 equal φ1(l5) = ω13l5 − l3 and φ1(l6) = ω14l6 − l4. The structure of V1

follows.
Now assume that A < p − 1 and B = p − 1. Then the images of additional

primitive vectors under φ1 equal φ1(l7) = ω24l7 + l2 and φ1(l8) = ω14l8 + l4. The
structure of V1 follows.

Finally, assume that A = B = p − 1. We compute first the image of the generator l9
under φ1 as φ1(l9) = ω14l9 − l8 + l6. If λ is typical, then φ1(V ⊗ Y ) ∼= V ⊗ Y . If λ is
(13, 14, 23, 24)-atypical, then φ1(l5) = −l3, φ1(l7) = l2, φ1(l6) = −l4, φ1(l8) = l4, and the
images of the remaining elements li vanish. In this case V1 is an indecomposable module
generated by −l6 + l8 = vA,B−1 ⊗ y13 + vA−1,B ⊗ y24 that has the structure described
in the statement of the proposition. �

4. Second floor.

4.1. Characteristic zero. The S-module Y ∧ Y is a direct sum of two irreducible
modules Y1 = 〈y23 ∧ y24〉 and Y2 = 〈y23 ∧ y13〉.

Consider the following elements:
m1 = vAB ⊗ y23 ∧ y24,
m2 = −2vA−1,B ⊗ y23 ∧ y24 − vAB ⊗ y13 ∧ y24 + vAB ⊗ y14 ∧ y23 and
m3 = vA−2,B ⊗ y23 ∧ y24 + vA−1,B ⊗ y13 ∧ y24 − vA−1,B ⊗ y14 ∧ y23 + vAB ⊗

y13 ∧ y14,
n1 = vAB ⊗ y13 ∧ y23,
n2 = 2vA,B−1 ⊗ y13 ∧ y23 − vAB ⊗ y13 ∧ y24 − vAB ⊗ y14 ∧ y23 and
n3 = vA,B−2 ⊗ y13 ∧ y23 − vA,B−1 ⊗ y13 ∧ y24 − vA,B−1 ⊗ y14 ∧ y23 + vAB ⊗

y14 ∧ y24.

LEMMA 4.1. The module V ⊗ (Y ∧ Y ) is isomorphic to the direct sum L(m1) ⊕
L(n1) ⊕ δ12L(m2) ⊕ δ34L(n2) ⊕ δ12δ

1
12L(m3) ⊕ δ34δ

1
34L(n3).

Proof. The action of 34D, and 43D on V ⊗ Y1 is given by (va,b ⊗ y1)34D =
bva,b−1 ⊗ y1 and (va,b ⊗ y1)43D = (λ3 − λ4 − b)va,b+1 ⊗ y1 for any y1 ∈ Y1. The action
of 12D, and 21D on V ⊗ Y2 is given by (va,b ⊗ y2)12D = ava−1,b ⊗ y2 and (va,b ⊗
y2)21D = (λ1 − λ2 − a)va+1,b ⊗ y2 for any y2 ∈ Y2.

Since the vectors m1, m2 and m3 are primitive, the dimension count gives
that the module V ⊗ Y1 is a direct sum of simple modules L(m1) ⊕ δ12L(m2) ⊕
δ12δ

1
12L(m3). Analogously, since the vectors n1, n2 and n3 are primitive, the

dimension count gives that the module V ⊗ Y2 is a direct sum of simple
modules L(n1) ⊕ δ34L(n2) ⊕ δ34δ

1
34L(n3). Therefore, V ⊗ (Y ∧ Y ) ∼= L(m1) ⊕ L(n1) ⊕

δ12L(m2) ⊕ δ34L(n2) ⊕ δ12δ
1
12L(m3) ⊕ δ34δ

1
34L(n3). �

If t, s > 0, then L(m2) ∼= L(n2) ∼= L(λ13,24). We shall denote the simple module
L(λ13,24) by L.

LEMMA 4.2. The S-morphism φ2 is described completely by images of generating
vectors

φ2(m1) = ω23ω24m1,
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φ2(n1) = ω13ω23n1,

φ2(m2) = [
(λ2 + λ3 + 1)(λ2 + λ4) + (λ1−λ2)(2λ2+λ3+λ4)

2

]
m2 − (λ3−λ4)(2+λ1−λ2)

2 n2,

φ2(n2) = − (λ1−λ2)(2+λ3−λ4)
2 m2 + [

(λ2 + λ3 − 1)(λ1 + λ3) − (λ3−λ4)(λ1+λ2+2λ3)
2

]
n2,

φ2(m3) = ω13ω14m3,

φ2(n3) = ω14ω24n3.

Proof. It is a straightforward computation. �
LEMMA 4.3. The image φ2(m2) vanishes if and only if ω23ω13 = 0 and s = 0. The

image φ2(n2) vanishes if and only if ω23ω24 = 0 and t = 0.
If s, t > 0 and ω13ω14ω23ω24 = 0, then φ2(m2) ∼ φ2(n2).

Proof. Lemma 4.2 shows that φ2(m2) = 0 implies s = 0, and φ2(n2) = 0 implies
t = 0. It is easy to verify that φ2(m2) = ω23ω13m2 for s = 0 and φ2(n2) = ω23ω24m2 for
t = 0.

If s, t > 0, then the restriction φ̃2 of the map φ2 to the two-dimensional space of
primitive vectors 〈m2, n2〉 of weight μ is represented by a matrix(

(λ2 + λ3 + 1)(λ2 + λ4) + (λ1−λ2)(2λ2+λ3+λ4)
2

−(λ1−λ2)(2+λ3−λ4)
2−(λ3−λ4)(2+λ1−λ2)

2 (λ2 + λ3 − 1)(λ1 + λ3) − (λ3−λ4)(λ1+λ2+2λ3)
2

)
.

The determinant of this matrix is ω13ω14ω23ω24 and our claim follows. �
PROPOSITION 4.4. The image φ2(V ⊗ Y ∧ Y ) ∼= δ23δ24L(m1) ⊕ δ13δ23L(n1) ⊕ δ12δ

1
12

δ13δ14L(m3) ⊕ δ34δ
1
34δ14δ24L(n3) ⊕ Z, where

Z ∼= L ⊕ L if ω13ω14ω23ω24 
= 0;
Z ∼= L if ω13ω14ω23ω24 = 0 and one of the following conditions is satisfied:
�s, t > 0,
� t = 0, s > 0 and ω23ω24 
= 0 and
� s = 0, t > 0 and ω23ω13 
= 0;
and Z ∼= 0 if one of the following conditions is satisfied:
� t = 0, s > 0 and ω23ω24 = 0,
� s = 0, t > 0 and ω23ω13 = 0 and
� s = t = 0.

Proof. It follows from Lemmas 4.2 and 4.3. �

4.2. Characteristic p. Assume that the weight λ is restricted.
As in the case of characteristic zero, we also have that the S-module Y ∧ Y is a

direct sum of two irreducible S-modules Y1 = 〈y23 ∧ y24〉 and Y2 = 〈y23 ∧ y13〉.
We shall determine the S-module structures of V ⊗ Y1 and V ⊗ Y2 first and

then combine them. Since S− acts trivially on V ⊗ Y1 and S+ acts trivially on
V ⊗ Y2, instead of S-modules we shall deal with appropriate sl(2)-modules and the
computations shall become easier.

4.2.1. Module V ⊗ Y1. Define the elements m4 = vA,B ⊗ (y13 ∧ y24 − y14 ∧ y13)
and m5 = − 1

2vA−2,B ⊗ (y23 ∧ y24) + vA,B ⊗ (y13 ∧ y14).

LEMMA 4.5. The S-module structure of the module V ⊗ Y1 is given
(1) If as follows: A < p − 2, then V ⊗ Y1

∼= L(m1) ⊕ δ12L(m2) ⊕ δ12δ
1
12L(m3).
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(2) If A = p − 2, then V ⊗ Y1
∼= M4 ⊕ δ1

12L(m3), where the S-module M4 has the
composition series

L(m4)
|

M4 = L(m1)
|

L(m2)

.

(3) If A = p − 1, then V ⊗ Y1
∼= M5 ⊕ L(m2), where the S-module M5 has the

composition series

L(m5)
|

M5 = L(m1)
|

L(m3)

.

Proof. Since (m1)21D = (m2)21D = (m3)21D = 0, we obtain that the vectors m1, m2

and m3 are primitive, of the highest S+-weights A + 2,A and A − 2 respectively.
To find possible extension between L(m1), L(m2) and L(m3), we compute that

(m2)12D 
∼ m3; (m1)12D ∼ m2 if and only if A = p − 2; and (m1)12D2 ∼ m3 if and only
if A = p − 1.

If A < p − 2, the dimensions of modules L(m1), L(m2) and L(m3) are (A + 3)
(B + 1), (A + 1)(B + 1) and (A − 1)(B + 1) respectively. Since (A + 3) + δ12(A + 1) +
δ12δ

1
12(A − 1) = 3(A + 1), the dimension of the module L(m1) ⊕ δ12L(m2) ⊕

δ12δ
1
12L(m3) is the same as the dimension of V ⊗ Y1. Since there are no extensions

between L(m1), L(m2) and L(m3), part (1) follows.
If A = p − 2, then (m4)21D = −2m1 shows that the vector m4 is a primitive vector of

the highest S+-weight A. Since L(m1) has dimension 2(B + 1), L(m2) and L(m4) have di-
mensions (p − 1)(B + 1), and if A 
= 1, then L(m3) has dimension (p − 3)(B + 1); the di-
mensions of these modules add up to the dimension of V ⊗ Y1. Since (m4)21D = −2m1

and (m1)12D = m2, and (m4)12D 
∼ m3 and (m2)12D 
∼ m3, we infer the S-module
structure of the module V ⊗ Y1.

If A = p − 1, then (m5)21D2 = m1 shows that the vector m5 is a primitive vector
of the highest S+-weight A − 2. Since the dimensions of the modules L(m1), L(m2),
L(m3) and L(m5) are 4(B + 1), p(B + 1), (p − 2)(B + 1) and (p − 2)(B + 1), respectively,
they add up to the dimension of V ⊗ Y1. Since (m5)21D2 = m1, (m1)12D2 = 2m3, and
(m1)12D 
∼ m2, we infer the S-submodule structure of the module V ⊗ Y1. �

4.2.2. Module V ⊗ Y2. Define the elements n4 = vA,B ⊗ (y13 ∧ y24 + y14 ∧ y23)
and n5 = − 1

2vA,B−2 ⊗ y13 ∧ y23 + vA,B ⊗ y14 ∧ y24.

LEMMA 4.6. The S-module structure of the module V ⊗ Y2 is given as follows:
(1) If B < p − 2, then V ⊗ Y2

∼= L(n1) ⊕ δ34L(n2) ⊕ δ34δ
1
34L(n3).
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(2) If B = p − 2, then V ⊗ Y2
∼= N4 ⊕ δ1

34L(n3), where the S-module N4 has the
composition series

L(n4)
|

N4 = L(n1)
|

L(n2)

.

(3) If B = p − 1, then V ⊗ Y2
∼= N5 ⊕ L(n2), where the S-module N5 has the

composition series

L(n5)
|

N5 = L(n1)
|

L(n3)

.

Proof. It is symmetric to the proof of Lemma 4.5. �

4.2.3. V ⊗ (Y ∧ Y ). Combining the descriptions of V ⊗ Y1 and V ⊗ Y2 we get
the following.

PROPOSITION 4.7. The S-module V ⊗ (Y ∧ Y ) is isomorphic to
(1) Case 0 < A, B < p − 2
L(m1) ⊕ L(n1) ⊕ L(m2) ⊕ L(n2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3).

(2) Case A = 0, 0 < B < p − 2
L(m1) ⊕ L(n1) ⊕ L(n2) ⊕ δ1

34L(n3).
(3) Case 0 < A < p − 2, B = 0
L(m1) ⊕ L(n1) ⊕ L(m2) ⊕ δ1

12L(m3).
(4) Case A = B = 0
L(m1) ⊕ L(n1).
(5) Case A = p − 2, 0 < B < p − 2
M4 ⊕ L(n1) ⊕ L(n2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3).

(6) Case A = p − 2, B = 0
M4 ⊕ L(n1) ⊕ δ1

12L(m3).
(7) Case 0 < A < p − 2, B = p − 2
L(m1) ⊕ N4 ⊕ L(m2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3).

(8) Case A = 0, B = p − 2
L(m1) ⊕ N4 ⊕ δ1

34L(n3).
(9) Case A = B = p − 2
M4 ⊕ N4 ⊕ δ1

12L(m3) ⊕ δ1
34L(n3).

(10) Case A = p − 1, 0 < B < p − 2
M5 ⊕ L(n1) ⊕ L(m2) ⊕ L(n2) ⊕ δ1

34L(n3).
(11) Case A = p − 1, B = 0
M5 ⊕ L(n1) ⊕ L(m2).
(12) Case 0 < A < p − 2, B = p − 1
L(m1) ⊕ N5 ⊕ L(m2) ⊕ L(n2) ⊕ δ1

12L(m3).
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(13) Case A = 0, B = p − 1
L(m1) ⊕ N5 ⊕ L(n2).
(14) Case A = p − 1, B = p − 2
M5 ⊕ N4 ⊕ L(m2) ⊕ δ1

34L(n3).
(15) Case A = p − 2, B = p − 1
M4 ⊕ N5 ⊕ L(n2) ⊕ δ1

12L(m3).
(16) Case A = B = p − 1
M5 ⊕ N5 ⊕ L(m2) ⊕ L(n2).

Proof. Combine Lemmas 4.5 and 4.6. �
The reason why we split the above Proposition into 16 cases instead of nine is to

prepare for its application in the next section.

4.3. Image under φ2. We shall analyse the modules φ2(V ⊗ Y1) and φ2(V ⊗ Y2)
first, and then determine φ2(V ⊗ (Y ∧ Y )).

The starting point is Lemma 4.2, which holds in positive characteristic as well.
Lemma 4.3 is modified as follows.

LEMMA 4.8. If ω23ω13 = 0 and B = 0, then φ2(m2) = 0. If ω23ω13 = 0 and B =
p − 2, then φ2(n2) = 0. If ω23ω24 = 0 and A = 0, then φ2(n2) = 0. If ω23ω24 = 0 and
A = p − 2, then φ2(m2) = 0.

In all other cases, when defined, the images φ2(m2) and φ2(n2) are non-zero, and if
A, B > 0 and ω13ω14ω23ω24 = 0, then φ2(m2) ∼ φ2(n2).

Proof. Lemma 4.2 shows that φ2(m2) = 0 implies A = p − 2 or B = 0, and
φ2(n2) = 0 implies A = 0 or B = p − 2. It is easy to verify that φ2(m2) = ω23ω13m2 for
B = 0, φ2(n2) = ω23ω13n2 for B = p − 2, φ2(n2) = ω23ω24m2 for A = 0, and φ2(m2) =
ω23ω24m2 for A = p − 2.

The remaining arguments are as in Lemma 4.3. �
For computation of φ2(V ⊗ Y1) and φ2(V ⊗ Y2) we shall use Lemmas 4.2 and 4.8

repeatedly.
To combine both φ2(V ⊗ Y1) and φ2(V ⊗ Y2) we shall need the following lemma.
Denote a K-span of φ2(m2) and φ2(n2) by X .

LEMMA 4.9. The dimension of the space X is described as follows:
dimX = 2 if and only if ω13ω14ω23ω24 
= 0;
dimX = 1 if and only if ω13ω14ω23ω24 = 0 and one of the following conditions is

satisfied:
� A, B > 0,
� A = 0, B > 0 and ω23ω24 
= 0,
� A > 0, B = 0 and ω23ω13 
= 0; and
dimX = 0 if and only if one of the following conditions is satisfied:
� A = 0, B > 0 and ω23ω24 = 0,
� A > 0, B = 0 and ω23ω13 = 0 and
� A = B = 0

Proof. Use Lemmas 4.2 and 4.8. �
If φ2(M) ∼= M and L(φ2(w)) ∼= L(w), then we shall denote M = φ2(M) and w =

φ2(w) respectively.
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4.3.1. Module φ2(V ⊗ Y1). We shall need the following lemma, a part of which
shall be useful for the determination of φ2(V ⊗ (Y ∧ Y )).

LEMMA 4.10. If A = p − 2 and ω24 = 0, then φ2(m4) = φ2(n2) 
= 0.
Assume A = p − 2 and ω23 = 0. If B 
= 0, p − 2, then φ2(m4) ∼ φ2(n2). If B = 0,

then φ2(m4) = 0 and φ2(n2) 
= 0. If B = p − 2, then φ2(m4) 
= 0 and φ2(n2) = 0.

Proof. If ω24 = 0, then φ2(m4) = (2 + B)m2 − Bn2 = φ2(n2).
If ω23 = 0, then φ2(m4) = −B(m2 + n2) and φ2(n2) = (B + 2)(m2 + n2). �

The structure of the S-module φ2(V ⊗ Y1) is given as follows.

PROPOSITION 4.11. The following statements describe S-modules isomorphic to
V21 = φ2(V ⊗ Y1).

Assume A < p − 2.
If λ is typical, then V21

∼= L(m1) ⊕ δ12L(m2) ⊕ δ12δ
1
12L(m3).

If λ is 13-atypical, then V21
∼= L(m1) ⊕ δ12δ34L(m2).

If λ is 14- or (13, 14)-atypical, then V21
∼= L(m1) ⊕ δ12L(m2).

If λ is 23-atypical, then V21
∼= δ12δ34L(m2) ⊕ δ12δ

1
12L(m3).

If λ is 24- or (23, 24)-atypical, then V21
∼= δ12L(m2) ⊕ δ12δ

1
12L(m3).

If λ is (13, 24)-atypical or (14, 23)-atypical, then V21
∼= δ12δ34L(m2).

Assume now A = p − 2.
If λ is typical, then V21

∼= M4 ⊕ δ1
12L(m3).

If λ is 13-, 14- or (13, 14)-atypical, then V21
∼= M4.

If λ is 24- or (23, 24)-atypical, then V21
∼= L((B + 2)m2 − Bn2) ⊕ δ1

12L(m3).
If λ is (13, 24)-atypical, then V21

∼= L((B + 2)m2 − Bn2).
If λ is 23-atypical, then V21

∼= δ34L(m2 + n2) ⊕ δ1
12L(m3).

If λ is (14, 23)-atypical, then V21
∼= L(m2 + n2).

Finally, assume A = p − 1.
If λ is typical, then V21

∼= M5 ⊕ L(m2).
If λ is (13, 23)-atypical and B 
= 0, then V21

∼= L(m5) ⊕ L(m2).
If λ is (13, 23)-atypical and B = 0, then V21

∼= L(m5).
If λ is (14, 24)-atypical, then V21

∼= L(m5) ⊕ L(m2).
If λ is (13, 14, 23, 24)-atypical, then V21

∼= L(m2).

Proof. If A < p − 2, then V ⊗ Y1 is semi-simple by the first part of Proposition
4.5 and the highest weights of primitive vectors are pairwise different. Therefore, it is
enough to determine whether the images of these primitive vectors under φ2 vanish or
not, and this follows from Lemmas 4.2 and 4.8.

For A = p − 2, we use the second part of Proposition 4.5. Since L(m2) is the S-socle
of M4, Lemma 4.8 shows that φ2(M4) ∼= M4, provided ω23ω24 
= 0. If ω23ω24 = 0, then
using Lemma 4.2 we infer φ2(m1) = 0, and therefore φ2(M4) ∼= φ2(L(m4)). Lemma 4.10
determines φ2(m4) and Lemma 4.2 concludes the proof in the case A = p − 2.

Now assume that A = p − 1. If λ is typical, then Lemma 4.2 shows that
φ2(V21) ∼= V21. Assume now λ is not typical, then ω13 = ω23 and ω14 = ω24 which
implies ω23ω24 = 0. Since φ2(m1) = ω23ω24m1, using the third part of Proposition 4.5 we
conclude φ2(M5) ∼= φ2(L(m5)). We verify that ω23 = 0 implies φ2(m5) = (B + 1)m3 and
ω24 = 0 implies φ2(m5) = −(B + 1)m3. Therefore, φ2(m5) = 0 if and only if B = p − 1.
Lemma 4.2 concludes the proof. �
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4.3.2. Module φ2(V ⊗ Y2). We shall need the following lemma, a part of which
shall be useful for the determination of φ2(V ⊗ (Y ∧ Y )).

LEMMA 4.12. If B = p − 2 and ω13 = 0, then φ2(n4) = φ2(m2) 
= 0.
Assume B = p − 2 and ω23 = 0. If A 
= 0, p − 2, then φ2(n4) ∼ φ2(m2). If A = 0,

then φ2(n4) = 0 and φ2(m2) 
= 0. If A = p − 2, then φ2(n4) 
= 0 and φ2(m2) = 0.

Proof. If ω13 = 0, then φ2(n4) = −Am2 + (2 + A)n2 = φ2(m2).
If ω23 = 0, then φ2(n4) = −A(m2 + n2) and φ2(m2) = (2 + A)(m2 + n2). �

The structure of the S-module φ2(V ⊗ Y2) is given as follows.

PROPOSITION 4.13. The following statements describe S-modules isomorphic to
V22 = φ2(V ⊗ Y2).

Assume B < p − 2.
If λ is typical, then V22

∼= L(n1) ⊕ δ34L(n2) ⊕ δ34δ
1
34L(n3).

If λ is 14- or (14, 24)-atypical, then V22
∼= L(n1) ⊕ δ34L(n2).

If λ is λ is 24-atypical, then V22
∼= L(n1) ⊕ δ12δ34L(n2).

If λ is 13- or (13, 23)-atypical, then V22
∼= δ34L(n2) ⊕ δ34δ

1
34L(n3).

If λ is 23-atypical, then V22
∼= δ12δ34L(n2) ⊕ δ34δ

1
34L(n3).

If λ is (13, 24)-atypical or (14, 23)-atypical, then V22
∼= δ12δ34L(n2).

Assume now B = p − 2.
If λ is typical, then V22

∼= N4 ⊕ δ1
34L(n3).

If λ is 14- or 24- or (14, 24)-atypical, then V22
∼= N4.

If λ is 13- or (13, 23)-atypical, then V22
∼= L(−Am2 + (2 + A)n2) ⊕ δ1

34L(n3).
If λ is (13, 24)-atypical, then V22

∼= L(−Am2 + (2 + A)n2).
If λ is 23-atypical, then V22

∼= δ12L(m2 + n2) ⊕ δ1
34L(n3).

If λ is (14, 23)-atypical, then V22
∼= L(m2 + n2).

Finally, assume B = p − 1.
If λ is typical, then V22

∼= N5 ⊕ L(n2).
If λ is (23, 24)-atypical and A 
= 0, then V22

∼= L(n5) ⊕ L(n2).
If λ is (23, 24)-atypical and A = 0, then V22

∼= L(n5).
If λ is (13, 14)-atypical, then V22

∼= L(n5) ⊕ L(n2).
If λ is (13, 14, 23, 24)-atypical, then V22

∼= L(n2).

Proof. The proof is analogous to the proof of Proposition 4.11 and uses the
following identities. If B = p − 1 and ω13 = 0, then φ2(n5) = −(A + 1)n3. If B = p − 1
and ω23 = 0, then φ2(n5) = (A + 1)n3. �

4.3.3. Module φ2(V ⊗ (Y ∧ Y )). Now we shall determine φ2(V ⊗ (Y ∧ Y )).

PROPOSITION 4.14. The S-module V2 = φ2(V ⊗ (Y ∧ Y )) is isomorphic to the
following modules:

(1) Case 0 < A, B < p − 2
� L(m1) ⊕ L(n1) ⊕ L(m2) ⊕ L(n2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3), if λ is typical,

� L(m1) ⊕ L(m2) ⊕ δ1
34L(n3), if λ is 13-atypical,

� L(m1) ⊕ L(n1) ⊕ L(m2), if λ is 14-atypical,
� L(m2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3), if λ is 23-atypical,

� L(n1) ⊕ L(m2) ⊕ δ1
12L(m3), if λ is 24-atypical,

� L(m2), if λ is (13, 24)-atypical or (14, 23)-atypical.
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(2) Case A = 0, 0 < B < p − 2
� L(m1) ⊕ L(n1) ⊕ L(n2) ⊕ δ1

34L(n3), if λ is typical,
� L(m1) ⊕ L(n2) ⊕ δ1

34L(n3), if λ is 13-atypical,
� L(m1) ⊕ L(n1) ⊕ L(n2), if λ is 14-atypical,
� δ1

34L(n3), if λ is 23-atypical,
� L(n1), if λ is 24-atypical.
(3) Case 0 < A < p − 2, B = 0
� L(m1) ⊕ L(n1) ⊕ L(m2) ⊕ δ1

12L(m3), if λ is typical,
� L(m1), if λ is 13-atypical,
� L(m1) ⊕ L(n1) ⊕ L(m2), if λ is 14-atypical,
� δ1

12L(m3), if λ is 23-atypical,
� L(m2) ⊕ L(n1) ⊕ δ1

12L(m3), if λ is 24-atypical.
(4) Case A = B = 0
� L(m1) ⊕ L(n1), if λ is typical,
� L(m1), if λ is 13-atypical,
� L(n1), if λ is 24-atypical,
� 0, if λ is (14, 23)-atypical.
(5) Case A = p − 2, 0 < B < p − 2
� M4 ⊕ L(n1) ⊕ L(n2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3), if λ is typical,

� M4 ⊕ δ1
34L(n3), if λ is 13-atypical,

� L(n1) ⊕ M4, if λ is 14-atypical,
� L(m2 + n2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3), if λ is 23-atypical,

� L(n1) ⊕ L((B + 2)m2 − Bn2) ⊕ δ1
12L(m3), if λ is 24-atypical.

(6) Case A = p − 2, B = 0
� M4 ⊕ L(n1) ⊕ δ1

12L(m3), if λ is typical,
� L(n1) ⊕ M4, if λ is 14-atypical,
� δ1

12L(m3), if λ is 23-atypical,
� L(m2), if λ is (13, 24)-atypical.
(7) Case 0 < A < p − 2, B = p − 2
� L(m1) ⊕ N4 ⊕ L(m2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3), if λ is typical,

� L(m1) ⊕ N4, if λ is 14-atypical,
� N4 ⊕ δ1

12L(m3), if λ is 24-atypical,
� L(m1) ⊕ L(−Am2 + (A + 2)n2) ⊕ δ1

34L(n3), if λ is 13-atypical,
� L(m2 + n2) ⊕ δ1

12L(m3) ⊕ δ1
34L(n3), if λ is 23-atypical.

(8) Case A = 0, B = p − 2
�L(m1) ⊕ N4 ⊕ δ1

34L(n3), if λ is typical,
�L(m1) ⊕ N4, if λ is 14-atypical,
�δ1

34L(n3), if λ is 23-atypical,
�L(n2), if λ is (13, 24)-atypical.
(9) Case A = B = p − 2
�M4 ⊕ N4 ⊕ δ1

12L(m3) ⊕ δ1
34L(n3), if λ is typical,

�M4 ⊕ δ1
34L(n3), if λ is 13-atypical,

�N4 ⊕ δ1
12L(m3), if λ is 24-atypical,

�L(m2 + n2), if λ is (14, 23)-atypical.
(10) Case A = p − 1, 0 < B < p − 2
�M5 ⊕ L(n1) ⊕ L(m2) ⊕ L(n2) ⊕ L(m3) ⊕ δ1

34L(n3), if λ is typical,
�L(m3) ⊕ L(m2) ⊕ δ1

34L(n3), if λ is (13, 23)-atypical,
�L(m3) ⊕ L(n1) ⊕ L(m2), if λ is (14, 24)-atypical.
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(11) Case A = p − 1, B = 0
�M5 ⊕ L(n1) ⊕ L(m2) ⊕ L(m3), if λ is typical,
�L(m3), if λ is (13, 23)-atypical,
�L(m3) ⊕ L(m2) ⊕ L(n1), if λ is (14, 24)-atypical.
(12) Case 0 < A < p − 2, B = p − 1
�L(m1) ⊕ N5 ⊕ L(m2) ⊕ L(n2) ⊕ δ1

12L(m3) ⊕ L(n3), if λ is typical,
�L(m1) ⊕ L(n3) ⊕ L(m2), if λ is (13, 14)-atypical,
�L(n3) ⊕ L(m2) ⊕ δ1

12L(m3), if λ is (23, 24)-atypical.
(13) Case A = 0, B = p − 1
�L(m1) ⊕ N5 ⊕ L(n2) ⊕ L(n3), if λ is typical,
�L(m1) ⊕ L(n3) ⊕ L(n2), if λ is (13, 14)-atypical,
�L(n3), if λ is (23, 24)-atypical.
(14) Case A = p − 1, B = p − 2
�M5 ⊕ N4 ⊕ L(m2) ⊕ L(m3) ⊕ δ1

34L(n3), if λ is typical,
�L(m3) ⊕ L(m2 + n2) ⊕ δ1

34L(n3), if λ is (13, 23)-atypical,
�L(m3) ⊕ N4, if λ is (14, 24)-atypical.
(15) Case A = p − 2, B = p − 1
�M4 ⊕ N5 ⊕ L(n2) ⊕ δ1

12L(m3) ⊕ L(n3), if λ is typical,
�L(n3) ⊕ L(m2 + n2) ⊕ δ1

12L(m3), if λ is (23, 24)-atypical,
�L(n3) ⊕ M4, if λ is (13, 14)-atypical.
(16) Case A = B = p − 1
�M5 ⊕ N5 ⊕ L(m2) ⊕ L(n2) ⊕ L(m3) ⊕ L(n3), if λ is typical,
�L(m2), if λ is (13, 14, 23, 24)-atypical.

Proof. It follows from Propositions 4.11, 4.13, and Lemmas 4.2, 4.8, 4.9, 4.10 and
4.12. For the convenience of the reader we shall point out cases when the non-zero
images under φ2 of different primitive vectors of the highest weight (A, B) are collinear.

If A = p − 2, 0 < B < p − 2 and λ is 23-atypical or 24-atypical, then φ2(m4) ∼
φ2(n2).

If 0 < A < p − 2, B = p − 2 and λ is 13-atypical or 23-atypical, then φ2(n4) ∼
φ2(m2).

If A = B = p − 2 and λ is 13-atypical, then φ2(n4) ∼ φ2(m2).
If A = B = p − 2 and λ is 24-atypical, then φ2(m4) ∼ φ2(n2).
If A = B = p − 2 and λ is (14, 23)-atypical, then φ2(m4) ∼ φ2(n4) while φ2(m2) =

φ2(n2) = 0.
If A = p − 1, 0 < B < p − 2 and λ is (13, 23)- or (14, 24)-atypical, then φ2(n2) ∼

φ2(m2).
If 0 < A < p − 2, B = p − 1 and λ is (13, 14)- or (23, 24)-atypical, then φ2(m2) ∼

φ2(n2).
If A = p − 1, B = p − 2 and λ is (13, 23)-atypical, then φ2(n4) ∼ φ2(m2).
If A = p − 1, B = p − 2 and λ is (14, 24)-atypical, then φ2(m2) ∼ φ2(n2).
If A = p − 2, B = p − 1 and λ is (23, 24)-atypical, then φ2(m4) ∼ φ2(n2).
If A = p − 2, B = p − 1 and λ is (13, 14)-atypical, then φ2(m2) ∼ φ2(n2).
If A = B = p − 1 and λ is (13, 14, 23, 24)-atypical, then φ2(m2) ∼ φ2(n2). �
5. Third floor.

5.1. Characteristic zero. Denote z23 = y13 ∧ y23 ∧ y24, z24 = y14 ∧ y23 ∧ y24,
z13 = −y13 ∧ y14 ∧ y23, z14 = −y13 ∧ y14 ∧ y24.
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Furthermore, set k1 = vAB ⊗ z23, k2 = vAB ⊗ z24 − vA,B−1 ⊗ z23, k3 = vAB ⊗ z13 +
vA−1,B ⊗ z23 and k4 = vAB ⊗ z14 + vA−1,B ⊗ z24 − vA,B−1 ⊗ z13 − vA−1,B−1 ⊗ z23.

Let � : Y → Y ∧ Y ∧ Y be a map that sends y23 �→ z23, y24 �→ z24, y13 �→ z13 and
y14 �→ z14. Then � is an isomorphism of S-modules and it induces an isomorphism
of S-modules �V : V ⊗ Y → V ⊗ (Y ∧ Y ∧ Y ) via �V (v ⊗ yij) = v ⊗ �(yij) = v ⊗ zij

for appropriate i, j.

LEMMA 5.1. The module V ⊗ (Y ∧ Y ∧ Y ) is isomorphic to the direct sum L(k1) ⊕
δ34L(k2) ⊕ δ12L(k3) ⊕ δ12δ34L(k4).

Proof. Since the map � : Y → Y ∧ Y ∧ Y is an isomorphism of S-modules, the
module Y ∧ Y ∧ Y is irreducible of the highest vector z23.

Since the map �V is an isomorphism of S-modules and the S-module structure of
V ⊗ Y was already determined, we can use �V to describe the S-module structure of
V ⊗ (Y ∧ Y ∧ Y ).

Using Lemma 3.1 we establish V ⊗ (Y ∧ Y ∧ Y ) ∼= L(k1) ⊕ δ34L(k2) ⊕ δ12L(k3) ⊕
δ12δ34L(k4). �

PROPOSITION 5.2. The image φ3(V ⊗ (Y ∧ Y ∧ Y )) ∼= δ13δ23δ24K1 ⊕ δ34δ14δ23δ24K2

⊕ δ12δ13δ14δ23K3 ⊕ δ12δ34δ13δ14δ24K4.

Proof. The S-morphism φ3 is described completely by images of generating vectors
φ3(k1) = ω13ω23ω24k1, φ3(k2) = ω14ω23ω24k2, φ3(k3) = ω13ω14ω23k3, and φ3(k4) =
ω13ω14ω24k4. �

5.2. Characteristic p. Assume that the weight λ is restricted.
Recall that the map �V : V ⊗ Y → V ⊗ (Y ∧ Y ∧ Y ) is an isomorphism of S-

modules, and for each 5 ≤ i ≤ 9, denote �V (li) = ki and Ki = �V (Li).

PROPOSITION 5.3. The S-module V ⊗ (Y ∧ Y ∧ Y ) is isomorphic to
(1) Case A, B < p − 1
L(k1) ⊕ δ34L(k2) ⊕ δ12L(k3) ⊕ δ12δ34L(k4).
(2) Case A = p − 1, B < p − 1
K5 ⊕ δ34K6.
(3) Case A < p − 1, B = p − 1
K7 ⊕ δ12K8.
(4) Case A = B = p − 1
K9.
Here the composition series of the S-module Ki, for every 5 ≤ i ≤ 9, is analogous

to that of corresponding S-module Li from Proposition 3.5.

Proof. The map �V is an isomorphism of S-modules. Since the S-module structure
of V ⊗ Y was already determined, we can use �V to describe the S-module structure
of V ⊗ (Y ∧ Y ∧ Y ). All that is necessary to do this is to replace every appearance of lj
and Lj in Proposition 3.5 with kj and Kj respectively. �

5.3. Image under φ3. The structure of the S-module φ3(V ⊗ (Y ∧ Y ∧ Y )) is
given as follows.

PROPOSITION 5.4. The following statements describe S-modules isomorphic to
V3 = φ3(V ⊗ (Y ∧ Y ∧ Y )).
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If A, B < p − 1, then V3
∼= δ13δ23δ24K1 ⊕ δ34δ14δ23δ24K2 ⊕ δ12δ13δ14δ23K3 ⊕

δ12δ34δ13δ14δ24K4.
Assume A = p − 1 and B < p − 1. If λ is typical, then V3

∼= V ⊗ (Y ∧ Y ∧ Y ). If λ

is (13, 23)-atypical, then V3
∼= δ34L(k4). If λ is (14, 24)-atypical, then V3

∼= L(k3).
Assume A < p − 1 and B = p − 1. If λ is typical, then V3

∼= V ⊗ (Y ∧ Y ∧ Y ). If λ

is (13, 14)-atypical, then V3
∼= L(k2). If λ is (23, 24)-atypical, then V3

∼= δ12L(k4).
Assume A = B = p − 1. If λ is typical, then V3

∼= V ⊗ (Y ∧ Y ∧ Y ). If λ is
(13, 14, 23, 24)-atypical, then V3

∼= 0.

Proof. If A, B < p − 1, then V3
∼= δ13δ23δ24K1 ⊕ δ34δ14δ23δ24K2 ⊕ δ12δ13δ14δ23K3 ⊕

δ12δ34δ13δ14δ24K4 as in the characteristic zero case.
If A = p − 1 and B < p − 1, then the images of generators of K5 and K6 are

φ3(k5) = ω13ω14ω23k5 − ω13ω23k3 and φ3(k6) = ω13ω14ω24k6 − ω14ω24k4. The structure
of V3 follows.

If A < p − 1 and B = p − 1, then the images of generators of K7 and K8 are
φ3(k7) = ω14ω23ω24k7 + ω23ω24k2 and φ3(k8) = ω13ω14ω24k8 − ω13ω14k4. The structure
of V3 follows.

If A = B = p − 1, then ω13 = ω14 = ω23 = ω24 = ω. The image of the generator k9

of V ⊗ (Y ∧ Y ∧ Y ) is φ3(k9) = ω3k9 − ω2k6 − ω2k8 − 2ωk4 and the claim
follows. �

6. Fourth floor.

6.1. Characteristic zero. The S-module Y ∧ Y ∧ Y ∧ Y is the trivial module
of the highest vector y13 ∧ y14 ∧ y23 ∧ y24. The S-module V ⊗ (Y ∧ Y ∧ Y ∧ Y ) is
irreducible of the highest vector l = vAB ⊗ y13 ∧ y14 ∧ y23 ∧ y24 and is isomorphic to
V as an S-module.

PROPOSITION 6.1. The image φ4(V ⊗ (Y ∧ Y ∧ Y ∧ Y )) = δ13δ14δ23δ24V ⊗ (Y ∧
Y ∧ Y ∧ Y ).

Proof. The morphism φ4 is given by φ4(l) = ω13ω14ω23ω24l. �

6.2. Characteristic p. Assume that the weight λ is restricted.
The S-module V ⊗ (Y ∧ Y ∧ Y ∧ Y ) = L(vA,B ⊗ (y13 ∧ y14 ∧ y23 ∧ y24)) is irre-

ducible and isomorphic to V as an S-module.

6.3. Image under φ4. The S-module structure of φ4(V ⊗ (Y ∧ Y ∧ Y ∧ Y )) is
given as follows.

PROPOSITION 6.2. The S-module φ4(V ⊗ (Y ∧ Y ∧ Y ∧ Y )) is isomorphic to V ⊗
(Y ∧ Y ∧ Y ∧ Y ) � V if λ is typical, and is isomorphic to 0 if λ is atypical.

7. Character and dimension of simple module LS(2|2)(λ). Combining the previous
results, we obtain the following theorem.

THEOREM 7.1. The S-module H0
G(λ) is isomorphic to the direct sum V⊕

(V ⊗ Y ) ⊕ (V ⊗ (Y ∧ Y )) ⊕ (V ⊗ (Y ∧ Y ∧ Y )) ⊕ (V ⊗ (Y ∧ Y ∧ Y ∧ Y )), where
the middle summands are described in Propositions 3.5, 4.7 and 5.3.
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THEOREM 7.2. The S-module LS(2|2)(λ) is isomorphic to

V ⊕ φ1(F1(λ)) ⊕ φ2(F2(λ)) ⊕ φ3(F3(λ)) ⊕ φ4(F4(λ)),

where the images V1 = φ1(F1(λ)), V2 = φ2(F2(λ)), V3 = φ3(F3(λ)) and V4 = φ4(F4(λ))
are described in Propositions 3.6, 4.14, 5.4 and 6.2 respectively.

7.1. Characteristic zero. Combining previous results, we obtain the following
theorem.

THEOREM 7.3. The simple module LS(2|2)(λ), viewed as an S-module, is isomorphic
to the direct sum V ⊕ φ1(F1(λ)) ⊕ φ2(F2(λ)) ⊕ φ3(F3(λ)) ⊕ φ4(F4(λ)), where the images
φ1(F1(λ)), φ2(F2(λ)), φ3(F3(λ)) and φ4(F4(λ)) are described in Propositions 3.2, 4.4, 5.2
and 6.1 respectively.

COROLLARY 7.4. The induced module H0
G(λ) is isomorphic to LS(2|2)(λ) if and only

if λ is typical which happens if and only if λ2 ≥ 2.

In order to relate the last results to Hook Schur functions, we need to explain
how a simple module LS(2|2)λ corresponds to a (2,2)-hook partition γ = (γ1, . . . , γk).
The correspondence is such that γ1 = λ1, γ2 = λ2 and the partition (γ3, . . . , γk) is the
transpose of (λ3, λ4).

The character of the induced module H0
G(λ) is given by the formula χ (H0

G(λ)) =
(1 + y1

x1
)(1 + y2

x1
)(1 + y1

x2
)(1 + y2

x2
)s(λ1,λ2)(x1, x2)s(λ3,λ4)(y1, y2), where s(λ1,λ2)(x1, x2) de-

notes the Schur function corresponding to the partition (λ1, λ2) and s(λ3,λ4)(y1, y2)
denotes the Schur function corresponding to the transpose of the partition (λ3, λ4).
The character of LS(2|2)(λ) is given by the Hook Schur function HSγ (x1, x2; y1, y2).

Therefore, we have the following equivalence which strengthens Theorem 6.20 of
[1] in the case of (2, 2)-hook partitions.

PROPOSITION 7.5. For a (2, 2)-hook partition λ, the following are equivalent:
(1) λ2 ≥ 2,

(2) HSγ (x1, x2; y1, y2) = χ (H0
G(λ)),

(3) H0
G(λ) is isomorphic to LS(2|2)(λ).

Proof. If λ2 ≥ 2, then in the notation of Theorem 6.20 of [1] we
have χ (H0

G(λ)) = (x1 + y1)(x1 + y2)(x2 + y1)(x2 + y2)sμ(x1, x2)sν(y1, y2) and HSγ (x1,

x2; y1, y2) = χ (H0
G(λ)). The remaining statements follow from Corollary 7.4. �

7.2. Characteristic p. We give a compact formula for the character and dimension
of a simple S(2|2) module of restricted weight. Using the Steinberg Tensor Product
theorem we can then determine the same for an arbitrary highest weight λ.

If (μ1 ≥ μ2) is a dominant weight for the algebra sl(2), then the character of a
simple sl(2)-module with the highest weight (μ1, μ2) is given by the Schur function
S(λ1,λ2)(x1, x2).

For a dominant weight μ = (μ1 ≥ μ2|μ3 ≥ μ4) for the algebra S, the character
S(μ) of the simple S-module L(μ) of the highest weight μ is given by S(μ1,μ2)(x1, x2)
S(μ3,μ4)(x3, x4).

Denote by S(λ1, λ2|λ3, λ4) the product S(λ1,λ2)(x1, x2)S(λ3,λ4)(x3, x4) of two Schur
functions if λ1 ≥ λ2 and λ3 ≥ λ4, and S(λ1, λ2|λ3, λ4) = 0 otherwise. For short, write
it as S(λ) and call it the Schur function corresponding to λ. Then S(k, 0|l, 0) = p(k, l).
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Denote γ13 = (−1, 0|1, 0), γ14 = (−1, 0|0, 1), γ23 = (0,−1|1, 0) and γ24 =
(0,−1|0, 1) and write the ‘decorated’ weights derived from λ as follows: λ̃13 =
λ + γ13, λ̃14 = λ + γ14, λ̃23 = λ + γ23, λ̃24 = λ + γ24, λ13,14 = λ + γ13 + γ14, λ13,23 =
λ + γ13 + γ23, λ13,24 = λ + γ13 + γ24 = λ14,23 = λ + γ14 + γ23, λ14,24 = λ + γ14 + γ24,
λ23,24 = λ + γ23 + γ24, λ̌14 = λ + γ13 + γ23 + γ24, λ̌13 = λ + γ14 + γ23 + γ24, λ̌23 = λ +
γ13 + γ14 + γ24, λ̌24 = λ + γ13 + γ14 + γ23, λ̂ = λ + γ13 + γ14 + γ23 + γ24.

Then the S-weights of these decorated weights are given in the following table.

λ λ̃13 λ̃14 λ̃23 λ̃24

(A, B) (A − 1, B + 1) (A − 1, B − 1) (A + 1, B + 1) (A + 1, B − 1)

λ13,14 λ13,23 λ13,24 λ14,23 λ14,24 λ23,24
(A − 2, B) (A, B + 2) (A, B) (A, B) (A, B − 2) (A + 2, B)

λ̌14 λ̌13 λ̌23 λ̌24 λ̂

(A + 1, B + 1) (A + 1, B − 1) (A − 1, B − 1) (A − 1, B + 1) (A, B)

We have already seen that weight λ13,24 = λ14,23 is of special significance and we
shall denote it by λ.

The space spanned by all elements of the simple module LS(2|2)(λ) that lie on the
ith floor shall be called the sector of that floor corresponding to λ and shall be denoted
by Li(λ). Each Li(λ) is an S-module and to each Li(λ) we assign a ‘partial’ character
χi(λ) that records the multiplicities of weight spaces of Li(λ). Then the character χ (λ)
of the simple module LS(2|2)(λ) equals χ (λ) = χ0(λ) + χ1(λ) + χ2(λ) + χ3(λ) + χ4(λ).

The character and dimension of a simple S(2|2)-module LS(2|2)(λ) of restricted
weight λ are given below.

THEOREM 7.6. Let LS(2|2)(λ) be a simple S(2|2)-module of the restricted highest
weight λ.

If λ is typical, then χ (LS(2|2)(λ)) =

S(λ) + S(λ̃23) + S(λ̃13) + S(λ̃24) + S(λ̃14) + S(λ13,23) + S(λ23,24) + δ12S(λ)
+δ34S(λ) + S(λ13,14) + S(λ14,24) + S(λ̌14) + S(λ̌24) + S(λ̌13) + S(λ̌23) + S(λ̂)

and dimL(λ) = 16(A + 1)(B + 1).
If λ is 13-atypical or (13,14)-atypical, then χ (LS(2|2)(λ)) =

S(λ) + S(λ̃23) + S(λ̃24) + S(λ̃14) + S(λ23,24) + δ34S(λ) + S(λ14,24) + S(λ̌13)

and dimL(λ) = 8 + 4A + 12B + 8AB.
If λ is 14-atypical, then χ (LS(2|2)(λ)) =

S(λ) + S(λ̃23) + S(λ̃13) + S(λ̃24) + S(λ13,23) + S(λ23,24) + S(λ) + S(λ̌14)

and dimL(λ) = 16 + 12A + 12B + 8AB.
If λ is 23-atypical, (13,23)-atypical or (23,24)-atypical, then χ (LS(2|2)(λ)) =

S(λ) + S(λ̃13) + S(λ̃24) + S(λ̃14) + δ12δ34S(λ) + S(λ13,14) + S(λ14,24) + S(λ̌23)

and dimL(λ) = 4A + 4B + 8AB.
If λ is 24-atypical, (14,24)-atypical, then χ (LS(2|2)(λ)) =

S(λ) + S(λ̃23) + S(λ̃13) + S(λ̃14) + S(λ13,23) + δ12S(λ) + S(λ13,14) + S(λ̌24)
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and dimL(λ) = 8 + 12A + 4B + 8AB.
If λ is (13,24)-atypical, then

χ (LS(2|2)(λ)) = S(λ) + S(λ̃23) + S(λ̃14) + S(λ)

and dimL(λ) = 6 + 4A + 4B + 4AB.
If λ is (14,23)-atypical or (13,14,23,24)-atypical, then

χ (LS(2|2)(λ)) = S(λ) + δ34S(λ̃13) + δ12S(λ̃24) + δ12δ34S(λ)

and dimL(λ) = 2 + 4A + 4B + 4AB if A 
= 0 or B 
= 0; and dimL(λ) = 1 if A = B = 0.

Proof. In the case A, B < p − 2, we confirm that these formulas are valid by
inspection of Propositions 3.6, 4.14, 5.4 and 6.2, noting that most of δ12, δ34 and
δ1

12, δ1
34 disappear due to the definition of S(λ). The only remaining δ12 and δ34 are

coefficients at S(λ). They reflect the intricacies of the S-module structure of LS(2|2)(λ).
Looking at the S-weights of decorated λs in the case A, B < p − 2, we infer that there
is a straightforward correspondence between characters of simple modules with the
highest weight given as a decorated λ and the product of the Schur function of the
corresponding decorated λ. Adding up dimensions of simple S-modules in each case,
we arrive at the dimension of LS(2|2)(λ).

In the cases when A or B equals p − 2 or p − 1, certain components of S-weights
of decorated λs are equal to p or p + 1. Looking at the characters of various S-modules
introduced earlier, we determine that

χ (L5) = S(λ̃23) + S(λ̃13), χ (L6) = S(λ̃24) + S(λ̃14),
χ (L7) = S(λ̃23) + S(λ̃24), χ (L8) = S(λ̃13) + S(λ̃14),
χ (L9) = S(λ̃23) + S(λ̃24) + S(λ̃13) + S(λ̃14), χ (L10) = S(λ̃24) + S(λ̃13),
χ (M4) = S(λ23,24) + δ12S(λ), χ (M5) = S(λ23,24) + S(λ13,14),
χ (N4) = S(λ13,23) + δ34S(λ), χ (N5) = S(λ13,23) + S(λ14,24),
χ (K5) = S(λ̌14) + S(λ̌24), χ (K6) = S(λ̌13) + S(λ̌23),
χ (K7) = S(λ̌14) + S(λ̌13), χ (K8) = S(λ̌24) + S(λ̌23) and
χ (K9) = S(λ̌14) + S(λ̌24) + S(λ̌13) + S(λ̌23).
We will verify the equality for χ (L10), since it is perhaps the most interesting, and

leave the remaining equalities to the reader.
We start with the following equality:

S(λ2+p−1,λ2−1)(x1, x2) = S(λ2−1,λ2−1)(x1, x2) (xp
1 + xp

2) + S(λ2+p−2,λ2)(x1, x2),

which immediately implies

χ (L(l2)) + χ (L(l4)) = χ (L(λ̃24)) + χ (L(λ̃14)) = S(λ̃24).

Analogously, we can derive

χ (L(l3)) + χ (L(−l6 + l8)) = χ (L(λ̃13)) + χ (L(λ̃14)) = S(λ̃13).

Combination of the last two equalities yields χ (L10) = S(λ̃24) + S(λ̃13).
Using the above equalities we can inspect Propositions 3.6, 4.14, 5.4 and 6.2 in the

cases when A or B equals p − 2 or p − 1 and arrive at the formulas in the statement of
this theorem. �
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Let us note that the above formulas for the character of the simple S(2|2)-module
depend only on the nature of atypicality of the highest weight λ and not on values of A
and B.

In order to find the character of the simple module LS(2|2)(λ) for general
dominant λ, we write λ = λr + pλu, where both λr and λu are dominant weights
and λr is restricted. The Steinberg theorem ([5, Theorem 4.4]) states that LS(2|2)(λ) ∼=
LS(2|2)(λr) ⊗ F∗L(λu), where F∗L(λu) is the Frobenius twist of L(λu). This gives the
character of LS(2|2)(λ), since the character of LS(2|2)(λr) was determined in Theorem 7.6
and the character of L(λu) is the product of the character of an S+-irreducible module
of the highest weight λ+

u and an S−-irreducible module of the highest weight λ−
u .

8. Concluding remarks. We conclude with an outline of a subsequent paper that
extends the computation presented here.

The highest weights of simple S(m|n)-modules in characteristic zero correspond
to hook weights λ in the sense of [1]. The highest weights of simple S(m|n)-modules in
the case of positive characteristic were determined in [3].

The costandard module ∇(λ) for S(m|n) coincides with the polynomial part of the
induced module H0

GL(m|n)(λ). It can be proved that ∇(λ) = H0
GL(m|n)(λ) if and only if λ

is a hook weight (it is equivalent to λm ≥ n).
For the Schur superalgebra S(2|2), the costandard module coincide with the

induced module if and only if λ2 ≥ 2. Since the character of H0
G(λ) and all simple

S(2|2)-modules was determined earlier, using purely combinatorial techniques it is
possible to compute all simple composition factors in the filtration of costandard
modules ∇(λ) for λ2 ≥ 2. We shall do this computation for the case of the restricted
weight λ and that way we determine the decomposition numbers in the process of
modular reduction of all simple S(2|2)-modules of the restricted highest weight.

In the remaining case, for every restricted highest weight λ corresponding to simple
S(2|2)-module such that λ2 ≤ 1, we determine the corresponding costandard module
∇(λ), that is the polynomial part of H0

G(λ). For that purpose we shall utilize the
S-module structure of H0

G(λ) determined in Section 3 of this paper. Further, we shall
compute the characters of costandard modules ∇(λ) with the restricted highest weight
such that λ2 ≤ 1 and then we shall determine all simple composition factors in the
filtration of those costandard modules.
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