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A CLASSIFICATION OF REFLEXIVE GRAPHS: 
THE USE OF "HOLES" 

EL MOUSTAFA JAWHARI, MAURICE POUZET AND IVAN RIVAL 

The purpose of this article is to develop aspects of a classification theory 
for reflexive graphs. A first important step was already taken in [2]; 
throughout we follow, at least the spirit, of the classification theory for 
ordered sets initiated in [1]. 

For a graph G let V(G) denote its vertex set and E(G) Q V(G) X V(G) 
its edge set. A graph K is a subgraph of G if V(K) Q V(G) and for 
a, b G V(K), (a, b) G E(K) just if (a, b) G E(G). The subgraph K of G 
is a retract of G, and we write K <1 G, if there is an edge-preserving map g 
of V(G) to V(K) satisfying g(v) = v for each v G V(K); g is called a 
retraction. A reflexive graph is an undirected graph with a loop at every 
vertex. The reason for a loop at a vertex is that an edge-preserving map 
can send the two vertices of an adjacent pair to it. The concept is 
illustrated in Figure 1. From here on, though, we shall for convenience 
suppress the illustration of the loops in the figures of reflexive graphs. 

The subgraph K (with shaded vertices) is a retract of the reflexive graph G. 

Figure 1 

For reflexive graphs G and H the direct product G X H is the graph with 
vertex set V(G) X V(H) and edge set consisting of all pairs ( (a, x),(b,y)) 
where (a, b) G E{G) and (JC, y) G E(H) (cf. Figure 2). 
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X * = 

H G X H 

Figure 2 

A representation of a reflexive graph G is a family (Gt\i e / ) of reflexive 
graphs such that Gt O G for each / e / , and 

G is irreducible if, for every representation (Gt\i e / ) of G, G <3 Gz for 
some / e / ; otherwise G is reducible (cf. Figure 3). 

/ ^ 

< c: 

Ĝ j X G2 

G1 S G 2 s P2 

(Gj, G2) is a representation of G. 

Figure 3 
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A reflexive graph variety is a class y of reflexive graphs which con
tains all direct products of members of ^ [ P ( ^ ) Q V ] and which 
contains all retracts of members of % [R(^0 ^ ^ ] - For a class X of 
reflexive graphs let Jf" stand for the smallest reflexive graph variety 
containing JT", the variety generated by JT In fact, Cffv = RPpT). The 
intersection of a family of reflexive graph varieties is a reflexive graph 
variety and the class of all reflexive graphs is a reflexive graph variety 
which contains all others. Therefore, with respect to inclusion, the class of 
all reflexive graph varieties behaves much as a complete lattice, the lattice 
of reflexive graph varieties. The main results of this article can be expressed 
fairly accurately in two figures. Figure 4 illustrates an initial segment of 
the lattice of reflexive graph varieties. The big circles stand for the 
varieties as lattice elements and the graph(s) within for the reflexive 
graph(s) generating the variety. 

An initial segment of the lattice of reflexive graph varieties. 

Figure 4 

Figure 5 is an enlargement of a part of Figure 4 showing more of the 
detail. 

The plan of this article is to introduce and illustrate in the next three 
sections, first the idea of a "hole" in a graph and then, "preserving a hole". 
We use these two ideas — "hole" and "preserving a hole" to verify the 
classification illustrated in Figure 4 and Figure 5. 

What is a "hole"? Let G be a reflexive graph and let AT be a subgraph of 
G. Just what are the conditions that must be fulfilled in order that the 
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The reflexive graph varieties known to cover {P2Y 

Figure 5 

subgraph K be a retract of Gl One condition is this. For any given vertex 
w e V(G) there must be a "solution" x = x(w) G V(K) to the system of 
inequalities: dG(x, v) < dG(w9 v), v e V(K)9 [dG(a9 b) stands for the 
distance in G between a, b e V(G), that is, the least length (if it exists) of 
a path in G joining a to b]. If there is a "retraction" map g of V(G) to 
V(K) [that is an edge-preserving map g such that g(v) = v for each 
v G V(K) ] then the image g(w) of w must be such a vertex x = x(w) 
of F(if) which satisfies each of the inequalities. For example, if G is the 
reflexive graph illustrated in Figure 6 (a) and K = C4 the subgraph 
consisting of the shaded vertices then the vertex w of G gives rise to the 
inequalities 

dG(x, c0) < dG(w9 c0) = 1, d G 0 , q ) < dG(w9 cx) = 2, 

rfG(x, c2) < rfG(w, c2) = 1, dG(x, c3) < rfc(w, c3) = 2. 

W 

(Q) (b) 
Figure 6 

There are two solutions: x = cx or x = c3. And, for instance, the map g of 
V(G) to F(C4) defined by g(q) = ci9 i = 0, 1, 2, 3 and g(w) = c, is a 
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retraction, so C4 <1 G. In contrast consider the corresponding subgraph C4 

in Figure 6 (b) with V(C4) = {c0, q , c2, c3} again and with inequalities 
corresponding to w:dG(x, ct) ^ dG(w, ct) = 1, for each / = 0, 1, 2, 3. As 
these inequalities have no simultaneous solutions in C4 this subgraph C4 

cannot be a retract of G. These examples lead to the idea of a "hole". 

Let AT be a reflexive graph. A couple (H, 8), where 0 ¥= H Q V(K) and 
8 is a function of H to the non-negative integers N, is called a hole of K, 
if H is a subset of V(K) for which there is no x G V(K) satisfying each of 
the inequalities 

dK(x, v) < 8(v), v G H. 
If we let Zk(v, k) stand for the disk in K with centre v and radius k, [that 
is, DK(v, k) = {u G F(Jf) I J ^ I I , v) < it} ] then (77, 8) is a hole in K 
iîiÔ ¥= H Q V(K) satisfies: 

vQffDK(v98(y)) = 0. 

We say that a hole (H, 8) of AT is a minimal hole if, for each H' c H 
such that \H'\ < \H\ there is some uf G F(^T) satisfying: 

We can illustrate this by reference to Figure 6. First, take C4 to be the 
subgraph with V(C4) = {c0, c b c2, c3} of the graph in Figure 6 (a) and 
think of the vertex w as defining a function 6 of H = V(C4) to N: 

8(C}) = 2 = S(c3) and 8(c0) = 1 = 8(c2). 

As 

.n0^c4(^*(^-)) = {q^3> 

(H, 8) is not a hole of C4. In contrast, take Q from Figure 6 (b) to be the 
subgraph with the same vertex set V(C4) = {c0, cl5 c2, c3} and again put 
7/ = V(C4) and let 8 of H = V(C4) to N be induced by the inequalities 
associated with w:8(c;) = 1 for each / = 0, 1, 2, 3. Then 

3 
H Dc (Ci9 1) = 0 

so (//, S) is a hole of C4 (in fact, a minimal hole). 

LEMMA 1. Let G be a reflexive graph, let K be a subgraph and let (H, 8) be 
a hole of K. If K is a retract of G then (H, 8) is a hole of G, too. 

Proof Let G be an edge-preserving map of V(G) to V(K) such that 
g(v) = v for each v G V(K). If (H, 8) is not a hole of G then there is 

w G n D(v, 8(v)). 
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As g is edge-preserving it follows that 

dK(g{a\ g(b) ) < dG(a9 b) for each a, b e V{G). 

Then 

dK(g(y\ g(w) ) = dK(y9 g(w) ) < rfc(v, w) 

and in particular 

g(w) G n D(v,8(v)) 
ve / i 

with g(w) e F(if). This is a contradiction. 

Examples of holes. 

Paths. For « e N let Pn stand for the reflexive graph with vertex set 
{tf0, ax, a2 , . . . , fl„} and edges joining consecutive vertices. P„ is called a 
path, and « is its length. 

Even the path Pj has a hole: define 8(Û0) = 0 = 8(ax). On the other 
hand, this is the only minimal hole of P l5 for if 8(a0) = 0 and 8(ax) > 0 
then 

DPx(a0,0) H Dp^ôiaO) * 0. 

For n > 1, 8(tf0) = 0 = 8(tf„) defines a hole ( {#0, <?„}, 8) using only the 
endpoints of Pn. For P2, S(<20) = 0 and 8(a2) = 1 defines a hole, while 
8(a0) = 1 = 8(ax) would not. In general, for PM, the function 8(a0) = 0 
and 8(tf„) = n — \ defines a minimal hole. 

Holes in paths provide a natural setting for the idea of "isometry" in 
graphs. A subgraph K of a reflexive graph G is isometric in G if for each 
a, b e F(tf), </*(*, &) = rfc(fl, 6). 

LEMMA 2. Le/ K be a subgraph of a reflexive graph G. Then K is isometric 
in G if and only if any hole (i/ , 8) of K, for which some a e H has 8(a) = 0, 
is also a hole of G. 

Proof Suppose K is isometric in G and let (//, 8) be a hole of K with 
8(0 ) = 0 for some a e if ç FCK). If there is 

w e ^ ^ ^ ( v , 8(v)) 

then, in particular, w e DG(a, 0) so w = a. As (77, 8) is a hole of i£ there 
must be some v ¥* a such that 

a G Z)c(v,8(v)) - f^(v,S(v)) . 

Then c/G(a, v) < 8(v) while rf^(v, a) ^ 8(v) which contradicts the 
assumption that K is isometric in G. Therefore, (if, 8) must be a hole of G, 
too. Conversely, if K is not isometric in G then there are a, b e F(AT) such 
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that dG(a, b) < dK(a, b). Putting 8(a) = 0 and 8(b) = dG(a, b) gives a 
hole ({a, b}),8) oîK. As 

a e DG(a9 0) n DG(fc, 8(b) ) 

this is not a hole of G. 

It follows from Lemma 1 and Lemma 2 that 

COROLLARY 3. Let K be a subgraph of a reflexive graph G. If K is a 
retract of G then K is isometric in G. 

The converse of this holds if G contains no "cycles" (see [2] ). 

Cycles. For each integer M > 3 let Cn stand for the reflexive graph with 
vertex set {c0, c]9 c2, • • • , cw-i} and edges joining consecutive vertices and 
also cn_x to c0. (We read the indices modulo n.) 

Define 8(ct) = m — 1 for each / = 0, 1, 2, . . . , 2m — 1. Then 
(V(C2m\ 8) is a hole of C2m for each m > 2. For / = 0, 1, 2 , . . . , 
m — 1, 

cm + i G A:2lfI(
Ci> ™ - 1) 

and 

so 
2 m - 1 

H D r (c„ m - 1) = 0 

(see Figure 7 (b) for the case m = 2). For m >: 3, a different hole in C2m is 
this. Put 

8(c0) = 8(c2m_x) = 1 and «(c^. , ) = ô(cm) = m - 1. 

Then ( {c0, cm_ l 5 cm, c 2 m _i} , 5) is a minimal hole of C2m, since: 

DCi(c0, 1) n Z) c Jc 2 m _! , 1) = {c0, c2m_!} and 
Dc2m(cm-h m - \) n DCi(c2m_x, m - \) = {cl9 c2, . . . , c 2 w _ 2 } . 

For C3, S(c0) = 0 = S(c2) gives this hole ( {c0, c2}, 5) of C3. In general, 
for m ^ 2, if §(cz) = m — 1 for each / ^ ra — 1, m + 1 then (H, 8) with 
# = v(C2m + x) ~ {cm_„ cm + 1} is a hole of C2m + 1. It need not be a 
minimal hole though (see Figure 13). 

(//, 8), with / / = {c0, Cj, c3, c5, c6} and S(c,-) = 2 for each / = 0, 1, 3, 5, 
6, is not a minimal hole of C7. ( {c1? c3, c5}, 8\ {c1? c3, c5} ) is a minimal 
hole. 

For the case of the cycles C2n + l a minimal hole can, however, be 
defined as follows. Put 

H = V(C2n+])- {c, . | i s 1(2)} 
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and 

8(Cj) = n - 1 

for each c e H. Then (H, 8) is a minimal hole of C2n + i-

TTze gra/?/j D6. The reflexive graph D6 is illustrated in Figure 15. Define 
8(a) = 8(d) = 8(r) = 8(s) = 1. Then ( {a, d, r, s}, 8) is a minimal hole 
of A;. 

A minimal hole of D6 

Figure 7 

The graphs (Jn) and (Ln). The reflexive graph Jn, n > 2, has vertex set 
{ah a2, . . . , an) U {bx, b2, • . . , bn}. The subset 4W = {ax, a2, . . . 9 an) 
forms a complete «-element subgraph of Jn, the subset Bn = {bx, 
b2, . . . , bn} has no edges, and otherwise, each pair of vertices at G i „ , 
bj G Bn is joined by an edge except if / = j . Note that J2 = P3. 
The reflexive graph Ln, n > 1 has the vertex set {al5 a2» • • • > fl«} u {̂ i> 
b2, . . • , £„}. Both subsets^4n = {ax, a2, . . . , an) and {Z>l9 è2, • • • , £„} form 
complete «-element subgraphs of Ln, and further, for each i ¥= j there is an 
edge joining at and b-. Note that L2 = C4. 

J 2 S P 3 4> = C4 
Figure : 

For /„, define 8(bt) = 1, / = 1, 2, . . . , n. Then (#„, 5) is a minimal hole 
of Jw. It is enough to note that bf £ Dj (6-, 1) whenever / =£ 7, and, for each 
/, at £ DJn(bi9 1). For Ln, define 8(v) = 1 for each v e K(L„). Then 
(F(LM), 8) is a minimal hole of Ln. 

Which functions 8 of a set / / to N can be minimal holes? 

PROPOSITION 4. Let H be a set and let 8 be a function of H to N. There is a 
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connected reflexive graph K in which (//, 8) is a minimal hole if and only if 
either \H\ = 2 or \H\ > 3 and 8(v) > 0 for each v G H. 

Proof Suppose that (H, 8) is a minimal hole of the reflexive graph 
K. The case \H\ = 1 is of course impossible since, if H = {a} then 
a G DK(a, 8(a) ), even if 8(a) = 0. Suppose that \H\ > 3 and that 
8(a0) = 0 for some a0 G H. AS 

there must be <2j & H, ax ¥= a0, such that 

a0 £ DK(al,8(al)). 

It follows that 

dK(a0, ax) > S(Û,) 

so (H, 8) cannot be a minimal hole of K. 
Conversely, let 

H = {<?!, a2, . ..an,... } and H' = {bu 62 , . . . , Z>„, . . . } 

with |7/'| = |// | . For each i,j = 1, 2 , . . . , « , . . . , z ^ y let jfy stand for a 
path of length 8(a^ and with endpoints at and /V. In contrast to edges in 
a graph we use a perforated line segment to illustrate such a path. Suppose 
\HI = 2. Then the reflexive graph # with vertex set V(Pn) U F(P2i) a n d 

edge set E(Pn) U E(P2l) together with an edge joining bx and b2 has 
(//, 6) as a minimal hole. Suppose then that \H\ > 3. We construct a graph 
AT with vertex set 

V(K) = u . V(P,j) 

and edge set 

E(K) = \J.E(Ptj) 
i*j J 

such that, for i ^ j and j ¥= k, 

V(Ptj) n F(i>,) = {a,}, 

and 

V(Py) n F(/>,7) = {*,.}. 

Then it is straightforward to verify that (H, 8) is a minimal hole of K. 

The graph Mw. The reflexive graph Mw has vertex set {ax, a2, . . . } U 
{bx, b2,.. . }. The subset 4̂ = { Û , , Û 2 V . } forms a complete graph, the 
subset B = {bx, b2, .. . } has no edges at all, and otherwise, each at G 4̂ is 
joined by an edge to each b- G B satisfying j < i. Notice that in Mw a 
subset H of F(MW) together with the function 8(v) = 1 for each v G / / 
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b 1 b 2 b 3 bn bn+1 

Figure 9 

determines a hole (H, 8) of Mw just if H contains any infinite collection of 
the by's, that is, 

v ^ ^ ( v , l ) = 0 

if and only if \H n B\ is infinite. In fact, each such (H, 8) with infinitely 
many of the by's is a minimal hole of Mw. 

"Preserving" holes. Let (H, 8) be a hole of a direct product 

G = n G,. 

of reflexive graphs Gz, / G / . Let 777 stand for the zth projection map of 
V(G) to V(Gi). This map mi is, of course, edge-preserving. Suppose for 
each / G / there is ut G V(Gt) satisfying 

dGi(ui9 77,0) ) < S(v) for each v G 7/. 

Then the vertex u G F(G) defined by 77 -(w) = wz (z G 7) satisfies 

rfG(K, V) = S\ip{dG(ui9 77z(v) ) |/ G / } < 8(v) 

for each v G / / which contradicts the assumption that (H, 8) is a hole of (7. 
Therefore, there must be some i G / for which no vertex ut G V(Gt) exists 
satisfying 

d^TT^v)) < 8(v). 

This fact we shall summarize by saying that each hole of YI^j Gt is 
preserved by a projection map. 

In general, if G, K are reflexive graphs and (H, 8) is a hole of G then we 
say that the hole (H, 8) of G is preserved by K (or K preserves the hole 
(H, 8) of G), if there is an edge-preserving m a p / o f V(G) to V(K) such 
that there is no vertex w of K satisfying 

dK(wJ(y)) < 8(v\ 
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for each v e V(G). The map / i s also called a hole-preserving map of (H, 8) 
in K (or /preserves the hole (# , 8) of G in AT). For example each hole 
(H, 8) of I I z G / G7 is preserved by some Gt and the hole-preserving maps 
may be chosen from among the projection maps. 

Let F be a retract of a reflexive graph G. According to Lemma 1, any 
hole (H, 8) of F is a hole of G. Suppose that this hole (H, 8) of G 
is preserved by some reflexive graph K. Then this hole (H, 8) of F is 
also preserved by K. For, i f / i s the hole-preserving map of (H, 8) (of G) to 
K and g is the retraction map of V(G) to F(F) then the edge-preserving 
m a p / o g of V(G) to F(AT) preserves the hole (H, 8) of F in K (remember 
that H Q V(K) a n d / o g\V(F) = / | F ( F ) ). 

Here is another way to formulate this idea of a hole-preserving map/of 
V(G) to V(K). Define the map 8foff(H) to N by 

fi(n) = min{S(v) | /(v) = w}. 

Then (f(H), 8f) is a hole of K, if (^, 8) is a hole of G and / is a 
hole-preserving map. 

We consider some particular examples. Consider the edge-preserving 
m a p / o f P3 to C4. Then the hole (H, 8) of P3, where H = {a0, a3} and 
8(a0) = 8(a3) = 1 is not preserved b y / i n C4 (see Figure 10). 

I 
I 
I 

/ d o e s not preserve the hole ( {aQ, a3}, 8(a0) = 8(a3) ) of P3 in C4. 

Figure 10 

Actually, this hole of P3 cannot be preserved by C4 at all. In fact, i f / i s an 
edge-preserving map of V(P3) to V(K), for some graph K, and / preserves 
this hole, then 

dK(f(a0),f(a,))^3, 

s ince/ is edge-preserving and 
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dK(f(a0)J(a3))>3, 
for otherwise 

DK(f{%), 1) n DK(f(a3), 1) * 0. 

There is, of course, no pair c-, c- of vertices in C4 satisfying 

^ ' 9) 3. 

What about the hole (F(C4), 5) of C4, where 8(^) = 1, for each / = 0, 1, 
2, 3? To preserve this hole requires an edge-preserving m a p / t o a graph K 
and, the map must be one-to-one as well. It is easy to verify that the 
subgraph determined by f(K) in K must be isomorphic to C4. In 
particular, this hole of C4 cannot be preserved by P3. In contrast the 
hole 

( {% c2}, 8(c0) = 0 = 8(c2)) 

of C4 can be preserved by P2 (see Figure 11). 

c4 

V(C6) 
2 for each 

u 0 v^ u 2 

/preserves the hole ( {c0, c2}, 8(c0) = 0 = <5(c2) ) of C4 in P2. 

Figure 11 

We consider holes in C6 and C7. First 8(cz) = 2, for each ct 

defines a hole (H, 8) = (V(C6), 8) of C6. Also, « ' (O 
c- e F(C7) — {c2, c4} defines a hole 

(//', 8') = (K(C7) - {c2, c4}, 8') 

of C7, too. Now l e t / b e an edge-preserving map of V(C6) to K(C7). A s / 
cannot be onto, its image must be a path of length at most three. In 
particular, this hole of C6 cannot be preserved by C7. Now let / ' be an 
edge-preserving map of F(C7) to V(C6). A s / ' cannot be one-to-one C6 

cannot preserve this hole of C7. 
Now take this hole of C6:H = {c0, c3} and 8(c0) = 8(c3) = 1. This 

hole is preserved by P3 using the map f(c0) = a0, f(c0) = f(c5) = a^ 
f(ci) = / ( c 4 ) == a3> and/(c 3 ) = a3. 
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The graph D6 (cf. Figure 7) has the hole (//, 5) where H = {a, d, c , / } 
and 8(a) = 8(d) = 8(e) = 8(f) = 1. It makes sense to try preserving this 
hole of D6 in Q . If there were such an edge-preserving map / of V(D6) 
to V(C4) then/would be onto and without less of generality, f(a) = c0, 
f(d) = c2,f(r) = cx and/ (s ) = c3. Now,/(/>) must be adjacent to c0, c1? c3 

(since / is edge-preserving) so f(b) = c0 and similarly f(c) must be 
adjacent to Cj, c2, c3 so / (c ) = c2. But / (c) must also be adjacent to f(b). 
Therefore, C4 cannot preserve this particular hole of D6. 

C 0 C^ 

, 3 ^ w v,2 

A subgraph of 1 1 / e / G, with c0, c,, c2, r3} = C4 < I I j 6 / G. 

Figure 12 

Consider the reflexive graph J3 (see Figure 8). Can it preserve the hole 
(V(C4X 8) of C4 with 8(ct) = 1, for each cl G V(C4) ? Suppose / i s an 
edge-preserving map of V(C4) to F ^ ) which preserves this hole of C4. 
Then each bi e / ( F ( C 4 ) ) which, however, is impossible since / is 
edge-preserving and the b-s are pairwise non-adjacent. Moreover this 
same hole of C4 cannot be preserved by L3 either or, for that matter, by 
any Jn or Ln, n > 3. It follows that C4 cannot be a retract of a direct 
product of reflexive graphs each isomorphic to a Jn (n > 3) or to an 
Ln (n > 3). For if 

Q <i n G,-

then, by Lemma 1, (F(C4), ô) is a hole of 1 1 / e / Gt and so some Gz must 
preserve this hole, and this is impossible if Gt = Jn or G7 = Ln, n > 3. 
In other terms, C4 does not have a representation using only the J^s 
and JLW'S. 

To show that C4 does not have a representation using a family of graphs 
each isomorphic to D6 is more difficult, because the hole (V(C4), 8), 
8(ct) = 1, / = 0, 1, 2, 3, is preserved by Z>6; just take/(c0) = a,f(cx) = r, 
/ (c 2 ) = d, f(c3) = s. Suppose that 

C 4 < I I G7 

where each Gt = Z>6. Let g be the retraction map of F(ri / (=/ G7) to V(C4). 
We may suppose that C4 is a subgraph of I I , G / Gz with vertices labelled 
c0, C], c2, c3 (and all of their coordinates chosen from among V(D6) ). We 
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shall construct vertices u, v, w in UiŒl Gt which, with F (Q) , determine, a 
subgraph in 1 1 / G / Gt as indicated in Figure 23. 

Not all of the edges, as illustrated in Figure 9, can exist though, since 
consider the effect of the retraction map g'.g(ct) = ci9 i = 0, 1, 2, 3 so 

g(u) and then g(v) = q and g(w) = c3, although g(v) and g(w) 
should be adjacent. We construct the vertices u, v, w by prescribing their 
ith coordinates ui9 v/9 wz, for each / G / . For our purposes there are two 
kinds of projection maps: / e J0, if ^ preserves the hole (F (Q) , 5) in 
G, = / / ; i e / , , otherwise. For / e Jn, the coordinates of w, v, w are 
prescribed according to the values in Table 1. For i <E IX, there is 

3 

/ e ^nQ Z>(^(cy.), 1), 

and we put ut = vt = wt = t in this case. Then the vertices w, v, w given by 
^(w) = wy, ̂ ( v ) = vi9 iTjiw) = wt if i e J0 and irt(u) = ^ (v ) = ^ (w) = / 
if / e Ix are pairwise adjacent and moreover, u is adjacent to c"0, q , c"3, v to 
(?!, c2, and w to c2, c"3. In other terms we have shown that C4 is not a retract 
of any direct product of Z)6's or, equivalently, C4 € {i^}"-

'3 ~2 
Figure 13 

This is a convenient fact: the "image" of a minimal hole by a 
hole-preserving map is a minimal hole (see [3] ). 

TABLE 1 

w l ( c 0 ) "/(c2) "ifr'i) w/(c3) "1 vt 
wi 

« </ 5 r b c c 
tf </ r 5 b c c 

</ a 5 r c b b 

J « r 5 c b b 

r 5 # J r b c 
r 5 d a r c b 

s r « </ s b c 

s r J « s c b 

LEMMA 5. Let G, K be reflexive graphs, let (H, 8) be a minimal hole in G 
and let f be an edge-preserving map of V(G) to V(K) which preserves this 
hole. Then ( / ( / / ) , Sy), where 

Sf(u) = min{8(v) | / (v) = u) 
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is a minimal hole in K. 

Proof. According to the definition of a hole-preserving map, ( ^ = / ( / / ) , 
8j) is a hole in K. Is it minimal? If not, there is W %*°ll such that 

\<W\ < |^ | and n DK(u, 8Au) ) = 0. 

Now construct a subset / / ' of H consisting of those vertices V e H such 
that 

/ (v ') e <T and 8(/(v') ) = min{S(v) | /(v) = /(v ') }. 

Then 7/' Ç # and |# ' | < \H\. Therefore there is 

uf e n IWv', S(v') ) 

and so 

/(«') G y, n^ />*(/(/), S(v') ) = B n^ DK(u, Sf(u) ) 

which is a contradiction. 

What about graphs with "infinitary" holes? For instance, Mw has a 
minimal hole (i/, 8) for which J^ is infinite. Therefore, any graph which 
preserves this hole must itself have an infinite hole. It follows that Mw 

cannot be a retract of any direct product of finite graphs, no matter how 
large the index set of this direct product. 

Irreducible reflexive graphs. Our purpose is to show that, for each 
n > 3, each of the reflexive graphs Pn, Cn, D6, Jn, Ln and Mw is irreducible. 
However, first we record an observation already implicit in the 
calculations above. 

LEMMA 6. If (Gt\i G / ) is a representation of the reflexive graph G and 
(//, 8) is a hole of G, then this hole is preserved by some Gt. 

Let (Gt\i e / ) be any representation of the path Pn\ that is, each Gi <3 Pn 

and Pn <3 I I / G / Gt. Consider the hole (H, 8) of Pn, with H = {a0, an } and 
8(a0) = 0, 8{an) = n — 1. According to Lemma 6 this hole is preserved by 
some Gt. Now, each Gt <3 Pn, so Gt must be a path Pm, say, where m < n. 
But to preserve this hole (H, 8) of Pn, m = n, that is, Gt = Pn therefore, Pn 

is irreducible. 
In practice we use Lemma 6 in this form (cf. [3] ). 

COROLLARY 7. Each hole of a reducible reflexive graph is preserved by a 
proper retract. 

Suppose the cycle C2m (m > 2) is reducible. Let (//, 8) be this hole of 
C2m:H = V(C2m) and 8(ct) = m - 1 for each ct e V(C2m). Now, any 
proper subgraph of C2m which is a retract must be connected whence it 
must be a path Pk and k < m. But Pk cannot preserve this hole of C2m. For 
the cycle C 2 m + 1 use the hole (H, 8) with 

https://doi.org/10.4153/CJM-1986-066-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-066-9


1314 E. M. JAWHARI, M. POUZET AND I. RIVAL 

Again, any proper retract of C 2 m + 1 must be a path Pk and k < m. But Pk 

cannot preserve this hole. This shows that each cycle Cn(n > 3) is 
irreducible. 

Consider the hole (H, 8) of D6 given by H = {a, d, r, s) and S(a) = 
8(d) = 8(r) = 8(s) = 1. Now, any proper retract D of Z>6 must contain a 
vertex adj acent to all other vertices of D, so it could not preserve this hole 
of D6. It follows that D6 must be irreducible. 

Consider the hole (H, 8) of Ln given by H = V(Ln) and S(v) = 1 for 
each v e V(Ln). Again, any proper subgraph L of Ln contains a vertex 
adjacent to all other vertices of L, so it could not preserve this hole. 
Therefore, Ln is irreducible. 

Consider the hole (H, 8) of Jn given by H = {bx, b2, • . . , bn) and 
8(bj) = 1, for each / = 1, 2, . . . , n. Suppose J <$Jn,J ^ Jn, preserves this 
hole. Then each bt e V(J) for otherwise J contains a vertex adjacent to all 
others of J and so J could not preserve this hole (H, 8). But then it is 
simple to verify that J must also contain each az, for, a given at is the only 
vertex adjacent to all other vertices different from bt. 

Finally, the reflexive graph Mw. Suppose Mw is reducible. Then there is 
a retract G of M and an edge-preserving m a p / o f V(MJ) to V(G) which 
preserves the hole (H, 8) of M, where H = B and 8 = 1 (cf. Figure 9). 
Evidently G must be infinite and we are to suppose that Mœ is itself not a 
retract of G. Now, we may treat G as a subgraph of Mw and so G must 
contain infinitely many of the b's in B Q V(MU). In fact, we may suppose 
that there is an increasing sequence a(l) < a(2) < . . . of indices such that 
each of 6a(1), Z?a(2), . . . belongs to V(G) and so that ( {6o(1), 6a(2), . . . }, 8) 
with 8(b0^) = 1 for each /, is a hole of (7. Now, set b\ = &0(1) and choose 
a\ Œ A n V(G) such that (a\9 b\) e £(G). (Note that such a vertex ^ 
exists in G:g(tfa(1)) is such a vertex, where g is the retraction map of M^ to 
G.) Let Z?2 be the first ba^ not adjacent to a\. Then choose #2 G ^(G) 
which is adjacent to b'2 (and therefore Z?j too). (It exists, right?) Then 
choose b'3 the first from among the ba^s not adjacent to a2; then 
a'3 G V(G), etc. In this way we construct a subgraph of G isomorphic to 
Mw itself. In fact this subgraph is a retract of G itself. To see this it is 
convenient to relabel the vertices a\, b\ of G according to their label in 

M»*\ = ar{ly b\ = bp(ly 

Then we can define a map h of F(G) to this subgraph of G by these 
rules 

h(aJ) = h(bj) = aT(l) 

for all aj G F(G) such that j < r(l) and for all fe. e F(G) such that 
7 < *1) ; 
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h(aj) = h(bj) = ar{n) 

for all aj e V(G) such that r(n - 1) < j ^ r(n) and for all bj e F(G) 
such that r(n — I) < j < r(n); 

Kb,) = b} 

if j = r(n). It is straightforward to verify that h is a retraction, that is, 
Mœ < G and so Mœ is irreducible after all. 

Varieties of reflexive graphs. Our purpose is to justify Figure 4 and 
Figure 5 concerning the lattice of reflexive graph varieties. We shall prove 
these results. 

THEOREM A. The lattice of reflexive graph varieties contains an infinite 
chain. In fact, 

{PoV < {piV < {PiY <•••< {PnY <•••• 

THEOREM B. The lattice of reflexive graph varieties contains an infinite 
antichain. In fact, for distinct positive integers n, m > 4, 

{cny ^ {cmy 
and 

{cmy $ [c„y. 
Moreover, 

{p„r < {c2ny 
and 

{P«Y < {c2n+iY-
In the lattice of reflexive graph varieties {P0Y is the least element. Let 

y be any variety which contains a member G e y with \V(G) | > 1. 
Suppose G contains an adjacent pair of vertices u, v. Then the subgraph 
on [u, v} is isomorphic to Px and it is easy to construct a retraction for 
Px O G. Therefore, Px G y If E(G) = 0 then any pair of distinct vertices 
u, v forms a subgraph called A2 and again it is easy to provide a retraction 
for A2 O G. Therefore A2 G y In summary the least variety {P0Y has 
precisely two covers: {Px}

v and {A2}
v. Let y be any variety satisfying 

y > {PXY or, y > {A2}
V. Then y contains a member G such that 

G £ {Pj f or G £ {A2y. Evidently, \V(G) | > 2. If G is a complete graph, 
that is, every vertex is adjacent to every other vertex, then 

G <i n Gt 

with each Gt = Px, and so G G {PX}\ If E(G) = 0 then 
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with each Gt = A2, and so G e {A2}
V. Suppose E(G) ¥= 0 and, yet, not all 

vertices are adjacent to all others. If G contains a subgraph isomorphic to 
P2 then it is not hard to verify that P2 O G. Otherwise, G consists of 
components (maximal connected subsets) each of which is a complete 
graph. In this case, Px <3 G and A2 <3 G. This is the substance of the fact 
that {PiY has precisely two covers, {P2}

v and [Px, A2}
v, and {A2}

v has 
precisely one cover, [Px, A2}

v. More generally, for each n, {Pn + \9 A2}
v 

covers both {Pn, A2}
v and {Pn + \Y- That much about the lattice of 

reflexive graph varieties was fairly straightforward. 

THEOREM C. In the lattice of reflexive graph varieties each of the graphs 
P3, C5, Z>6, Jn (n > 3), Ln (n > 3), and Mw, generates a distinct reflexive 
graph variety which covers {P2Y • 

In a sense the heart of these results lies in this lemma. (A similar 
technique is used in [1], see especially Lemma 6.12.) 

LEMMA 8. Let 

*= {Pn,Cn + x,Jn^Ln + x\n > 2 } , 

let K e J^and let G e. [p^Y • Then any edge-preserving map gofV(G) onto 
V(K) is a retraction. 

Proof Let K = Pn. Suppose G e {Pn}
v and let g be an edge-preserving 

map of V(G) to V(Pn). (We shall use about G only the hypothesis that 
Pn preserves each hole of G which, of course, follows from G e {PnY) 
For each i = 0, 1, 2, . . . , n let At = g - 1 ( {at} ). Once we show that 
there is a system of representatives v- e At such that the subgraph 
{v0, v1? . . . , v w } = Pni with each vt adjacent to v-+1, then Pn <3 G 
by identifying {v0, v l 5 . . . , v „ } with Pn. As g is onto, each At ¥= 0. 
Choose v0 <= A0 and vn e 4̂W. Is ( {v0, v„}, 5), with S(v0) = 0 and 
Kvn) = «, a hole of G? If it were then Pn would preserve it and that is 
impossible. Therefore, 

DG(v0, 0) H DG(yn9 n) * 0 

and this means that 

As g is an edge-preserving map of V(G) onto V(Pn), 

dG(V0> Vn) = n> 

and each minimal path of length n in G must meet each At. 
Let AT = C2w, where m > 2, let G e {CimY anc* suppose g is an 

edge-preserving map of V(G) onto V(C2m). Put 
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4- = S - 1 ( k - > ) for each c, e V(C2m). 

Choose v0 e A0, vm_x e y*w_„ and vm G ^ m . Define 

8(v0) = 1, %ym-x) = « ( v j = m - \ . 

Now ( {v0, v m _ b vm}, 5) cannot be a hole of G since C2w cannot preserve 
such a hole. (Recall, that ( {c0, cm_1? cm9 c2m-\}, &') with 

8'(c0) = 8\c2m-x) = 1 and 8'{cm-\) = « ' ( O = /w - 1 

is a minimal hole of C2w.) Therefore, there is a vertex u e F(G) such 
that 

dG(u, v0) < 1, dG(w, vw_j) < m - 1, and </c(w, vm) < ra - 1. 

But g is edge-preserving and 

dC2m(C0> Cm) = m> 

so there is a path of length m in G with endpoints v0 and vn and passing 
through vn_!. By symmetry there is a path of length m in G with endpoints 
v0 and vn and passing through v2m_l G A2m_v These two paths must meet 
each block and form a subgraph of G isomorphic to C2m. Once we identify 
it with C2m we have that g is indeed a retraction. The case K = C2 m + 1 , 
where m > 2 is similar. Choose v0 G ^40, vm e ^4m with 8(v0) = 0, 
S(vm) = m. Then ( {v0, vm}, 8) is not a hole of G since C2m + 1 cannot 
preserve it. Therefore, there is a path v0, vl9 . . . , vw of length m in G 
with endpoints v0 and vm, and passing through Vj G Al9 say. Choose 
vm + 1 G Am + X and apply the same argument to construct a path of 
length m passing through AX9 A2, . . . ,Am + x and having endpoints Vj 
and vm + 1. This path together with another one with endpoints vm + 1 and 
v0 gives a subgraph of G isomorphic to C2m + 1 and once identified 
with C 2 m + 1 , g is a retraction. 

Let K = Ln9 (cf. Figure 8), let G e {L„}" and let g be an 
edge-preserving map of V(G) onto V(Ln). Put 

4- = *"*( {"/}) and ^ ^ g - V {*,-}), i = 1,2, . . . ,« . 

Choose v, G v4z and w, G 5-. Let 

Ht = {Vj\j = l , 2 , . . . , / i } U {iiy.|7= 1 , 2 , . . . , / - l , i + 1 , . . . ,*} 

and let ô-(vv) = 1 for each w e //,-. Evidently, (//,, 5Z) cannot be a hole of 
G so there is a vertex in 

n Z>r(w, 1) ¥= 0. 

Such a vertex must belong to Ai and we may suppose that it is vt e At. In 
fact, we may suppose that the v-'s are so chosen that 

v e Q Z)G(w, 1) 
J w ¥" Uj 
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and, by symmetry, that the M 's are so chosen that 

u e Q DG(w, 1). 

Then the subgraph 

{y, uj\j = 1, 2, ...,n}= Ln 

and g must be a retraction. 
Let K = Jw, (cf. Figure 8), let G G {/W }" and let g be an edge-preserving 

map of V(G) onto F(/w). Again, set 

Ai = g~X({°i}) a n d ^ = «"*( {*,•} X ' = 1, 2 /i. 

Let vz G Ai9 ut G i?z be chosen. As g is edge-preserving there are no 
edges between distinct w/s and no edges joining vt and ui9 for each 
/ = 1, 2 , . . . , « . Put 

//z = {ttb w2, . . . , « , • _ ! , I I I - + 1 , . . . , I I „ } 

and S^u) = 1 for each u G i/z. Then (i/z, 5Z-) cannot be a hole of G. In fact, 
we may even suppose that 

v,. G n Z)C(II., l). 

Now, put 

Hl = {vj9 up * z} and 8 V ) = 1 for each w G //Z. 

Suppose that (Hl, 8l) is a hole of G. Then there is an edge-preserving map 
/ ' of V(G) to V(Jn) which preserves this hole. If some bj £ / ' ( / / ' ) then aj 
is adjacent to each vertex of f\Hl) and the hole is not preserved. 
Therefore, each bj G f\Hl). Then, for some vnf

l(vr) = bh say, and, a s / 7 

is edge-preserving 

fl(uj) G [al9 a2, . . . , an} for eachy ¥= r, /. 

Again, for some us,f
l(us) = b{ and evidently, s = r.f1 is edge-preserving 

so 

fl(vj) G {ÛJ, a2, . . . , a„} for j ¥> r, i. 

As n > 3, there is /3W ^ fl(ur)9f
l(vr)9 and so 

Therefore, (H\ 8l) is not a hole of G. In particular 

n . D r(w, 1) ¥* 0 

and the common vertex must belong to At. We may suppose it is vz. In 
summary, 
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v,. <= n DG(VJ, l ) n n . DG(uj9 l ) . 

Then {wz, vjz = 1, 2 , . . . , n) determines a subgraph of G isomorphic to 
/„. Then g is a retraction. 

Insofar as all of our principal results pertain to matters concerning 
covers of "path" varieties, we make use of this basic result of [3]. 

LEMMA 9. Let Jtbe any set of paths. Then a reflexive graph G belongs to 
J^v if and only if each hole of G can be preserved by some path in Jfc 

Proof of Theorem A. First, since each Pt <3 P / + 1 we know that 

But the hole ( {<z0, ai+x), 8(a0) = 0, 8(ai+l) = i) of P/ + 1 cannot be 
preserved by P- for any y < z, so P / + 1 cannot be a retract of a direct 
product of graphs Gt each isomorphic to some Pj, j < i. Therefore, 

{Pi + \Y ^ iPiY a n d it follows that 

W < {PiY < • • • < {PiY < {Pi+iV < • • • • 

Now, let V be any variety satisfying 

{pty <rtk{pl+xy. 

Then there is a graph G e f a n d G ^ {i> }". In the light of Lemma 9, G 
must have a hole (//, 8) which cannot be preserved by Pt although it can be 
preserved by Pi + X. L e t / b e an edge-preserving map of V(G) to V(Pi+x) 
which preserves the hole (//, 8). Now G is connected so / (F(G) ) must be a 
path. If f(V(G)) 5 Pi+X then, in effect, Pt preserves this hole. 
Therefore, 

f(V(G)) = V(Pi+l). 

From Lemma 8 it now follows that P/ + 1 O G. In particular, 

{p , + 1 r<{Gr<^<{ i> + 1 r , 

so {Pt + \Y = V- In summary, {P;}" is covered by {P/ + 1 }" ; in symbols, 

m r -< {PiY < {PiY <•••* {p
nY < {P„+IY <•••• 

For the proof of Theorem B we shall make use of this fact from [2]. 

LEMMA 10. Let G be a reflexive graph and let T be an isometric subgraph. 
If T contains no cycles then T <3 G. 

Proof of Theorem B. We shall first verify the relations 
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{PnY<{C2nY and {Pny < {C2n+Iy. 

As P„ <3 C2„ and J ^ C ^ , , 

{p„y<{c2ny and {pny < {c2n+]y. 
Also, the hole (V(C2n), 8(c0) = 6(c,) = . . . = S(c2„) = n - 1) cannot be 
preserved by P„ so 

c2n * W -
Similarly, the hole 

( n C 2 „ + 1) - {c„_b C|I + 1 } , 8(c0) = S(c0 = . . . = 8(cII_2) = 8(c„) 

= S(cw + 2) = . . . = 8{c2n) = n - 1) 

cannot be preserved by Pn, so C2„ + 1 € {P„K, too. Therefore, 

{pny<{c2nr and {p„r<{c2„+1r. 
Let if be any variety satisfying 

{pny<r<{c2ny. 
Then there is G G ^ s u c h that G <£ {Pn } v . According to Lemma 9, G must 
have a hole (//, 8) which cannot be preserved by Pn. As G e {C2„}^ 
though, this hole can be preserved by C2n. L e t / be an edge-preserving 
map of V(G) to V(C2n) which preserves this hole. Suppose 

f(V(G)) SF(C 2 „) . 

Now G is connected so/(K(G) ) must be a path Pk. U k < n then this hole 
can be preserved by Pw, which is impossible. Otherwise, k > n. This 
implies that G contains vertices 

* e / - 1 ( K } ) > * e / _ 1 ( R } ) 
(where a0, a^ are the endpoints of Pk) satisfying dG(a, b) = k. Then G 
itself contains an isometric path Pk of length k. According to Lemma 10, 
Pk <1 G, so Pk e {C2w}^, which would mean that the hole 

( W ak)> s(ao) = °> 8(ak) = k - I) 
can be preserved by Cln. This is impossible since k > n. We conclude 
that f(V(G) ) = V(C2n), that is, fis onto. From Lemma 8, we have that 
C2n <3 G, so 

{c2ny < {cy < r < {c2ny 
and then {C2„}" = if. A similar argument shows that {i>„}*; -< {G2A7 + 1}", 

too. 
To show that {Cn}

v is noncomparable with {Cm}v for each 
n ^ m n, m > 4 we consider the usual hole in the cycle depending on its 
parity. For instance, if n = 2r and m = 2s + 1 let (7/r, 8r) be the hole 
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of C2r with Hr = V(C2r) and 8(ct) = r - 1 for each / = 0, 1 , 2 , . . . , 
2r - 1, and let (Hs, 8S) be the hole of C2s + X with Hs = V(C2s+x) and 
8{ct) = s — 1 except if / = s — 1 and i = s + 1. Then it is straightforward 
to verify that neither can the hole (Hn 8r) be preserved by C2s+X nor can 
the hole (Hs, 8S) be preserved by C2r 

Proof of Theorem C. In view of Theorem A and Theorem B it remains to 
prove that the varieties {D6}\ {Jn}\ {Ln}

v (n > 3), and {MJV, are all 
distinct and that each covers {P2}

v. We treat first the cases of {Jn}
v and 

{Ln}\ for n> 3. 
As P2 <d Jn it follows that {P2)

v < {Jn}
v. But the hole 

( {bl9 b2,...9 bn}, 8(bx) = 8(b2) = ... = 8(bn) = 1) 

cannot be preserved by P2, so from Lemma 9, {P2}
v ^ {JnY- Let ^ b e 

any variety satisfying 

{p2y<^<{jny. 

Then there is G G ^ such that G £ {P2}
v. There must be a hole (H, 8) of 

G which cannot be preserved by P2. As G G {/„}" this hole can be 
preserved by Jn. Let / b e an edge-preserving map of V(G) to V(Jn) which 
preserves this hole. Suppose some bt <E f(H). Then at e V{Jn) is adjacent 
to each vertex of f(H). Therefore, this hole (//, 8) of G must contain some 
v0 G H with S(v) = 0. From Proposition 4, | i / | = 2, say 7/ = {v0, vx}. 
If 50^) > 2 then there is an isometric path joining v0 and vx of length 
8(vx)> + 1 > 3. According to Lemma 10, P3 O G, so P3 e {/„}" which is 
impossible since the hole 

( {a0, a3), 8(a0) = 0, S(a3) = 2) 

cannot be preserved by Jn. Therefore, 8(vx) < 1 and, in any event, this 
constitutes a hole which can be preserved by P2. We may therefore 
suppose that each bt e f(H). Recall that 

( {bl9 b29..., bn}, 8(6,) = 8(b2) = ... = 8(bn) = 1) 

is a hole of Jn and that, from Lemma 5, ( / ( / / ) , 8f) is a hole of 7„. 
Now n > 3 so |if | > 3 and each 8(v) > 0 for v E 7/ (Proposition 4). It 
follows that 8(v) = 1 for each v e // , | / / | = «. Suppose 

7/ = {vj, v2,. . . , v„} wi th / ty ) = 6,-. 

Suppose now that some at £ f(V(G) ). Then 

/ " ' ( { « , • } ) = 0 
and (H — {v,}, 8|// — {v,} ) is also a hole of G which is impossible by the 
minimality of H. We conclude that /must be onto. According to Lemma 8, 
Jn <3 G so 

K r < { G r < ^ < { / , r 
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and then V* = {Jn } v . Now for distinct «, m > 3, {Jn }
v is noncomparable to 

{Jm}v. This is because the hole 

( {ft,, ft2,..., ftm}, «(ft,) = 5(ft2) = . . . = 8(bm) = 1) 

of Jw cannot be preserved by Jn. 
The analysis of the varieties {Ln}

v is much the same. Furthermore, the 
varieties {Jn}

v are all distinct from the varieties {Ln}
v because as usual the 

Lw's cannot separate the holes of the Jm
9s and vice versa. 

We turn next to the variety {D6}". Obviously P2 <l D6 so {P2}
v < {D6}

v. 
On the other hand, {P2}

v < {DéY s m c e ^ > 6 n a s a n ° ^ e which cannot be 
preserved by P2. Let ^ b e any variety satisfying 

{p2y<r<{D6y. 
Let G e ^Tsuch that G £ {P2}

v. Then there is a hole (7/, 5) of G which 
cannot be preserved by P2 but there is an edge-preserving map/of V(G) to 
F(Z>6) which does preserve this hole. If [a, d, r, s} Ç / ( / / ) then as Z)6 

contains a vertex adjacent to all vertices of f(H) it follows that there is 
v0 e H satisfying 8(v0) = 0. By Proposition 4, \H\ = 2. Let H = {v0, v,}. 
If 5(v,) < 1 then (//, 5) can be separated by P2. Otherwise 5(v,) > 2 and, 
from Lemma 10, P3 <3 G. Hence, P3 G {D6}

V which is impossible. We 
conclude that {a, d, r, s} Q f(H) and, from Proposition 4, 8(v) > 0 for all 
v e H since \H\ > 3. This in turn, means that {a, d, r, s} = f(H). 
Furthermore, for ( {a, d, r, s}, 8^) to be a hole of D6 (see Lemma 5) 
S-*(u) = 1 for each u e {a, d, r, s}, so 8(v) = 1 for each v e / / , too. 
Let 

C=r\{c))9D=f-\{d})9 

R = f~\ {r} ) and S =f~\{s}). 

We know that A ¥* Û, Z ) ^ 0 , # y= 0 and S =̂ 0. 
To proceed we make use of the fact that G e {D6Y implies 

G <J n G,. 

where each G, = Z)6, / e / . Let 70 stand for all those / for which the zth 
projection iri preserves the hole (H, 8) in Gt; let I\ = I — I0. Now, let 

ti = {-X,, X2, X3, X^j 

where/(x,) = a,f(x2) = d,f(x3) = r,f(x4) = s, say, and we may suppose 
that G is a subgraph of IX G / G r Now, for each /' <E 70, 

K O I X ^(*2)> ^1(̂ 3)» ^(^4) } = ia> dyr,s) 

and there are eight cases in all. Otherwise, for each /' e / , , 

R ( * i X ^(^2)» ^(^3)» ^1(^4) ) 
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must miss at least one of the values a, d, r, s. The possibilities are tabulated 
in Table 2. Our immediate aim is to construct four vertices w, v, x, y in 
1 1 / e / Gt with adjacencies as illustrated in Figure 25. We do this by 
prescribing the projections case by case (see Table 3). Then we can verify 
that the adjacencies as illustrated in Figure 25 are obtained. 

TABLE 2 

*i(X\) tfi(*2) TTi(x3) 77, (*4) 

f 1 d a S r 

2 d a r s 

I 3 a d s r 

0" e 'o) 
4 

5 

a 

s 

d 

r 

r 

a 

s 

d 

! 6 s r d a 

7 r s a d 

^ 8 r s d a 

' 9 * a * a # a ¥= a 

(I G / , 
10 

11 
* d 

* s 

* d 
¥= s 

* d 

# s 

* d 

12 # r ¥* r ¥* r * r 

*1 * 3 

A subgraph of G <S I I , - e / Gt 

Figure 14 

TABLE 3 

irt(u) irt{v) iFi(x) irÈ(y) irt{z) irt(w) 

1 c b c b s -
2 c b c b s -
3 b c b c r -
4 b c b c r — 
5 c b b c b s 

6 b c c b b s 

7 c b b c c s 

8 b c c b c s 

9 c c c c c c 

10 b b b b b b 

11 r r r r r 1 

12 s s s s s 0 
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The vertices x l5 x2, x3, x4 belong to G in H / G / Gt. What about the newly 
manufactured vertices w, v, x, yl In fact, if g is the retraction of I I , G f Gt to 
G then by analysing the possible images for w, v, JC, y under g we conclude 
that 

{g0)> g(v), gO) , g O ) } n {xj, x2, x3, X 4} = 0 

and the vertices g(w), g(v), g(x), g(j>) are all distinct in G. For simplicity 
we shall in the sequel suppose g(w) = w, g(v) = v, g(x) = x, g(y) = y. 

Let i e 70. Suppose 

faixi), ^ (x 2 ) } = {a, d) and {T7-(X3), ^ ( X 4 ) } = {r, * } . 

These are the cases 1, 2, 3, 4. Construct a vertex 

as in Table 3. Then z is adjacent to xl9 x2, u, x, y, z in I I z e / Gt and, in 
particular, 

g(z) e {g(x\)> g(x2), g(x3), g(x4), g(u\ g(v), g(x), g(>>) }. 

Let us simply write g(z) = z. By symmetry we may treat just the first of 
these four cases (see Figure 15). Then the elements 

*i e <\{d}\ u e vT\{c)),y e ^l({b}),x2 e ^ ' ( { a } ) , 

2 e w,_1( {*} ) and x4 e 77,"'( {/•} ) 

is a system of representatives of the blocks of ir~ and forms a subgraph 
of G isomorphic to D6; in particular D6 <] G so in this case y = {D6y. 

I 
^ J W V 

£ l \ 

, 1 
, 1 

s / J a 

\ / 
W 
; 
M 

i 
i 
/ 
/ 

Figure 15 

Hence we may suppose that if /' e I0 then it must occur as case 5, 6, 7 or 8. 
Now, consider the vertex 
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prescribed as in Table 3. Then w is adjacent to x3, x4, x, u9 v, j> and 
again 

g(w) £ {g{xx\ g(x2), g(x3), g(x4)9 g(x), g(u\ g(v), g(y) } 

and again let us simply suppose that g(w) = w. By symmetry we may treat 
just the case 5 (see Figure 23). This time {JC3, v, y9 x4, x2, w} is a system of 
representatives of the blocks of m~ and it is isomorphic to D6. Therefore, 
D 6 < G and again «T = {D6}

v. 
Finally, {D6}

v is different from the other covers of {P2}
v recorded 

earlier. This follows by examining the possible preservation of holes that 
equality would entail. The arguments are similar to these recorded 
earlier. 

Finally, we turn to the matter of the variety {M^Y- It *s evident that, at 
any rate {P2}

v < {MJ" . Suppose that G e {A^}" and that G has a 
minimal hole (H, 8) which is preserved by Mœ but not by P2. Let / b e an 
edge-preserving map of V(G) to V(MU) which preserves this hole. Every 
"finite" hole of Mw is preserved by P2 and this implies that (77, 5) must be 
an "infinite" hole of G. Let 

4=f~l({«i}) and Bi-f-'dbt}). 
Then H must intersect infinitely many of the blocks Bl9 B2, . . . , say, Ba^y 
Ba(2y • • • where a(l) < a(2) < . . . . Let b\ e Ba^ and let a\ be chosen 
from UtAt (it exists) such that a\ is joined to b\ by an edge. Let b2 be 
chosen from the first Ba^ such that b2 is not adjacent to a\. Then choose 
a2 G U-ylz such that a2 is adjacent to b\ and to b2. In fact, 

a2 G DG(b\,l) n DG{b'l9\) 

which is nonempty because (H, S) is a minimal "infinite" hole of G. Let b2 

be so chosen that the first Ba^ such that a2 G Z)(Z>2> 1)- Continuing in this 
way we produce vertices b\9 b2,. . . , and a\9 a2, . . . which all together form 
a subgraph of G isomorphic to Mw. Now it is easy to check that Mw <3 G 
and that means that {G}v > {MJV and so {MJV > {P2}

v
9 which 

completes the proof. 

Remarks. The problem of finding all of the reflexive graph varieties 
which cover {P2}

v remains unresolved. We have said above that the 
technique launched by Lemma 8 lies at the heart of Theorems A, B and C. 
How far can this technique be exploited to settle this problem? We shall 
present an example below whose point is this: either further scrutiny of 
the example itself will indicate how to exploit the technique of Lemma 8 
or the example marks a limitation on the usefulness of this technique. In 
either case some fresh insights are needed. 
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The remainder of this article is concerned to prove this fact: there is a 
reflexive graph G for which there is an edge-preserving map of V(G) onto 
V(C4) yet none of the reflexive graphs A2, P^ Q , C5, Jn, Ln (n > 3), D6 

and Mw is a retract of G. 
The graph G has as its vertices the integers Z. Two integers x, y are 

adjacent in G just if one of these conditions holds: 

x — y = 0(4) or \x — y\ = \ or x = y + 3 + 4k 

for some positive integer k. This graph is illustrated schematically in 
Figure 16. This graph is fairly symmetric; note that the map <pk of V(G) 
onto V(G) defined by <pk(x) = x + A: is actually an isomorphism. Also 
notice that there is an edge-preserving map of V(G) onto F(C4); namely, 
f{x) = at for each 

x e At-, = {i + As\s e Z} / = 0, 1, 2, 3. 

We aim now to establish the important properties of this graph 
by examining its minimal holes. Let (//, 8) be a minimal finite hole of 
G. Let us suppose though that \H\ ^ 4 and that H n ^ ^ 0 for each 
i - 0, 1, 2, 3. 

Let v, e / / n ^ •. On account of the minimality of the set H there 

Figure 16 
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are vertices 

U DG(v9 fi(v)) and u2 e u Z)c(v, 8(v) ). 
VG/ / -{V 0 } v e / / - { v 2 } 

Figure 17 

Figure 18 

Then u0 ^ A2, u2 ^ A0, and: 

^G(VI» WO) = dc(v3> uo) = dc(v\> ui) = Jc(v3> «2) = !• 

By applying the isomorphism we can suppose that u2 = 0. Then 

v, G E = {1, - 7 , - 1 1 , - 1 5 , . . . } and 

v3 <E F = { - 1 , 7, 11, 1 5 , . . . } = -E. 

Now, u0 ¥= — 2 since dG(u0, x) = 2 for each x e £", and also w0 ^ 2 since 
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dG(u0, x) = 2 for each x e F. Applying the isomorphism q>4k, again, we 
can conclude that u0 e A2. 

It follows that if \H\ > 4 one of the blocks Ai does not meet H at all. 
Suppose that H n A3 = 0. Then H Pi A2 ¥= 0 for otherwise, for large 
enough |JC| the vertex x < 0 satisfies dG{x, v) = 1 for all v e # . Similarly, 
# n ^ 0 ¥= 0. 

Suppose that / / Pi Ax ¥=6. Then according to the minimality of H, 
\H n ^4,| = 1, say H C\ Ax = {vx}. It now follows that 

\H n A0\ = \ = \H n Ax\, 

too, say, 

H n A0 = {v0} and H n A2 = {v2}. 

In summary, if (//, S) is a minimal hole of G such that | i / | > 4, then the 
vertices of / / are situated in three "consecutive" blocks in such a way that 
if the "middle" block is nonempty then \H\ < 3, each block containing a 
vertex. 

It is now technically straightforward to verify that none of the graphs 
A2, P3, C5, Jn, Ln (n > 3), D6 and Mw is a retract of G. 
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