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Turbulence ingestion noise generation in rotating
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The interaction between ingested turbulence and rotating blades is a key source of
broadband noise in engineering applications. In this paper, a far-field noise model
accounting for source correlation across the span of the blade and between blades is
developed and applied to the study of homogeneous isotropic turbulence ingestion by a
model cooling fan, wind turbine and aircraft propeller. The widely used theory of Amiet is
revisited and it is shown that previous works produce conflicting results when attempting
to account for blade-to-blade correlation. Central to the model is the calculation of the
time between blade chops of the same turbulent eddy as heard by the observer. In this
paper it is shown that, when derived correctly, Amiet’s theory accounts for correlated
sources between blades and, thus, can predict haystacking tones. Comparisons with the
new rotational formulation and with experimental data enable us to show that Amiet’s
theory can be used to accurately predict turbulence ingestion noise from open rotors. In
particular, it is found that the infinite-span assumption in strip theory and the neglect of
correlation effects across the span do not undermine the accuracy of this theory. This is
of great importance because, unlike Amiet’s theory, models which treat rotational effects
and source correlation exactly are expensive to evaluate routinely at high frequencies due
to the slow convergence of infinite series with Bessel functions.

Key words: aeroacoustics, homogeneous turbulence

1. Introduction

Noise generation in rotating blades is a problem of great interest in several engineering
industries such as those of wind turbines, aeroengines and cooling fans. In the aeronautical
sector, noise emission levels for certification are increasingly stringent and, as a result,
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large research programmes are devoted to developing new technologies to improve designs.
Clean Sky 2, for example, aims to cut aircraft perceived noise levels by 20–30 % with
respect to 2014 levels, on top of a 50 % reduction targeted by its predecessor as compared
with 2000 levels (Brouckaert et al. 2018). The emergence of urban air mobility and the
drive to electrify conventional aircraft are also creating new challenges in what concerns
noise emissions. Distributed electric propulsion systems have enabled the exploration of
a wider design space which has led to new research questions beyond those posed by
traditional airframes and jet engines. In particular, many new aircraft concepts present
architectures with multiple propellers. Examples include the Airbus Vahana, ZEROe and
Lilium Jet.

Turbulence ingestion noise is the focus of this paper. This noise source is associated
with stochastic unsteady pressure fluctuations on the blades caused by the interaction
with upstream turbulence. It is broadband in nature but its spectrum often exhibits
quasi-tonal peaks at multiples of the blade-passing frequency due to haystacking. The
relative importance of this noise source compared with tonal noise or broadband self-noise
is dependent on the particular rotor and operating conditions (Glegg & Devenport 2017).
For example, turbulence ingestion noise is known to be dominant in static outdoor tests,
while being comparatively subdued in forward flight at constant propeller speed and power
(Hubbard 1991). It also becomes more prominent in rotors with reduced tip speeds where
tonal noise loses its dominance over broadband noise sources. A competent discussion of
these competing noise sources is found in § 16.1 of Glegg & Devenport (2017).

The research by Sharland (1964) was one of the earliest studies to recognise that
turbulence in the approach stream to a rotor can increase noise levels significantly. Sevik
(1974) measured the noise generated by a 10-bladed propeller ingesting grid turbulence.
The accompanying theory, while in good agreement with measurements, did not consider
the possibility of blade-to-blade loading coherence and, thus, haystacking peaks at
harmonics of the blade-passing frequency were not predicted, in contrast to experimental
observations. Haystacking was explained by Hanson (1974) who performed experiments in
static aircraft engine fans. It was found that upstream atmospheric turbulence is stretched
into thin elongated eddies by the contracting flow on approach to the fan. This highly
anisotropic turbulence at the fan inlet is ‘chopped several times as it passes through the
rotor’ (Hanson 1974). The partial blade-to-blade loading coherence leads to narrow-band
noise around harmonics of the blade-passing frequency, also known as haystacking.

Hanson’s theoretical formulation and other works preceding it (Lowson & Ollerhead
1969; Morfey & Tanna 1971) focused on the relation between the unsteady blade forces and
noise, thus requiring experimental input. The first complete model of turbulence ingestion
noise in rotating blades linking a free-stream turbulence input to noise was presented by
Homicz & George (1974). The authors used a low-frequency compressible Sears aerofoil
response function to calculate the unsteady lift generated by gust–aerofoil interaction, and
proceeded to calculate the far-field pressure spectrum based on a spanwise and chordwise
compact blade assumption which allows each blade to be reduced to a rotating dipole.
These assumptions restrict the use of this theory to acoustic wavelengths several times
longer than the aerofoil chord. Amiet (1977) and Paterson & Amiet (1979) overcame these
limitations by recognising that the rotational blade motion can be assumed rectilinear on
the time scales of noise generation provided that the acoustic frequency is much larger
than the rotor velocity, i.e. ω � Ω . The noise radiated by rotating blades could thus be
calculated on the basis of an earlier theory for stationary aerofoils in uniform flow (Amiet
1975), valid for both low and high frequencies, and including blade non-compactness
effects. Sinayoko, Kingan & Agarwal (2013) noted that different formulations of Amiet’s

980 A53-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.7
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theory for rotating blades existed in the literature and proceeded to identify the correct
form. Karve, Angland & Nodé-Langlois (2018) extended Amiet’s approach to account
for installation effects, e.g. from a nearby wing surface, using the method of images and
applied it to a boundary layer ingestion configuration.

Majumdar & Peake (1998) developed a theoretical model of unsteady turbulence
distortion on approach to an open rotor with a large number of blades. This work built on
Hanson’s observation that the elongation of turbulent eddies is a key physical mechanism
in turbulence ingestion noise. Extensive reviews of rapid distortion of turbulence into an
open rotor can be found in Robison & Peake (2014) and Graham (2017). Majumdar &
Peake (1998) used the distorted turbulence spectrum at the rotor face to calculate the
unsteady blade loading with a two-dimensional response function for a linear cascade of
flat plates (Smith 1972). This was combined with a Green’s function approach to calculate
the far-field noise. This method treats rotational effects in an exact manner and includes
strip-to-strip correlation effects, while Amiet’s approach (Amiet 1977) expresses noise as
the sum of the individual, uncorrelated contributions of each strip. On the other hand,
Amiet’s approach accounts for three-dimensional gusts in each blade strip whereas the
theory of Majumdar & Peake (1998) requires a two-dimensional approximation. Several
aspects of the theories of Amiet (1977) and Majumdar & Peake (1998) can be modified or
improved. In particular, the flat plate approximation oversimplifies the propeller geometry
and neglects non-uniform mean flow effects. A detailed literature review of aerofoil
leading edge noise in non-uniform flows can be found in the recent work of Zhong et al.
(2020).

Glegg, Morton & Devenport (2012) proposed an alternative frequency-domain method
to predict both near- and far-field noise from rotating blades with compact chords. The
method is particularly useful in boundary layer ingestion configurations where the ingested
turbulence is inhomogeneous and anisotropic. Glegg, Devenport & Alexander (2015)
argued that frequency-domain approaches, such as those of Majumdar & Peake (1998)
and Glegg et al. (2012), can be expensive to evaluate because the infinite series involving
Bessel functions are slow to converge at high frequencies. Moreover, the authors stated that
Amiet’s approach ‘assumes that the source at each blade section is uncorrelated across the
span, and blade to blade, and so it does not predict the rotor tone noise or haystacking
tones’. On this basis, the authors proceeded to develop a time-domain approach with
a compact chord assumption based on the work of Casper & Farassat (2004). It was
highlighted how direct measurements of two-point velocity correlations in the rotor plane
can be used to estimate the upwash velocity cross-spectrum in the blade-fixed coordinate
system. The purported advantages of this time-domain approach are that it is faster to
evaluate than frequency-domain methods and also that it can be used in conjunction with
direct flow measurements, avoiding the modelling of the turbulence spectra.

Sinayoko et al. (2013) compared Amiet’s theory for trailing edge noise in rotating blades
against a new formulation which models the rotational motion of the blades exactly. It was
found that Amiet’s theory remains valid even when the assumption that ω � Ω is not
formally respected. In addition, the authors identified the correct exponent of the Doppler
factor which accounts for the relative motion between the source and the observer. This
aspect of Amiet’s theory is also relevant for turbulence ingestion noise. Comparisons
between the two models were restricted to a single narrow strip of the blade and therefore
the assumptions made by strip theory were not investigated.

In this paper we develop a turbulence ingestion noise model and compare it with Amiet’s
theory for three different rotor types: (i) a cooling fan, (ii) an open propeller and (iii)
a wind turbine. This new model accounts for the rotational motion of the blades using

980 A53-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.7


H. Raposo and M. Azarpeyvand

the same theoretical basis as Sinayoko et al. (2013). However, in contrast to their trailing
edge noise theory, our model of turbulence ingestion noise accounts for source correlation
effects across the blade span in a similar way to the model of Majumdar & Peake (1998).
Amongst other reasons, our neglect of turbulence distortion by the steady non-uniform
mean flow on approach to the rotor enables further analytical development than in the
work of Majumdar & Peake (1998). We also re-derive Amiet’s theory and we revisit an
aspect of this theory which is particular to the problem of turbulence ingestion noise, i.e.
blade-to-blade correlation. Amiet (1989) outlined an approach to include this effect into
the calculations. Central to the model is the calculation of the time between blade chops
of the same turbulent eddy as heard by the observer. Karve et al. (2018) used Amiet’s
model to show that theoretical predictions agree reasonably well with experimental results
for noise generated due to turbulent boundary layer ingestion. However, Amiet (1989) and
Karve et al. (2018) disagree on the calculation of the time between blade chops. In this
paper, we derive this result in a simple and clear way, and identify the correct form by
comparing far-field noise predictions against the rotational model of turbulence ingestion
noise. It is shown that, when derived correctly, Amiet’s theory can account for correlated
sources between blades and, thus, it can predict haystacking tones. This is confirmed
through comparisons with experimental data.

Another aspect of the rotational model that differs from Amiet’s theory is that noise
prediction from the whole rotor does not require employing a stripping method. Amiet’s
theory can be formulated assuming that each strip has finite span, but this is known to
lead to far-field noise predictions that are dependent on the number of strips, particularly
at low frequencies (Christophe, Anthoine & Moreau 2009). Alternatively, an infinite-span
assumption can be introduced to remove the problem of choosing an arbitrary number of
strips. This is often the preferred approach, even though our current understanding of the
effect of this assumption is limited to stationary wings (Christophe et al. 2009; Christophe
2011). Comparisons between Amiet’s theory and the new rotational formulation in model
rotors enable us to study the validity of the infinite-span assumption as well as the effect of
neglecting correlation effects across the span. Overall, this paper aims to clarify whether
Amiet’s theory can be used to accurately predict turbulence ingestion noise from open
rotors. This is of great importance because models such as those of Majumdar & Peake
(1998) and Glegg et al. (2012, 2015) are comparatively expensive to evaluate routinely.

The remainder of this paper is structured as follows. In § 2, we derive the turbulence
ingestion noise model which accounts for the rotational motion of the blades and for
source correlations across the blade span and between blades. It is shown that in the low
advance ratio limit considerable simplifications can be made such that only the streamwise
turbulent velocity fluctuations are required to predict turbulence ingestion noise. In § 3,
we re-derive Amiet’s theory, discussing in detail the calculation of the time between blade
chops as heard by the observer. In § 4, we proceed to compare the two turbulence ingestion
noise models for a model cooling fan, wind turbine and aircraft propeller. We examine the
turbulent upwash velocity cross-spectrum in § 4.3 and the far-field noise in § 4.4. Lastly,
both noise models are validated through comparisons with experimental data in § 4.5.

2. Turbulence ingestion noise model for rotating blades

2.1. Pressure field in the frequency domain
Consider the problem of leading-edge noise radiation from a stationary rotor ingesting
turbulence convected by a uniform flow with axial Mach number Mz. The observer is
stationary with respect to the rotor hub. Further consider a fixed Cartesian coordinate
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Figure 1. Blade geometry and source position in cylindrical coordinate system (r, γ = Ωτ + ψ + 2πm/B, z).
Figure adapted from Sinayoko et al. (2013). (a) Three-dimensional view of the blade geometry showing the
cross-blade spacing in the unwrapped blade path. (b) Zeroth blade geometry and blade-fixed coordinate system
(X,Y,Z) in the plane (z, γ ).

system positioned at the centre of the hub. The z-axis is aligned with the uniform flow and
points upstream. The x-axis points vertically upwards in the rotor plane and the y-axis is
such that the coordinate system is right-handed. Figure 1 shows the geometry of the blades
in the source cylindrical coordinate system (r, γ, z), where the azimuthal direction γ has
been unwrapped. Both lean and sweep are neglected. The cross-sections of the blades
are assumed to be flat plates of chord C. The pitch change axis is located at the leading
edge and the pitch angle, α, is assumed to vary in the radial direction such that blade
cross-sections are at zero angle of attack relative to the incoming flow

α = arctan
(

Uz

Ωr

)
, (2.1)

where Uz is the axial flow velocity and Ω is the rotor angular velocity. The blade-fixed
coordinate system (X, Y, Z) is centred mid-chord with the X-axis in the downstream
direction and the Z-axis in the wall-normal direction. Two consecutive blades are separated
by a distance of 2πr/B in the unwrapped azimuthal direction, where B is the number of
blades. The azimuthal angle of a source in the mth blade planform, where m ∈ [0,B − 1],
is given by γ = Ωτ − ψ + φm, where τ is the emission time and φm = 2πm/B. For
clarity, let us define the Fourier transform pair ( f , f̃ ) used throughout this paper:

f̃ (ω) = 1
2π

∫ +∞

−∞
f (t)e−iωt dt, f (t) =

∫ +∞

−∞
f̃ (ω)eiωt dω. (2.2a,b)

We note that the notation of this section has largely been adopted from Sinayoko et al.
(2013). The pressure field generated by the mth blade due to interaction with the incoming
turbulent flow is given by (Sinayoko et al. 2013)

p̃(m)(xo, ω) = 2πig̃
+∞∑

n=−∞
exp(−in (γ0 − π/2))

∫
Σ

kLJn(krr)L̃(m)(x, ω − nΩ)

× exp(−i[kC(X + C/2)− nφm)]) dΣ, (2.3)
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where

g̃(k,Re, θe) = e−ikRe

8π2Re(1 − Mz cos θe)
, (2.4)

and with the integration performed over the blade planform Σ . We use L̃ to denote the
unsteady lift force per unit area and Jn to represent the nth Bessel function of the first kind.
The vectors x and xo denote, respectively, the current source position and the observer
position in the hub-fixed Cartesian coordinate system. The vector X denotes the current
source position in the blade-fixed Cartesian coordinate system. We have also introduced
(Re, θe, γ0) to denote the observer position in spherical emission coordinates (Sinayoko
et al. 2013), given by

xo = Re sin θe cos γ0, (2.5a)

yo = Re sin θe sin γ0, (2.5b)

zo = Re (cos θe − Mz) . (2.5c)

The acoustic wave frequency and wavenumber are given by ω and k = ω/c0, respectively,
where c0 is the speed of sound. The modal wavenumbers in the blade-fixed coordinate
system are given by

kL = kz cosα − (n/r) sinα, kC = kz sinα + (n/r) cosα, (2.6a,b)

where

kz = k cos θe/(1 − Mz cos θe), kr = k sin θe/(1 − Mz cos θe). (2.7a,b)

2.2. Aeroacoustic transfer function
The far-field pressure expression presented in § 2.1 remains a function of the lift forces
acting on the blade. We proceed to calculate the unsteady lift generated by the blades as
a consequence of turbulence ingestion by the rotor. Let us consider a two-dimensional
turbulence gust impinging on a blade cross-section. Its upwash velocity is given by

wg(X, t) = w̃g(kX) exp(ikX(Urt − X)), (2.8)

where Ur =
√

U2
z + U2

γ is the blade relative velocity, and Uγ = Ωr is the tangential
velocity. The streamwise wavenumber is given by kX = ω/Ur. Taylor’s frozen turbulence
hypothesis has been adopted here. We can introduce the aerofoil response function, g, by
writing the unsteady lift produced by the aerofoil interaction with a single sinusoidal gust
as (Amiet 1975)

L(X, t) = 2πρUrg(X, kX)w̃g(kX)eiωt, (2.9)

where ρ denotes the far-field uniform flow density. Note that the oscillatory behaviour in
the X direction has been absorbed into the aerofoil response function (g). The equivalent
frequency-domain result is obtained by integrating the contributions of all wavenumbers
and taking the Fourier transform. Its final form is (Amiet 1975)

L̃(X, ω) = 2πρUrg(X, kX)w̃g(ω), (2.10)

where we have used w̃g(kX) = Urw̃g(ω). A detailed derivation of g(X, kX) in the
high-frequency regime, following Amiet’s theory (Amiet 1976a), can be found in
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Appendix C.1 of Christophe (2011). Substituting (2.10) in the pressure field generated by
the mth blade (2.3) yields

p̃(m)(xo, ω) = iρ exp(−ikRe)

2Re(1 − Mz cos θe)

+∞∑
n=−∞

∫ rtip

rhub

kLJn(krr)Urw̃(m)g (r, ω − nΩ)

× exp(in(−γ0 + π/2 + φm)) exp(−ikCC/2)
∫ C/2

−C/2
g(X,KX)

× exp(−ikCX) dX dr, (2.11)

where KX = (ω − nΩ)/Ur. The aeroacoustic transfer function is defined as

L(kX, kC) = 2
C

∫ C/2

−C/2
g(X, kX) exp(−ikCX) dX. (2.12)

The definition of the aeroacoustic transfer function (2.12) can finally be introduced in
(2.11), yielding

p̃(xo, ω) = iCρ exp(−ikRe)

4Re(1 − Mz cos θe)

B−1∑
m=0

+∞∑
n=−∞

∫ rtip

rhub

kLJn(krr)Urw̃(m)g (r, ω − nΩ)

× exp(in(−γ0 + π/2 + φm)− ikCC/2)L(KX, kC) dr, (2.13)

where we have summed the contributions of each blade to obtain the total far-field pressure
p̃(xo, ω).

The aeroacoustic transfer function defined in (2.12) is a more general transfer function
than typically found in the literature because kC has not been substituted by a specific
value. The first-order term in Amiet’s high-frequency successive approximation method is
given by (Amiet 1976a)

L1(kX, kC) = − ieik̄C

π

√
k̄X + β2

r κ

√
κ − k̄′

XM2
r + k̄C

erf
[
(1 + i)

√
κ − k̄′

XM2
r + k̄C

]
, (2.14)

where k′
X = kX/β

2
r , βr = √1 − M2

r , κ = k̄′
XMr, Mr = Ur/c0 and the overbar denotes

quantities made non-dimensional with the length scale C/2. The error function of complex
argument, erf(z), is defined as

erf(z) = 2√
π

∫ z

0
e−t2 dt. (2.15)

The back-scattering correction is given by

L2(kX, kC) = exp(i(π/4 + k̄C))

θ1π

√
2π
(
k̄X + β2

r κ
)
[
(1 − exp(−2iθ1))+ (1 + i)

×
[
−E∗(4κ)+

√
2κ

2κ − θ1
exp(−2iθ1)E∗ (2(2κ − θ1))

]]
, (2.16)
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where θ1 = κ − k̄′
XM2

r + k̄C, and the Fresnel integral is defined as

E∗(z) =
∫ z

0

e−it
√

2πt
dt. (2.17)

The aeroacoustic transfer function is thus given by L = L1 + L2 or L = L1, with and
without trailing edge back-scattering effects, respectively.

For frequencies where the blade chord is compact we require another solution that is
valid in the low-frequency regime, i.e. for ωC/2c0(1 − M2

r ) < π/4 (Amiet 1975). The
pressure jump in this regime was studied by Amiet (1974) and the associated normalised
aerofoil response function is given by (Amiet 1989)

g(X̄, kX) = 1
βrπ

√
1 − X̄
1 + X̄

S(k̄′
x) exp(ik̄′

X(M
2
r X̄ + f (Mr))), (2.18)

where f (Mr) = (1 − βr) ln(Mr)+ βr ln(1 + βr)− ln(2), and S(k̄′
X) is the Sears function

given by

S(k̄′
X) = 2

πk̄′
X

(
H(1)

0 (k̄′
X)+ iH(1)

1 (k̄′
X)
) , (2.19)

where H(1)
n is the Hankel function of order n of the first kind. Note that the Sears response

function in (2.18) includes a compressibility correction. The interested reader is referred
to Amiet (1974, 1993) for details. The aeroacoustic transfer function follows immediately

L(kX, kC) = 1
βr

S(k̄′
X) exp(ik̄′

Xf (Mr))
[
J0(k̄′

xM2
r − k̄C)− iJ1(k̄′

XM2
r − k̄C)

]
. (2.20)

2.3. Far-field noise spectrum
The pressure field generated by the propeller was linked to the incoming turbulence in
§ 2.2 through an aeroacoustic transfer function for both low- and high-frequency gusts. We
proceed to calculate the power spectral density by adopting the following definition

Spp(xo, ω) = π

T
E
[
p̃(xo, ω)p̃

∗
(xo, ω)

]
, (2.21)

where E[. . .] denotes the expected value. Using (2.13) in this definition yields

Spp(xo, ω) = C2ρ2

16R2
e(1 − Mz cos θe)2

B−1∑
m=0

B−1∑
k=0

+∞∑
n=−∞

∫ rtip

rhub

∫ rtip

rhub

kLk′
LJn(krr)J′

n(k
′
rr

′)UrU′
r

× S(m,k)ww (r, r′, ω − nΩ)

× exp
(

i
2πn

B
(m − k)− i(kC − k′

C)C/2
)
L(KX, kC)L∗(K′

X, k′
C) dr dr′,

(2.22)

where

S(m,k)ww (r, r′, ω) = π

T
E
[
w̃(m)g (r, ω)w̃(k)

∗
g (r′, ω)

]
. (2.23)

The problem is thus reduced to calculating the blade-normal unsteady velocity
cross-spectrum, S(m,k)ww . Following Glegg et al. (2012), the Fourier transform of the gust
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velocity component normal to the blade is given by

w̃(m)g (r, ω) = 1
2π

∫ T

−T
n(m)i (r, τ )vi(x

(m)
LE (τ ), τ )e

−iωτ dτ, (2.24)

where v(x(m)LE (τ ), τ ) is the gust velocity vector in the hub-fixed coordinate system, which
is a function of the mth blade’s leading-edge position. The gust velocity is projected onto
the blade-normal direction by taking the inner product with the unit normal vector. These
are given by

x(m)LE (τ ) = [r cos γLE, r sin γLE, 0
]T
, (2.25a)

n(m)(r, τ ) = [− sinα sin γLE, sinα cos γLE,− cosα
]T
, (2.25b)

where γLE = Ωτ + φm. Substituting (2.24) in (2.23) and defining the cross-correlation as
Rij(x

(m)
LE , x(k)LE, τ − τ ′) = E[viv

∗
j ] yields

S(m,k)ww (r, r′, ω) = 1
4πT

∫ T

−T

∫ T

−T
n(m)i (r, τ )n(k)j (r′, τ ′)Rij(x

(m)
LE , x(k)LE, τ − τ ′)

× exp(iω(τ ′ − τ)) dτ dτ ′. (2.26)

This expression can be used to calculate the upwash velocity cross-spectrum from the
knowledge of the two-point velocity correlation in the plane of the rotor. This has the
advantage of accounting for the distortion of turbulence on approach to the rotor, bypassing
the modelling of this phenomena. It is particularly advantageous in cases where no
wavenumber spectrum is readily available or when one has access to direct measurements
of the velocity cross-correlation, see Glegg et al. (2015) as an example.

2.4. Turbulent upwash velocity cross-spectrum
In § 2.3, we derived an expression for the noise power spectral density which requires
knowledge of the turbulent upwash velocity cross-spectrum in the blade-fixed coordinate
system as an input. The upwash velocity cross-spectrum can be calculated directly
with (2.26) from time-domain measurements of the turbulence velocity in the rotor
plane, for example. However, in general it is more useful to express the upwash
velocity cross-spectrum as a function of the impinging turbulent velocity spectrum in
the hub-fixed coordinate system. Following Glegg et al. (2012), let us introduce the
correlation–spectrum pair of a homogeneous turbulence field as

Rij(x
(m)
LE , x(k)LE, τ − τ ′) =

∫ +∞

−∞
Φij(k) exp(ik · (x(m)LE − x(k)LE)+ iUzkz(τ − τ ′)) dk, (2.27)

where k = [kx, ky, kz]T is the wavenumber vector, and Φij(k) is the turbulent velocity
spectrum. Substituting this in (2.26), we obtain

S(m,k)ww (r, r′, ω) = 1
4πT

∫ +∞

−∞
Φij(k)

∫ T

−T

∫ T

−T
n(m)i (r, τ )n(k)j (r′, τ ′)

× exp(iω(τ ′ − τ)+ ik · (x(m)LE (τ )− x(k)LE(τ
′))+ iUzkz(τ − τ ′)) dτ dτ ′ dk. (2.28)
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H. Raposo and M. Azarpeyvand

We introduce the Jacobi–Anger expansion of exp(ik · x(m)LE (τ )), to obtain

exp(ik · x(m)LE (τ )) = exp(ikRr cos(Ωτ + φm − kγ ))

=
+∞∑

p=−∞
ipJp(kRr) exp(ip(Ωτ + φm − kγ )), (2.29)

where k2
R = k2

x + k2
y and kγ = arctan(ky/kx). The unit normal vector can be rewritten in

terms of complex exponentials as

n(m)(r, τ ) =
[
− sinα

ei(Ωτ+φm) − e−i(Ωτ+φm)

2i
, sinα

ei(Ωτ+φm) + e−i(Ωτ+φm)

2
,− cosα

]T

.

(2.30)

Using the expansion introduced in (2.29) for the mth and kth blades, and (2.30) in
(2.28), we obtain the full cross-spectrum of the blade-normal gust velocity component;
see Appendix A. Those expressions can be considerably simplified if we assume that the
blades are untwisted, i.e. that the blade pitch angle is small α � 1, leading to sinα ≈ 0
and cosα ≈ 1. This assumption is not uniformly valid along the blade radial direction.
However, it can be argued that because turbulence ingestion noise scales with the fourth
power of the blade relative velocity (Glegg & Devenport 2017), most of the far-field noise
originates in the vicinity of the blade tip. In this region, assuming that the blades operate
at low angles of attack, the pitch angle should be small due to the large ratio between the
propeller azimuthal velocity and the uniform flow velocity. In this paper, we have made the
simplifying assumption that the blades operate at zero angle of attack, and therefore the
pitch angle is given by (2.1). At the blade tip, i.e. for r = rtip, (2.1) can be written in terms
of the advance ratio, J = Uzπ/Ωrtip, as αtip = arctan(J/π). The blade tip pitch angle is
thus smallest when the rotor is operating at lower advance ratios. Under this assumption,
together with the argument that the majority of far-field noise originates in the blade tip
region, the untwisted blade approximation should be valid. This is investigated in § 4 for a
model cooling fan, an open propeller and a wind turbine. Introducing the approximations
sinα ≈ 0 and cosα ≈ 1 in (A2) and substituting the result in (A1) yields

S(m,k)ww (r, r′, ω) = 1
Uz

∫ 2π

0

∫ +∞

0
kR

+∞∑
p=−∞

Φ33(kz, kR, kγ )

× exp(ip(φm − φk))Jp(kRr)Jp(kRr′) dkR dkγ . (2.31)

This approximate expression, or the complete version in (A1), can be used in the result
obtained in § 2.3 for the far-field noise spectrum (2.22) and, together with the aeroacoustic
transfer functions in § 2.2, they define a complete model of turbulence ingestion noise. The
exact and approximate models are named ‘rotational model’ and ‘rotational model with
untwisted blade approximation’, respectively. The approximate formulation is of interest
as it can speed up far-field noise predictions.

Hereafter, we consider the particular case of homogeneous isotropic turbulence. This
type of idealised turbulence is advantageous because there are well-known analytical
expressions for the spectrum tensor Φij. The simplicity of the model, with only two
parameters, also enables straightforward comparisons between this turbulence ingestion
noise model and Amiet’s model described in § 3. It does not add unnecessary layers
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Turbulence ingestion noise in rotating blades

of complexity, when the goal of the comparison is to study other assumptions and
approximations made throughout the derivations. Note, however, that in practical
applications the assumption of homogeneous isotropic turbulence is not always valid.
The turbulent length scales most relevant to turbulence ingestion noise generation are
proportional to the radius of the rotor, and inversely proportional to the frequency of
interest. The relevant wavenumber range is thus bounded by the rotor radius at low
wavenumbers and the blade thickness at high wavenumbers (Simonich et al. 1986).
Therefore, for wind turbines, for example, noise arises from very large-scale atmospheric
turbulence which is unlikely to be homogeneous and isotropic. Conversely, for a cooling
fan, a propeller and even a helicopter rotor, the upstream turbulence can be modelled as
locally homogeneous and isotropic (Simonich et al. 1986). Furthermore, even in cases
where the upstream turbulence is homogeneous and isotropic, rotating blades are known
to distort turbulence in the streamtube on approach to the rotor disc, particularly in static
conditions; see, for example, Robison & Peake (2014) and Graham (2017).

2.5. Far-field pressure spectrum for homogeneous isotropic turbulence ingestion
As shown earlier, in order to evaluate the turbulent velocity upwash cross-spectrum, given
by (A1), one needs prior knowledge of the turbulent velocity energy spectrum. In the case
of homogeneous isotropic turbulence, the energy spectrum is given by (see e.g. Christophe
2011)

Φij(k1, k2, k3) = A
|k̂|2δij − k̂ik̂j(

1 + k̂2
1 + k̂2

2 + k̂2
3

)17/6 , i, j = {1, 2, 3}, (2.32)

with

A = 55Γ (5/6)u2

36π
√

πΓ (1/3)k3
e
, ke =

√
πΓ (5/6)
ΛΓ (1/3)

, (2.33a,b)

where Γ is the gamma function, δij is the Kronecker delta and the hat denotes variables
made non-dimensional with ke. Note that (k1, k2, k3) = (kx, ky, kz). The energy spectrum
is fully characterised by the mean square of the turbulent velocity fluctuations, u2, and the
turbulence integral length scale, Λ.

The energy spectrum in (2.32) can be used directly in (A1) to calculate the
cross-spectrum of the blade-normal gust velocity component. Alternatively, a simpler
result that is faster to compute can be obtained by substituting the energy spectrum of
the streamwise turbulent velocity fluctuations given by (2.32) in (2.31) and integrating
over the azimuthal wavenumber kγ , yielding

S(m,k)ww (r, r′, ω) = 2πA
Uz

∫ +∞

0

+∞∑
p=−∞

kR
k̂2

R(
1 + k̂2

R + k̂2
z

)17/6 Jp(kRr)Jp(kRr′)

× exp(ip(φm − φk)) dkR. (2.34)
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Finally, the upwash velocity cross-spectrum given in (2.34) can be substituted in (2.22) to
obtain the far-field pressure spectrum at the observer location xo as

Spp(xo, ω) = C2ρ22πA
Uz16R2

e(1 − Mz cos θe)2

B−1∑
m=0

B−1∑
k=0

+∞∑
n=−∞

+∞∑
p=−∞

×
∫ +∞

0

k̂2
R(

1 + k̂2
R +

(
ω − ( p + n)Ω

U∞ke

)2
)17/6 kR exp

(
i2π(m − k)( p + n)

B

)

×
∣∣∣∣∫ rtip

rhub

kLUrJn(krr)Jp(kRr)L(KX, kC) exp(−ik̄C) dr
∣∣∣∣2 dkR. (2.35)

Note that the dependence on the blade numbers m and k appears in the form (m − k)
and that, therefore, we need only perform the calculation for every (m − k) combination.
Physically, this means that the far-field pressure cross-spectrum of the noise radiated by
two blades of the rotor is independent of the particular blades in question, but rather
depends on their relative azimuthal position. This reduces the computational time to
evaluate (2.35) significantly as only 2B − 1 terms of the double sum over the blade
numbers must be computed, instead of B2 terms.

3. Revised Amiet’s theory

In this section we re-derive the turbulence ingestion noise model of Amiet. We revisit the
calculation of the time between blade chops of the same turbulent eddy as heard by the
observer. This time interval fundamentally governs blade-to-blade correlation effects in
the modelling strategy developed by Amiet. The present derivation will be compared to
previous publications such as those of Paterson & Amiet (1979), Amiet (1989) and, more
recently, Karve et al. (2018). In § 4, it will be shown that the revised theory yields correct
predictions of haystacking tones.

3.1. Noise radiated by aerofoil cascade in rectilinear motion
Consider a cascade of aerofoils moving in rectilinear motion with velocity Ur at zero angle
of attack, with a constant and equal offset between adjacent blades as shown in figure 2.
The coordinate system (X, Y, Z) is centred mid-chord and mid-span of the zeroth aerofoil,
with X in the chordwise downstream direction, Y in the spanwise direction and Z in the
wall-normal direction. Let us consider a three-dimensional turbulence gust impinging on
the cascade of aerofoils with its upwash velocity given by

wg(X, Y, t) = w̃g(kX, kY) exp(i[kX(Urt − X)+ kYY]). (3.1)

The gust–aerofoil interaction generates unsteady pressure disturbances at the surface of
the aerofoil, which, in turn, radiates noise. The far-field pressure power spectral density is
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Figure 2. Blade cascade diagram. Turbulent eddy path in the blade-fixed coordinate system highlighted with
dashed red line. Figure adapted from Karve et al. (2018).

given by (Amiet 1989)

S(m)pp (X o, ω) = Ur

(
kρZob

s2
o

)2 ∫ +∞

−∞

∫ +∞

−∞
Φww(kX, kY , kZ)|La(kX, kY)|2

× exp(−imkZsn)

sin2
(

d
(

kYo

so
− kY

))
(

kYo

so
− kY

)2 dkY dkZ, (3.2)

where X o denotes the observer position in the blade-fixed coordinate system, and b
and d denote the aerofoil semi-chord and semi-span, respectively. The turbulence gust
streamwise wavenumber is given by kX = ω/Ur, and kY and kZ denote the spanwise
and wall-normal wavenumbers respectively, with all three components defined in the
blade-fixed coordinate system. The amplitude radius, so, is approximated to zeroth order
by

so = X2
o + β2

r

(
Y2

o + Z2
o

)
, (3.3)

where βr = √1 − M2
r . We have further introduced the turbulent upwash velocity spectrum

in the blade-fixed coordinate system, Φww(kX, kY , kZ), and the blade-normal distance
between two consecutive blades in the unwrapped cascade, sn, as shown in figure 2. The
aeroacoustic transfer function is given by

La(kX, kY) = 2
C

∫ C/2

−C/2
g(X, kX, kY) exp(−iκ(Mr − X0/so)X) dX. (3.4)

Equation (3.4) differs from that introduced in § 2.2 in that it accounts for three-dimensional
turbulence gusts. A detailed derivation of the aeroacoustic transfer function in the
high-frequency regime can be found in Appendix C.1 of Christophe (2011). For
frequencies where the blade chord is compact we require another solution that is valid
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in the low-frequency regime, i.e. for ωC/2c0(1 − M2
r ) < π/4 (Amiet 1975). In this case,

we use the aerofoil transfer function given by Amiet (1989).
The far-field noise power spectral density given by (3.2) is further simplified if we

consider an infinite-span aerofoil, in which case

S(m)pp (X o, ω) =
(

kρZob
s2

o

)2

π dUr

∫ +∞

−∞
Φww(kX, kY , kZ)|La(kX, kY)|2

× exp(−imkZsn) dkZ, (3.5)

where the spanwise wavenumber is now given by kY = kYo/so.

3.2. Blade-to-blade correlation
In § 3.1, we considered the noise generated by a single blade in rectilinear motion. In
this section, we incorporate the effects of noise source correlation between blades in
the far-field noise prediction. These effects are more prominent when consecutive blades
chop the same turbulent eddy as it travels through the rotor. This equates to satisfying the
condition BΩΛ/Uz � 1 (Glegg et al. 2012; Glegg & Devenport 2017).

3.2.1. Time between blade chops
Of particular importance to the model developed by Amiet (1989) is the time, as seen
by the observer, between blade chops. Figure 2 is particularly useful to a physical
understanding of the quantities involved. The blade-normal distance between two blades
is given by

sn = sb sinα. (3.6)

The reader is reminded that Ur =
√

U2
z + U2

γ is the blade relative velocity, where Uz is
the axial flow velocity and Uγ = Ωr is the tangential velocity. The distance between two
consecutive blades in the unwrapped azimuthal direction can be expressed in terms of the
velocity in this direction, Uγ , and the blade-passage time TB = 2π/BΩ , as

sb = Uγ TB. (3.7)

Substituting (3.7) in (3.6) and knowing that sinα = Uz/Ur yields

sn = UγUzTB

Ur
. (3.8)

The time between eddy chops is the time it takes for the wavefront of an eddy to travel
from the leading edge of the first blade to the leading edge of the second blade. From
figure 2, this distance is given by sb cosα. Moreover, in the blade-fixed coordinate system
the turbulent eddy travels in the downstream direction with velocity Ur. The time between
eddy chops is thus given by

TC = sb cosα
Ur

, (3.9)

which, using (3.7), equates to

TC = U2
γ TB

U2
r
. (3.10)

We must now calculate the time between blade chops from the perspective of the observer.
Let us denote by τ (0) and τ (−1) the time taken for the acoustic waves to travel from blade
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Turbulence ingestion noise in rotating blades

0 and blade −1 to the observer, respectively. The time between blade chops as seen by the
observer, TO, can then be expressed as

TO = TC + τ (−1) − τ (0). (3.11)

The time for sound waves to travel from the zeroth blade to the observer is, by definition,
given by the phase radius divided by the speed of sound (Garrick & Watkins 1953).
Approximating the phase radius by retaining the zeroth-order terms of its Taylor expansion
about the origin of the coordinate system yields

τ (0) = so − MrXo

β2
r c0

, τ (−1) = s′
o − MrX′

o

β2
r c0

, (3.12a,b)

where the dash indicates observer coordinates measured in the coordinate system
(X′, Y ′, Z′) centred mid-chord and mid-span of blade −1. The relationship between the
two sets of coordinates, expressed in vectorial form as X o and X ′

o, is expressed as

X o = X ′
o + X BB, (3.13)

where the separation between the two blades, as seen from figure 2, is given by

X BB =
[√

s2
b − s2

n, 0, sn

]T

. (3.14)

We now turn to the calculation of τ (−1). The first step is to develop the amplitude radius
s′

o, given by

s′
o =

√
X′2

o + β2
r
(
Y ′2

o + Z′2
o
)
, (3.15)

which after change of variables using (3.13) and Taylor expansions, retaining terms up to
first order, yields

s′
o = so − Uγ TB

Urso

(
XoUγ + β2

r UzZo

)
. (3.16)

This result allows us to readily calculate (τ (−1) − τ (0)) from (3.12) and (3.13) as

τ (−1) − τ (0) = Uγ TB

Ursoβ2
r c0

[
Uγ (Mrso − Xo)− β2

r UzZo

]
. (3.17)

The time between blade chops as seen by the observer, TO, can finally be evaluated by
(3.11), together with (3.10) and (3.17). This is one of the key contributions of this paper.

3.2.2. Comparison with previous works
Let us compare (3.17) with the equivalent results of Paterson & Amiet (1979), Amiet
(1989) and Karve et al. (2018). Paterson & Amiet (1979) concluded that the time between
blade chops as seen by the observer is given by TO = TC and, thus, neglected the time
difference that the acoustic waves take to propagate from each blade to the observer given
here by (3.17). Amiet (1989) extended the model of Paterson & Amiet (1979) to consider
this aspect of the problem. In that report, the authors arrived at the following result for the
acoustic wave propagation time difference

τ (−1) − τ (0) = |�X o|
β2

r c0so
(soMr − Xo) , (3.18)

where |�X o| = U2
z Uγ TB/U2

r . This is in disagreement with our own calculation in (3.17).
No clear derivation was presented, although it appears the authors have sought to consider
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the assumed rectilinear movement of the blades relative to the observer during the time
between blade chops. In our derivation, this would manifest as an additional term in (3.13).
Although in the first instance this seems to be a reasonable approach, it conflicts with the
implicit assumption made in § 3.1 that the observer is fixed with respect to the cascade of
aerofoils. The relative motion between the two is only addressed in § 3.3.

More recently Karve et al. (2018) presented their own result for the time between blade
chops as heard by the observer. However, no detailed derivation was presented. Their result
for the acoustic wave propagation time difference is given by

τ (−1) − τ (0) = −UγUzTBZo

Urc0so
, (3.19)

which is equal to the second term of the result presented in this paper in (3.17). The authors
appear to have only accounted for one of the components in the blade offset vector X BB.
However, their overall approach of considering a fixed observer with respect to the cascade
of aerofoils is in agreement with the present approach, while contrasting with that of Amiet
(1989). In § 4, we show numerical evidence that both their result and that of Amiet (1989)
lead to incorrect far-field pressure power spectral densities, failing to predict haystacking
tones which are a prominent feature of turbulence ingestion noise spectra.

3.2.3. Far-field pressure spectrum
Paterson & Amiet (1979) argued that the far-field autocorrelation function consists of
a series of peaks, where the mth peak represents the correlation between the noise
originating in the zeroth blade and the noise originating in the mth blade. Mathematically,
this is represented as

Rpp(X o, t) =
+∞∑

m=−∞
R(m)pp (X o, t + mTO), (3.20)

where R(m)pp denotes the cross-correlation between the far-field pressure generated by the
zeroth and the mth blade, and TO is the time between blade chops as heard by the observer
given by (3.11). The far-field pressure spectrum is obtained by taking the Fourier transform,
yielding

Spp(X o, ω) =
+∞∑

m=−∞
S(m)pp (X o, ω) exp(imωTO), (3.21)

where S(m)pp (X o, ω) is given by (3.5) or (3.2), with and without an infinite-span wing
assumption, respectively. Substituting (3.5) in (3.21), we obtain

Spp(X o, ω) =
+∞∑

m=−∞

(
kρZob

s2
o

)2

πUrd
∫ +∞

−∞
Φww(kX, kY , kZ)|La(kX, kY)|2

× exp(im(−kZsn + ωTO)) dkZ . (3.22)

Using the delta Dirac train identity

+∞∑
m=−∞

exp(i2πma) =
+∞∑

m=−∞
δ(m − a), (3.23)
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we obtain

Spp(X o, ω) =
(

kρZob
s2

o

)2 2π2Urd
sn

|La(kX, kY)|2
+∞∑

m=−∞
Φww(kX, kY , kZ), (3.24)

where kX = ω/Ur, kY = kYo/so and kZ = (ωTO − 2πm)/sn. Alternatively, if blade-to-
blade correlation effects are negligible, i.e. if the condition (BΩΛ/Uz) � 1 is not
respected (Glegg et al. 2012; Glegg & Devenport 2017), the far-field power spectral density
is simply given by (3.5) with m = 0.

For homogeneous isotropic turbulence, the full energy spectrum is given by (2.32).
The turbulence upwash velocity spectrum in the blade-fixed coordinate system is readily
obtained by considering that isotropic turbulence has invariant properties under rotation,

Φww(kX, kY , kZ) = A
k̂2

X + k̂2
Y(

1 + k̂2
X + k̂2

Y + k̂2
Z

)17/6 , (3.25)

where A is given by (2.33).

3.3. Noise radiated by rotating blades
The far-field pressure spectrum in (3.24) corresponds to the noise generated by a cascade of
aerofoils in rectilinear motion. In the context of Amiet’s theory (Amiet 1989), thoroughly
and clearly described in Sinayoko et al. (2013), it represents an approximation to the
instantaneous power spectral density generated by a strip of rotating blades at a given
azimuthal angle. Amiet argued that this is a suitable approximation when the source
frequency is much larger than the rotor angular velocity, i.e. ω � Ω . Obtaining the total
far-field pressure spectrum requires:

(i) applying a Doppler effect correction to account for the movement of the observer
relative to the blade;

(i1) averaging the instantaneous power spectral density over all azimuthal angles;
(iii) summing the contributions of each blade strip.

Sinayoko et al. (2013) provides a complete description of steps (i) and (ii), which we will
not reproduce here. A summary of the key results is given instead. Step (iii) alludes to the
use of strip theory, where rotor blades are divided into small strips and the total far-field
power spectral density is given by the sum of the individual, uncorrelated contributions of
each strip.

The time-averaged power spectral density from the jth strip element of rotating blades
is given by (Sinayoko et al. 2013)

S( j)
pp (xo, ω) = 1

2π

∫ 2π

0

(
ω′

ω

)2

S( j)
pp (X o, ω

′, γ ) dγ, (3.26)

where S( j)
pp (X o, ω

′, γ ) is the power spectral density given by (3.24) or (3.5), for cases with
or without blade-to-blade correlation effects, respectively. We have now made the power
spectral density an explicit function of the azimuth angle and the blade strip number; the
latter serves to acknowledge the dependence of the results obtained in § 3.2.3 on the radial
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position as a result of varying geometric properties and flow conditions. The factor ω′/ω
is the Doppler-shift correction for each azimuth angle and each blade strip, as given by

ω

ω′ = 1 + MBO · ĈO
1 + (MFO − MBO) · ĈO

, (3.27)

where MBO and MFO are the blade and fluid Mach number vectors relative to the observer,

MBO = [−Mγ sin γ,Mγ cos γ, 0
]T
, MFO = [0, 0,−Mz

]T
, (3.28a,b)

where Mγ = Uγ /co, and ĈO is the unit vector from the convected source position, xc, to
the observer position, xo,

ĈO = xo − xc

|xo − xc| , (3.29)

with xc = MFORp. The propagation distance, Rp, is, in turn, given by

Rp =
|xo|

(
−|MFO| cosΘ +

√
1 − |MFO|2 sin2Θ

)
1 − |MFO|2 , (3.30)

where Θ denotes the angle between MFO and xo. It remains to calculate the observer
position in the blade-fixed coordinate system X o. From Sinayoko et al. (2013), we know
that

X o = Ry(α)Rz(π/2 − γ )
(
xo − xp

)
, (3.31)

where Ry and Rz are rotation matrices given by

Rz(θ) =
⎛⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞⎠ , Ry(θ) =
⎛⎝cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞⎠ , (3.32a,b)

and xp is the present source position, approximated by

xp = MBORp. (3.33)

We now have all the information to calculate (3.26). It remains to sum up the power
spectral density contributions of each blade strip. The blades are divided into Ns segments
following a logarithmic distribution with clustering in the blade tips. The flow and
geometric quantities of each strip needed to calculate the far-field pressure spectrum are
given by their values at the centre of the strip. The total power spectral density is then
given by the sum of the individual contributions in (3.26), as

Spp(xo, ω) = B
Ns∑

j=1

S( j)
pp (xo, ω). (3.34)

4. Results and discussion

In this section we compare the model for turbulence ingestion noise presented in § 2
with the derivation of Amiet’s theory presented in § 3, and validate both models through
comparisons with experimental data. The two turbulence ingestion noise models differ in
several aspects. The new formulation takes into account the rotational motion of the blades,
whereas Amiet’s theory assumes that, on the time scales of noise radiation, the blades can
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be considered to be in rectilinear motion (ω � Ω). In addition, the model presented in
this paper includes the cross-correlation between the sound pressure generated at different
radial segments of the blade. In contrast, Amiet’s theory relies on strip theory with an
infinite-span assumption to calculate the total far-field spectrum as the sum of uncorrelated
contributions from each blade strip. The main drawback of the rotational formulation as
compared with Amiet’s theory is that three-dimensional gusts are not considered, although
it is precisely this feature of the model that ultimately enables the analytical calculation of
cross-correlations across the blade span. We proceed to study the effect of this assumption
on far-field noise predictions for a stationary aerofoil before comparing the rotational
formulation against Amiet’s theory for rotating blades.

4.1. Effects of two-dimensional turbulent flow approximation in stationary aerofoil
Let us consider a stationary aerofoil with a flat-plate geometry of span 2d and chord 2b in
a uniform flow of velocity Ur at zero angle of attack. The far-field pressure power spectral
density for observer coordinates X o = (0, 0, Zo) under a two-dimensional turbulent flow
approximation is given by

Spp(X o, ω) =
[

kZoρb
2s2

o

]2

Ur|La(kX, 0)|2
∫ d

−d

∫ d

−d
Θww(δY, kX = ω/Ur) dY dY ′, (4.1)

with Θww(δY, ω/Ur) denoting the one-dimensional upwash velocity cross-spectra as a
function of the spanwise spatial separation δY = Y − Y ′. It is given by (see e.g. Wilson
1997)

Θww(δY, ω/Ur) = 21/6u2
√

πkeΓ (1/3)

(
ξ

1 + ω̄2

)5/6
[

4
3

K5/6(ξ)− ξ

2
(
1 + ω̄2

)K11/6(ξ)

]
,

(4.2)

where ξ2 = k2
eδY

2(1 + ω̄2), ω̄ = ω/(keUr) is the reduced frequency and Kν is the
modified Bessel function of the second kind of order ν.

In figure 3(a) the new formulation given by (4.1) (‘2-D – finite-span’) is compared
with Amiet’s theory with and without an infinite-span assumption (‘3-D – infinite-span’
and ‘3-D – finite-span’), as given by (3.5) and (3.2), respectively. Power spectral density
predictions by these three formulations are compared for a flat-plate of chord 0.3 m and

span 1.5 m within homogeneous isotropic turbulence with turbulence intensity
√

u2/Ur =
0.05 and length scale Λ = 0.1 m, and in a uniform flow (Mr = 0.6). The observer is
positioned overhead in the centreline plane, with coordinates (Xo, Yo, Zo) = (0, 0, 200d).
The reference pressure is pref = 2 × 10−5 Pa.

We observe excellent agreement at reduced frequencies higher than kC ≈ 0.5. The
assumptions of infinite-span and two-dimensional flow begin to break down for
frequencies lower than this value. The two-dimensional turbulent flow approximation
tends to result in an overestimate of the power spectral density because every spanwise
wavenumber is considered to radiate as efficiently as a two-dimensional gust. In other
words, (2.10) lumps together the contributions of all spanwise wavenumbers into the point
spectrum w̃g(ω) without accounting for the fact that the aerofoil response function varies
with the turbulent gust spanwise wavenumber. This can be shown to fully explain the
difference in results between the finite-span formulation of Amiet and the two-dimensional
approximation derived in this section by forcing La(kX, kY) = La(kX, 0) in Amiet’s
formulation given by (3.2) (not shown here).
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Figure 3. Far-field pressure power spectral density for a stationary flat-plate geometry (2b = 0.3 m, 2d =
1.5 m) within homogeneous isotropic turbulence with turbulence intensity

√
u2/Ur = 0.05 and length scale

Λ = 0.1 m, and in a uniform flow (Mr = 0.6). Observer is positioned overhead in the centreline plane,
(Xo,Yo,Zo) = (0, 0, 200d). (a) Comparing Amiet’s theory with and without infinite-span assumption (‘3-D –
infinite-span’ and ‘3-D – finite-span’, respectively), and two-dimensional approximation (‘2-D – finite-span’).
(b) Comparing Amiet’s finite-span theory with direct strip theory based on the same formulation.

Figure 3(b) illustrates the use of strip theory based on Amiet’s finite-span formulation
(3.2) with Ns strips, where Ns varies between 2 and 10 in increments of 2. As can be
seen, the results do not converge when increasing the number of strips, particularly at
low reduced frequencies. It can be shown that the difference between the finite-span
formulation and the results of applying strip theory is exclusively due to neglecting
cross-spectrum contributions between strip elements. Note that the two-dimensional
formulation in (4.1), and its equivalent for rotating blades found in § 2, account for this;
these formulations lend themselves to strip theory more naturally as the total noise appears
as an integral of the contributions along the spanwise or radial directions. As such, its
results in figure 3(a) (‘2-D – finite-span’) are comparable to the results of strip theory
in figure 3(b) when considering the stationary aerofoil as a simple test subject of the
methodology that is applied to a rotating blade. In the case of rotating blades a ‘true’
solution such as the ‘3-D – finite-span’ line is not available, and only stripping methods
can be used.

When applying these methods to rotors, there is a need to discretise the blades into
a large number of thin strips to capture changes in geometry and flow conditions in the
radial direction. Figure 3(b) shows that refining the blade discretisation is problematic
because the far-field spectrum becomes increasingly under-predicted at lower frequencies.
To remove the arbitrary choice of the number of strips, Ns, it is often the case that an
infinite-span assumption is made for each strip (as in (3.5) and (3.24)). This results in
predictions which do converge with the number of strips. In the case of a stationary
aerofoil, the result is even invariant with respect to the number of strips and equal to
the result shown in figure 3(a) with the label ‘3-D – infinite-span’. The infinite-span
simplification is based on the argument that each blade strip should be wider than the
turbulence correlation length scale. However, this justification cannot hold valid for all
frequencies, nor is it necessarily compatible with the need to discretise the blade in such a
way as to capture changes in geometry and flow conditions.

4.2. Definition of rotating blade test cases
We define three test cases in table 1 to evaluate the turbulence ingestion noises models
derived in this paper. These test cases were initially proposed by Blandeau & Joseph (2011)
and used by Sinayoko et al. (2013) in their studies of trailing-edge noise. They are chosen
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Turbulence ingestion noise in rotating blades

Cooling fan Open propeller Wind turbine

C (m) 0.13 0.31 2
rtip (m) 0.4 1.8 29
RPM (s−1) 600 1800 25
Mz 0.0354 0.229 (take-off) 0.029
B 2 6 3
BΩC/(2c0(1 − M2

r )) 0.023 64.5 0.024

Table 1. Typical parameters for different types of rotors proposed by Blandeau & Joseph (2011).

to represent a wide range of potential applications. It is worth noting that the present
turbulence ingestion noise models were derived under the assumption of a rigid blade.
This approximation is especially of concern for wind turbines and should be investigated
if the models are to be used for rotors where blade flexibility is significant. One simple
approach would be to consider the sensitivity of the results to considering the deflected
blade geometry as opposed to the rigid blade geometry. This is a topic of future research.

The angle of attack is zero across all cases and, thus, the pitch angle is governed by
(2.1). We further define the hub radius as rhub = 0.1rtip. The observer is positioned in
the plane of the rotor, at (xo, yo, zo) = (20rtip, 0, 0). The turbulence intensity is equal

to
√

u2/Uz = 0.075 and the turbulence length scale is such that the non-dimensional
parameter governing blade–blade interactions is constant, BΩΛ/Uz = 4. This ensures that
haystacking around the blade-passing frequencies will be a prominent feature of the power
spectral densities (Glegg et al. 2012; Glegg & Devenport 2017).

In the last row of table 1 we assess the criterion ωC/2c0(1 − M2
r ) < π/4, which defines

the changeover between the two frequency regimes of the aeroacoustic transfer function.
The values are calculated at the blade tip radius for ω = 2πBΩ . This serves as an indicator
of the frequency regime of each test case. Based on this criterion, we choose to use
the high-frequency aeroacoustic transfer function for the open propeller, and the Sears
response function for the cooling fan and wind turbine.

4.3. Turbulent upwash velocity cross-spectrum comparisons
In this section we assess the untwisted blade approximation introduced in § 2.4 by
evaluating the turbulent upwash velocity cross-spectrum for each test case in its exact
and approximate forms. The approximate formulation is of interest as it can speed up
far-field noise predictions. Its faster runtime is mainly due to the simplification of the
double integral in the radial direction (see (2.22)) to a single integral (see (2.35)).
This speedup is not restricted to the case of homogeneous isotropic turbulence. The
approximate formulation is also beneficial in cases where experimental data are used to
directly calculate the upwash velocity cross-spectrum through (2.26), both because the
evaluation of the expression is less costly, and because the experimental apparatus can be
simplified if only one velocity component needs to be measured.

Figure 4 presents the exact evaluation of the upwash velocity cross-spectrum using (A1),
as well as an approximate solution given by (2.31), where the blade pitch angle is assumed
to be zero. We chose to present the auto-spectrum at the blade root (r = r′ = rhub) and
the blade tip (r = r′ = rtip), and the cross-spectrum at the tips of two consecutive blades
(designated ‘cross-blade tip’). The latter was chosen because blade-to-blade correlation is
the cause of the haystacking phenomenon.
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Figure 4. Exact upwash velocity power spectral density given by (A1) for homogeneous isotropic turbulence at
blade tip (r = r′ = rtip) [thick solid red line], blade root (r = r′ = rhub) [thick dashed red line] and cross-blade
tip (r = r′ = rtip) [thick dash-dotted red line]. The black hollow markers show the approximate upwash velocity
power spectral density given by (2.31) at each radial distance. (a) Cooling fan, (b) open propeller and (c) wind
turbine.

As can be seen from the results in figure 4, generally good agreement is found between
the full and approximate evaluations of the upwash velocity cross-spectrum for the cooling
fan, open propeller and wind turbine, thus showing the robustness of this approximation.
Exceptionally good agreement is observed in the open propeller and wind turbine cases.
The analysis in § 2.4 shows that the untwisted blade approximation should be more
accurate for rotors operating at low advance ratios. Therefore, the better agreement
observed in the case of the open propeller and wind turbine is to be expected since they
operate at advance ratios J = 0.74 and J = 0.42, respectively, whereas the cooling fan
operates at J = 1.55. It is further observed that in all three cases agreement deteriorates
when considering the auto-spectrum at the blade root. This is an anticipated behaviour
since the blade pitch angle increases with decreasing radial position.

4.4. Far-field noise comparisons
In this section we compare the turbulence ingestion noise model presented in this paper
with Amiet’s theory for rotating blades. For clarity, the equations used in each model are
summarised as follows.

(i) Rotational model: far-field spectrum is given by (2.22), where the upwash velocity
cross-spectrum is determined by (A1) using the homogeneous isotropic turbulence
spectrum in (2.32) as an input. This model is referred to as the rotational model.

(ii) Rotational model with untwisted blade approximation: the far-field
spectrum is given by (2.35), which was derived from the rotational model by
introducing an untwisted blade approximation. In what follows, we refer to this
model as the rotational model with untwisted blade approximation.
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Figure 5. Far-field pressure power spectral density for three different types of rotors. (a) Cooling fan with
Sears response function, (b) open propeller with first-order high-frequency aeroacoustic transfer function and
(c) wind turbine with Sears response function. Comparison between the rotational model in § 2 and Amiet’s
theory in § 3. Each model is summarised in § 4.4.

(iii) Amiet’s model: the far-field spectrum in (3.34) is given by the uncorrelated sum of
each strip’s contribution as calculated by (3.26), where the noise produced at each
azimuthal position is given by (3.5) with m = 0 for cases without blade-to-blade
correlation effects. This model is referred to as the standard Amiet model.

(iv) Amiet’s model with blade-to-blade correlation: the inclusion of blade-to-blade
correlation effects requires only replacing (3.5) in Amiet’s model with (3.24). In the
rest of the paper, we refer to this model as the revised Amiet model.

Both the rotational model and Amiet’s theory for rotating blades have the option of using
a high-frequency approximation to the aeroacoustic transfer function (with or without a
back-scattering correction) or a Sears response function.

The numerical evaluation of these equations is straightforward but it is important to
make sure that the results are converged with respect to several parameters. For Amiet’s
model, attention is paid to the number of blade strips, the number of azimuthal points
and the number of blade-to-blade interactions (i.e. truncation of the sum in (3.24)). For
the rotational model, we consider the number of points in the radial discretisation of the
blade; the number of terms in the infinite series involving Bessel functions; and the size
and discretisation of the domain of integration over the radial wavenumber.

In figure 5 we compare the power spectral density prediction of the four models
described previously for the three test cases summarised in table 1. There is excellent
agreement between the revised Amiet model and the rotational model across the three
test cases. Agreement is particularly exceptional for the open propeller and wind turbine.
Both models capture the energy haystacking around multiples of the blade-passing
frequency (20 Hz, 180 Hz and 1.25 Hz for the cooling fan, open propeller and wind
turbine, respectively). The results of the standard Amiet model are presented for reference.
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Figure 6. Far-field pressure power spectral density (10 log10(Spp/p2
ref )) directivity (0◦ corresponds to an

observer position downstream of the propeller) in the mid-plane (yo = 0) for fixed observer distance (|xo| =
20rtip). Comparison between the revised Amiet model (-·- ·�), rotational model (—— �) and rotational model
with untwisted blade approximation (- - - •). Sears response function used throughout all computations. First
row, cooling fan; second row, open propeller; third row, wind turbine. First column, f /BPF = 0.55; second
column, f /BPF = 1.66; third column, f /BPF = 5.0.

Comparison with the other models shows that blade-to-blade correlation leads to a
redistribution of energy, with concentration around the blade-passing frequencies.

Considering the differences between the rotational model with an untwisted blade
approximation and the full model leads to the same conclusions drawn in the previous
section where the upwash velocity cross-spectrum was examined. Generally good
agreement is found across all test cases, but the approximation is more precise for the
open propeller and wind turbine which operate at lower advance ratios. For the cooling
fan, differences are under 3.2 dB. It is also in this test case that we observe the largest
differences between the rotational model and the revised Amiet model. This appears to
be unrelated to rotational effects since the ratio ω/Ω is similar for the wind turbine and
yet no differences are observed in this case. We hypothesise that it is related to the relative
size of turbulence length scale to the rotor blades. This ratio,Λ/rtip, is approximately 1 for
the cooling fan and approximately 0.2 for the other test cases. Large spanwise correlation
lengths run contrary to the assumption in Amiet’s theory that each strip can be modelled
independently, without accounting for noise source correlation across the span of the
blade. This aspect is further investigated in § 4.4.1.

Figure 6 compares the power spectral density directivity in the propeller mid-plane
(yo = 0) as predicted by the revised Amiet model and the rotational model, in its full
and approximate forms, for the three test cases summarised in table 1. Note that the Sears
response function was used in all computations here, including the open propeller. This
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Figure 7. Effect of turbulence length scale on the far-field pressure power spectral density of the cooling fan:
(a) BΩΛ/Uz = 4 (- - -) and BΩΛ/Uz = 2 (——); (b) BΩΛ/Uz = 1 (- - -) and BΩΛ/Uz = 0.5 (——). The
colours and markers in the legend distinguish between the different models.

is because, as seen from figure 5(b), the power spectral density can be very ‘peaky’
near exact multiples of the propeller angular velocity. The reason for this is that the
first-order high-frequency approximation to the aeroacoustic response function in (2.14)
tends to infinity when ω → 0; from (2.35), and knowing that KX = (ω − nΩ)/Ur, it
can be seen that this causes the power spectral density to tend to infinity too. The
immediate conclusion from this observation is that the high-frequency approximation to
the aeroacoustic response function alone cannot be used in the rotational model. Either
a uniformly valid response function (Posson, Moreau & Roger 2010) or a composite
asymptotic approximation should be used instead in order to model the full range of
frequencies. This aspect merits further investigation but it is beyond the scope of this
paper.

The results in figure 6 show the expected dipole directivity pattern of turbulence
ingestion noise. The comparison between the three models at different observer polar
angles reinforces the conclusions drawn from the spectrum at single observer position:
(i) the untwisted blade approximation is more precise for the open propeller and wind
turbine which operate at lower advance ratios; (ii) the revised Amiet model is in good
agreement with the rotational model.

4.4.1. Isotropic turbulence length scale
We now focus on the effects of varying the isotropic turbulence length scale. We
restrict our attention to the cooling fan and the wind turbine. The power spectral density
spectrum is shown in figures 7 and 8, respectively, for the parameters BΩΛ/Uz =
{0.5, 1.0, 2.0, 4.0}. It is observed that Amiet’s standard and revised models tend to be
in good agreement when the turbulence length scale decreases such that no haystacking is
present. In the case of wind turbine, very good agreement is found between the rotational
model and Amiet’s theory for all turbulence length scales. Crucially, in the case of
the cooling fan, reduced turbulence length scales lead to improved agreement in the
low-frequency region of the spectrum. This supports our earlier hypothesis that the poor
agreement in figure 5(a) around f /BPF = 1 when BΩΛ/Uz = 4 was related to the relative
size of turbulence length scale to the rotor blades. Amiet’s theory relies on strip theory to
calculate the total far-field spectrum as the sum of uncorrelated contributions from each
blade strip. Therefore, it is expected that it should lose accuracy for larger ratios ofΛ/rtip,
i.e. when the turbulent eddies are correlated over a larger portion of the blade.

980 A53-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.7


H. Raposo and M. Azarpeyvand

1 2 3 4 5

f/BPF

10

15

20

25

1
0
lo

g
1
0
(S

pp
/
p2 re

f)

1 2 3 4 5

f/BPF

0

10

20

Revised Amiet model
Standard Amiet model
Rotational model

(a) (b)

Figure 8. Effect of turbulence length scale on the far-field pressure power spectral density of the wind turbine:
(a) BΩΛ/Uz = 4 (- - -) and BΩΛ/Uz = 2 (——); (b) BΩΛ/Uz = 1 (- - -) and BΩΛ/Uz = 0.5 (——). The
colours and markers in the legend distinguish between the different models.
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Figure 9. Far-field pressure power spectral density for wind turbine using different models of aeroacoustic
transfer function. High frequency first- and second-order transfer functions given by (2.14) and (2.16).
Correction to back-scattering component found in Santana et al. (2016). Sears response function given by
(2.20). Computations carried out with the revised Amiet model.

4.4.2. Aeroacoustic transfer function
We investigate how the choice of aeroacoustic transfer function affects the predictions of
the far-field pressure power spectral density. In § 2.2 of this paper, we have used first- and
second-order high-frequency successive approximations (i.e. Amiet’s aerofoil response
function without and with back-scattering correction, respectively), as well as the Sears
function with a compressibility correction. We further consider the correction derived
by Santana, Schram & Desmet (2016) for the back-scattering term, which is otherwise
only known analytically as result of an approximation affecting mainly low frequencies.
Figure 9 shows power spectral density predictions for the wind turbine test case using
the revised Amiet model. Note how the first-order high-frequency response function is a
relatively poor approximation of the result obtained with the Sears function, considered
to be more reliable in this case; however, adding the trailing-edge back scattering, i.e.
the second-order term, improves agreement with the result given by the Sears response
function. This is further improved when correcting the approximate analytical solution
of the back-scattering term (see (2.16)) for low-frequency effects as proposed by Santana
et al. (2016).

4.4.3. Time between blade chops
In § 3.2.1, we calculated the time between blade chops as seen by the observer and
discussed the differences between our derivation and the results found in Amiet (1989)
and Karve et al. (2018). Figure 10 shows power spectral density predictions for the wind
turbine case with the revised Amiet model by using the time between blade chops as
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Figure 10. Far-field pressure power spectral density for wind turbine with Sears response function using
different results for the time between blade chops as seen from the observer in Amiet’s theory. Present
formulation is found in § 3.2.1 and the other two formulations are from Amiet (1989) and Karve et al. (2018).

calculated in this paper and in those two references. It can be seen that the latter two sets of
results overlap in this test case. Both lack the characteristic features of haystacking around
multiples of the blade-passing frequency and, crucially, both disagree with the present
formulation. In turn, this means that they are also in disagreement with the rotational
model which follows a completely different derivation. This is evidence of the correctness
of the revised Amiet model presented in this paper.

4.5. Comparison with experimental data
Go et al. (2024) conducted an experimental investigation of the noise produced by an
open and a shrouded propeller interacting with grid-generated turbulence in the anechoic
wind tunnel at the University of Bristol. The tests were undertaken with a two-bladed
12-in.diameter propeller at a rotational speed of 6000 RPM. The wind tunnel speed was
5 m s−1. Detailed hotwire measurements were carried out at multiple locations upstream
of the propeller to characterise the mean flow and incoming turbulence. The turbulence
integral length scale was Λ = 30.2 mm and the mean-square fluctuating velocity was
ū2 = 0.0841 m2 s−2. Far-field acoustic measurements were also taken when the propellers
were operating with and without grid-generated turbulence. The measurement with a clean
inflow allows for the separation of turbulence ingestion noise from other noise sources. For
further detail on the experimental methodology the reader is referred to Go et al. (2024).

In this section we compare the rotational model and the revised Amiet model against the
experimental data published by Go et al. (2024) in order to validate both models and assess
their accuracy. Note that the Sears response function was used in all computations here,
as the propeller blades are considered acoustically compact in the chordwise direction. All
the noise data presented here are for an observer at 1.5 m from the propeller hub.

Figure 11 shows the sound pressure level (SPL) at 1 Hz bandwidth at microphone polar
angles of 70◦, 100◦ and 135◦ (0◦ corresponds to an observer upstream in the propeller
axis). Experimental measurements are presented with the turbulence grid located upstream
and with a clean inflow, referred to as the ‘Grid’ and ‘Clean’ cases in figure 11. The
‘Clean’ inflow spectra are characterised by tonal noise at the blade-passing frequency
and its first harmonic, followed by broadband noise at higher frequencies. The ‘Grid’
spectra show additional tonal peaks that become progressively broader with increasing
frequency up to the tenth harmonic of the blade-passage frequency. This feature is more
clearly visible at the polar angle of 135◦ and is characteristic of haystacking associated
with turbulence ingestion noise. The predictions of the revised Amiet model and of the
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Figure 11. SPL at 1 Hz bandwidth at microphone polar angles (a) 70◦, (b) 100◦ and (c) 135◦. ‘Grid’ refers
to experimental results with the turbulence grid installed. ‘Clean’ refers to experimental results without the
turbulence grid installed.
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Figure 12. SPL at 200 Hz bandwidth at microphone polar angles (a) 70◦, (b) 100◦ and (c) 135◦. ‘Grid-Clean’
refers to clean inflow measurements subtracted from measurements with the turbulence grid installed.
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Figure 13. Overall SPL directivity (excluding energy between 0 and 300 Hz to avoid the first blade-passage
frequency).

rotational model are almost indistinguishable. The two models are in good agreement
with the measured spectra. Noise is under-predicted at the blade-passage frequency and
its first harmonic, as the measured spectra include loading and thickness noise. For higher
frequencies, agreement is particularly good between the measured and predicted tonal
peaks for observers at polar angles of 70◦ and 135◦. The predicted troughs are generally
lower than the measured troughs which could be explained by the presence of other noise
sources captured by the measurements (Go et al. 2024).

Figure 12 shows the SPL at 200 Hz bandwidth which corresponds to the blade-passage
frequency. The model predictions are compared to the difference between the measured
spectra with and without the turbulence grid installed (‘Grid-Clean’). This subtraction
separates turbulence ingestion noise from other noise sources. Excellent agreement is
observed at polar angles of 70◦ and 135◦, with differences under 3 dB.

The measured overall SPL directivity is compared to model predictions in figure 13. The
acoustic energy associated with the blade-passing frequency tone was excluded from the
calculation of the overall SPL to avoid contamination from loading and thickness noise.
As can be seen, the revised Amiet model and the rotational model are in close agreement,
while they underpredict noise levels by as much as 5 dB at microphone locations near
the plane of the propeller. However, the models are in good quantitative agreement with
experiment for polar angles under 80◦ and above 95◦.

5. Conclusions

Amiet’s theory has been widely used in the study of leading-edge and trailing-edge
noise of stationary aerofoils (Amiet 1975, 1976b; Moreau & Roger 2005; Zhong et al.
2020). The extension of those models to rotating blades (Schlinker & Amiet 1981) has
also been widely adopted in the study of trailing-edge noise (Paterson & Amiet 1979;
Rozenberg, Roger & Moreau 2010; Casalino et al. 2021) and turbulence ingestion noise
(Karve et al. 2018; Halimi, Marinus & Larbi 2019). The semi-analytical model of Amiet
is often preferred to other approaches mainly because it is formulated in the frequency
domain, enabling statistical descriptions of turbulence, and it has a low computational
cost. However, its elegance and simplicity are owed to a number of assumptions about the
blade geometry, the incident turbulent flow field and the temporal–spatial scales of blade
geometry, motion and noise sources.

Hanson (1974) observed that turbulent eddies are stretched on approach to a rotor and
chopped several times. The partial blade-to-blade correlation leads to narrow-band noise
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around harmonics of the blade-passing frequency, also known as haystacking. In this
paper, we have shown that previous derivations of Amiet’s theory did not agree on a key
calculation in order to account for blade-to-blade correlation of the noise sources (Paterson
& Amiet 1979; Amiet 1989; Karve et al. 2018). A corrected derivation of the time between
blade chops of the same turbulent eddy as heard by the observer was presented.

Concurrently, we have developed a turbulence ingestion noise model for rotating blades
using a similar theoretical basis as Sinayoko et al. (2013). Crucially, this model takes into
account noise source correlation across the span and between blades in an exact manner.
Both this new model and Amiet’s theory were applied to the study of homogeneous
isotropic turbulence ingestion by a model cooling fan, wind turbine and aircraft propeller.
Comparisons between the two models confirmed that the revised formulation of Amiet’s
theory leads to accurate predictions of haystacking tones, a key feature of far-field
noise spectra due to turbulence ingestion noise. This observation was validated through
comparisons with the experimental data of Go et al. (2024), where good agreement was
generally found.

Amiet’s theory is typically used in conjunction with strip theory. The total far-field
noise is calculated as the sum of the individual, uncorrelated contributions of each strip.
In addition, an infinite-span assumption must be made in order to achieve convergence
with the number of strips. Conversely, the noise model developed in this paper accounts
for correlation across the span and for finite-span effects. Comparisons between the two
models thus enabled us to verify that Amiet’s theory remains accurate in spite of the
oftentimes ill-justified assumptions, particularly in the low-frequency regime. Agreement
was particularly exceptional in the model propeller and wind turbine. In what concerns the
model cooling fan, it was shown that large ratios between the turbulence length scale and
the blade span deteriorate the quality of predictions, but even in that case generally good
agreement is observed.

In this paper, we also investigated an approximate formulation of the full rotational
model in the low blade pitch angle limit. The benefits of such formulation are twofold: (i)
substantial speed-ups in calculations are achieved through simplification of the analytic
model; and (ii) experimental or numerical input to this theory would be reduced to the
streamwise component of the turbulent velocity on approach to the rotor. Ultimately, it
was shown that for rotating blades operating at low angles of attack and low advance ratio,
very accurate predictions can be achieved with the simplified model. In the model rotors
studied in this paper, these conditions were met for the aircraft propeller and the wind
turbine.

Overall, this paper has shown that Amiet’s theory can, in practice, be used to accurately
predict turbulence ingestion noise from open rotors. This is particularly important in
applications where fast predictions are required because other frequency-domain models
such as those of Majumdar & Peake (1998) and Glegg et al. (2012), or even time-domain
methods such as that of Glegg et al. (2015), are expensive to evaluate.
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Appendix A

The turbulent upwash velocity cross-spectrum is calculated using the Jacobi–Anger
expansion introduced in (2.29) for the mth and kth blades, and (2.30) in (2.28).
The resulting expression for the full cross-spectrum of the blade-normal gust velocity
component is given by

S(m,k)ww (r, r′, ω) = 1
Uz

∫ +∞

0

∫ 2π

0
kR ×

+∞∑
p=−∞

exp(ip(φm − φk))

×
[
Φ11(kz, kR, kγ )

[
N(m)p+1,1

(
N(k)p−1,1 − N(k)p+1,1

)
+N(m)p−1,1

(
N(k)p+1,1 − N(k)p−1,1

)]
+Φ12(kz, kR, kγ )

[
N(m)p−1,1

(
N(k)p+1,2 + N(k)p−1,2

)
−N(m)p+1,1

(
N(k)p−1,2 + N(k)p+1,2

)]
+Φ13(kz, kR, kγ )

[
N(m)p−1,1N(k)p,3 − N(m)p+1,1N(k)p,3

]
+Φ21(kz, kR, kγ )

[
N(m)p−1,2

(
N(k)p+1,1 − N(k)p−1,1

)
+N(m)p+1,2

(
−N(k)p−1,1 + N(k)p+1,1

)]
+Φ22(kz, kR, kγ )

[
N(m)p−1,2

(
N(k)p+1,2 + N(k)p−1,2

)
+N(m)p+1,2

(
N(k)p−1,2 + N(k)p+1,2

)]
+Φ23(kz, kR, kγ )

[
N(m)p−1,2N(k)p,3 + N(m)p+1,2N(k)p,3

]
+Φ31(kz, kR, kγ )N

(m)
p,3

(
N(k)p+1,1 − N(k)p−1,1

)
+Φ32(kz, kR, kγ )N

(m)
p,3

(
N(k)p+1,2 + N(k)p−1,2

)
+Φ33(kz, kR, kγ )N

(m)
p,3 N(k)p,3

]
dkR dkγ , (A1)

where
N(m)p,1 = i sinα

2
(i)pJp(kRr)e−ipkγ ,

N(k)q,1 = i sinα′

2
(−i)qJq(kRr′)eiqkγ ,

N(m)p,2 = sinα
2
(i)pJp(kRr)e−ipkγ ,

N(k)q,2 = sinα′

2
(−i)qJq(kRr′)eiqkγ ,

N(m)p,3 = − cosα(i)pJp(kRr)e−ipkγ ,

N(k)q,3 = − cosα′(−i)qJq(kRr′)eiqkγ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

and kz = (ω − pΩ)/U∞.
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