A NOTE ON THE CATEGORY OF THE TELESCOPE

BY

K. A. HARDIE

Let X be an infinite connected CW-complex which is the union of an increasing sequence of subcomplexes X_r . Let cat X denote the Lusternik-Schnirelmann category of X, normalized to take the value 0 on contractible spaces. Suppose that cat $X_r \le k(r \ge 1)$. In his problem list [1], T. Ganea proved that cat $X \le 2k+1$ and asked (Problem 5) whether this is the best possible upper bound. The purpose of this note is to prove that cat $X \le 2k$.

As pointed out by Ganea, we may replace X by the telescope $Y = \bigcup (r \ge 1)X_r \times [r-1, r]$. The required inequality will be obtained by representing Y as a double mapping cylinder and applying the main result of [2].

Let $W = \bigvee (r \ge 1)X_r$, $A = \bigvee (r \ge 1)X_{2r-1}$, $B = \bigvee (r \ge 1)X_{2r}$ be wedges as indicated and let $f: W \to A$ map X_{2r} by inclusion into X_{2r+1} and map X_{2r-1} identically. Similarly let $g: W \to B$ map X_{2r-1} by inclusion into X_{2r} and map X_{2r} identically. Then certainly Y is homeomorphic to the double mapping cylinder Z = Z(f, g). By [2; (2)], we have cat $Z \le \text{cat } X + \text{max } (\text{cat } A, \text{ cat } B)$. But cat $W \le k$, cat $A \le k$ and cat $B \le k$. Hence cat $Y = \text{cat } Z \le 2k$.

ACKNOWLEDGEMENT. Grants to the Topology Research Group from the University of Cape Town and the South African Council for Scientific and Industrial Research are acknowledged.

References

1. T. Ganea, Some problems on numerical homotopy invariants. Symposium on Algebraic Topology, Battelle Seattle Research Centre 1971, Lecture Notes in Mathematics 249, Springer-Verlag, Berlin, 1971.

2. K. A. Hardie, On the category of the double mapping cylinder, Tôhoku Mathematical Journal, 25 (1973), 355-358.

DEPARTMENT OF MATHEMATICS University of Capetown Rondebosch 7700 Republic of South Africa

Received by the editors June 10, 1976.