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LOCATION OF ZEROS OF CHROMATIC 
AND RELATED POLYNOMIALS OF GRAPHS 

FRANCESCO BRENTI, GORDON F. ROYLE AND DAVID G. WAGNER 

ABSTRACT. We consider the location of zeros of four related classes of polynomials, 
one of which is the class of chromatic polynomials of graphs. All of these polynomials 
are generating functions of combinatorial interest. Extensive calculations indicate that 
these polynomials often have only real zeros, and we give a variety of theoretical results 
which begin to explain this phenomenon. In the course of the investigation we prove 
a number of interesting combinatorial identities and also give some new sufficient 
conditions for a polynomial to have only real zeros. 

0. Introduction. The chromatic polynomial P(G\ x) of a graph G has been studied 
extensively since its introduction by Birkhoff in 1912, as it encodes quite a lot of 
information about the graph. A good introduction to the literature can be gained from 
[6, 21, 23, 26] and so we will not go into the general theory in detail. An even more 
informative invariant of a graph is its Tutte polynomial, as developed in [3, 12, 31], 
for instance. Over the years, particular effort has gone into deriving conditions on a 
polynomial which are necessary if it is to be the chromatic polynomial of some graph. 
In this paper we approach this problem from a new direction: instead of working with 
the chromatic polynomial itself we consider three polynomials related to it by certain 
invertible linear transformations of R[x]. These polynomials, denoted by <r(G; x), r(G\ x), 
and w(G;x), were introduced quite recently [9, 21] and seem to have a more regular 
behaviour with regard to location of zeros than does the chromatic polynomial. 

In Section 1 we briefly review some of the theory of chromatic polynomials, with 
emphasis on results and conjectures concerning the location of their zeros and constraints 
on their coefficients. The only new result of the section (Theorem 1.3) provides a refined 
method for dealing with one of these conjectures. In Section 2 we define the polynomials 
a(G;x), T(G\X), and w(G; x) and describe some of their basic properties. By restricting 
the location of zeros or values of the coefficients of these polynomials we define several 
properties of graphs; in particular, it is not uncommon for these polynomials to have 
only real zeros. Many implications hold among the properties we define, as seen in 
[8]. Section 3 is an account of computations which produced a number of interesting 
examples and showed that a large majority of graphs on up to 9 vertices satisfy some of 
the most stringent of the properties of Section 2. Computations for regular graphs on up 
to 13 vertices, and 3-regular graphs on up to 16 vertices, were also made. 
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Sections 4 and 5 consist of theoretical results which begin to explain the ubiquity 
of graphs satisfying the properties of Section 2. In Section 4 we concentrate on the 
cr-polynomial, giving several structural conditions on a graph G which are sufficient 
to imply that all the zeros of cr(G\x) are real, i.e. that G is "cr-real". Our main results 
are a Complete Cutset Theorem for a-reality (Corollary 4.6) and a theorem which 
indicates that a-reality dominates cr-unreality in the presence of large chromatic number 
(Theorem 4.11 ). We also show that all cycles are cr-real, verifying part of Conjecture 7.3 
of [9]. The results in Section 5 for the r- and w-polynomials are not as strong. In particular, 
we do not yet have Complete Cutset Theorems for r- or w-reality, although we have a 
number of partial results in this direction. For instance, Corollary 5.23 states that if G is 
w-real, H is chordal, and G H H is complete then GUHis also vv-real, which generalizes 
Theorem 4.19 of [9]. 

We conclude in Section 6 with a variety of questions and conjectures which are 
suggested by both the theoretical and computational results of the preceding sections. 

1. Chromatic polynomials. For a (finite, simple, undirected) graph G = (V, E) and 
a positive integer m, a proper m-colouring of G is a function/: V —> {1, 2 , . . . , m} such 
that for all / = 1 , . . . , m, the set of vertices/-1(/) induces an edge-free subgraph of G. 
The smallest m for which G has a proper m-colouring is called the chromatic number 
of G and is denoted by x(G). The chromatic polynomial of G is the unique polynomial 
P(G\ x) such that for every positive integer ra, the value P(G\ m) is the number of proper 
ra-colourings of G. That P(G; m) truly is a polynomial function of m is evident from the 
elementary combinatorial expansion 

(1) P(G',x) = J2aJ(G)x(j) 
7=0 

in which xn\ = x(x — 1) • • • (x —j + 1) is the j-th falling factorial polynomial, n = #V(G), 
and aj(G) is the number of partitions of V(G) into exactly y blocks, each block inducing 
an edge-free subgraph of G (Theorem 2.1 of [27]). 

Later, we will use the following fact, the Complete Cutset Theorem for chromatic 
polynomials. It appears with its simple proof as Theorem 2.5 of [27]. Notice that for the 
complete graph Km we have P(Km\x) = x^, and that Proposition 1.1 includes the case 
of disjoint union of graphs. 

PROPOSITION 1.1. Let G and H be graphs such that G Pi H is a complete graph. Then 

P{G\x)P{H\x) 
P(GUH;x) = 

P(GHH-x) 

There is another important property of chromatic polynomials, the Deletion-Contraction 
Algorithm (Theorem 2.6 of [27]), but we will not use it. 

One of the best-known conjectures regarding chromatic polynomials is due to 
Read [24], who conjectured in 1968 that if the chromatic polynomial of any graph 
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P(G\x) is expanded in powers of x, 

(2) P(G;^) = ê ( - l ) ' , Â - ( G y , 
7=0 

then the sequence of coefficients bo,b\,... ,bn of G is unimodal: i.e. there is an index 
k such that bo < • • • < bk > • • • > bn. Read's conjecture was strengthened in 1974 by 
Hoggar [19] to claim that the sequence bo,b\,.. .,b„ is strictly logarithmically concave 
(SLC, for short): that is, that bj > bj-\bj+\ for all j = 1,. . .,n — 1. The advantage 
of this conjecture is that the SLC property of sequences is preserved by convolution, 
whereas mere unimodality need not be. Both conjectures are still open, but examples 
due to Bjôrner show that they are likely to be false in general [7]. For a survey of known 
positive results on the Read-Hoggar conjecture, see [15]. 

As explained in Theorem 2.7 of [27] the Deletion-Contraction Algorithm implies 
that bj(G) > 0 for all j = 0 , . . . , n. In fact, the coefficients bj(G) have a well-known 
combinatorial meaning, discovered by Whitney [39] in 1932, as the rank-sizes of a 
"broken circuit complex" associated with the graph G. It follows that bo(G),..., bn(G) 
has no internal zeros: i.e. that if b[(G) ^ 0 and bj(G) ^ 0 with / < j then b^G) ^ 0 
for all i < k < j . Note that if a sequence of nonnegative real numbers is SLC and has 
no internal zeros then it is unimodal. Wilf [40] explains Whitney's interpretation of the 
coefficients bj(G) in detail and uses it to derive some inequalities among the bj(G) via the 
Kruskal-Katona Theorem. Unfortunately, these inequalities do not imply unimodality of 
the sequence bj(G). More information about these coefficients of P(G;x) can be found 
in [22, 27]. 

In relation to the Read-Hoggar conjecture the next proposition is interesting; see 
Proposition 2.9 of [30] or, for a more general result, Theorem 7.1 in Chapter 8 of [20]. 

PROPOSITION 1.2. If all the zeros z of the polynomial f(x) G R[x] are in the region 
{z G C : | argz| < 7r/3} then the sequence of coefficients off{x) is SLC and alternates 
in sign. 

Proposition 1.2 can be extended slightly by also considering cubic factors off{x). 

THEOREM 1.3. Letf{x) G R[x\ factor over £ as 

k m 

f(x) = CU(x- n) Yl(x - Zj)(x - lj) 
1=1 7=1 

where C G R, r[ G R and Zj £ Rfor all ij. Suppose that r, > Ofor all i, and that there 
exists a sequence of distinct positive integers p\,... ,/?m such that for all j - 1 , . . . , m 
either \ argz/| < n/3, orpj < k and 

1 - 2 c o s a r g z ; < m i n ( ^ , ^ ] . 
\rPj \ZJ\J 

Then the sequence of coefficients off(x) is SLC and alternates in sign. 
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PROOF Since convolution of sequences preserves sign-alternation and the SLC prop
erty it suffices to check that if f(x) - (x — r)(x — z)(x — z) is a cubic polynomial with 
r > 0 and z ^ R which satisfies 

^ 1 0 ^ • (\z\ r " 2 

(3) 1 — zcosargz < mm —, — 
V r \z\ 

then the sequence of coefficients of/(x) is SLC and alternates in sign. 
Note that (3) implies that | arg z\ < TT/2. Letting z = sei0 with s > 0 and 0 < 6 < TT/2 

we have 

f(x) = x3 — (r + 2s cos 0)x2 + (s2 + 2rs cos 0)x — rs2. 

Thus the coefficients of f(x) alternate in sign if and only if r + 2s cos # > 0 and s2 + 
2rs cos 6 > 0; that is, if and only if 

minf - , - ) > —2cos# 

and this is implied by (3). Strict log-concavity of the coefficients off(x) is equivalent to 

(4) - r + 2 - c o s f l > 1 -4cos 2f l 
sz s 

and 
2 

(5) S-, +2-cos f l> 1 - 4 c o s 2 # . 
rl r 

By symmetry of these inequalities we may assume that r > s. Also, since 0 < TT/2 < 
2TT/3 we have 1 + 2 cos 0 > 0. Now since r2 /s2 > r/s, for (4) to hold it is sufficient that 

- > 1 - 2 c o s # , 
s 

and since sjr > s2/r2, for (5) to hold it is sufficient that 

r2 
S— > 1 - 2 c o s # . 

Consequently, for the coefficients of f(x) to be SLC and sign-alternating it is sufficient 
that (3) hold. This completes the proof. • 

Read and Royle [26] have made extensive calculations of the zeros of chromatic 
polynomials, and it appears that Theorem 1.3 accounts for bj(G) being SLC for most of 
the graphs they consider. However, a similar "balancing act" using quartic factors off(x) 
could lead to even stronger results. 

Thier [31] has derived the following completely general result on the location of zeros 
of chromatic polynomials of graphs from Gershgorin's Theorem. 
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FIGURE 1 : THE CHROMATIC ZEROS OF 9-VERTEX 1 8-EDGE GRAPHS 

PROPOSITION 1.4. Let G be a simple graph with n vertices and e edges. Then the zeros 

ofP(G\x) lie in U\ D U2, where 

Ux = {z e C : \z\ < e - 1 or \z - e\ < e} 

and 

U2 = {zeC:\z-l\<e-lor\z-e + n-2\\z-l\<e(e- 1)}. 

It seems that the information given by Proposition 1.4 is rather weak, and that for 

many graphs the zeros of P(G; x) lie well within this region. Figure 1 illustrates the case 

for 9 vertices and 18 edges. Note that these zeros are all inside the disc \z\ < 5 while 

Thier's region contains the disc \z\ < 14. 

Biggs, Damerell, and Sands [4] make the following conjecture. 

CONJECTURE 1.5. There is a function f: N —> R such that if G is a k-regular graph 

and P{G\ z) = 0 then \z\ </(&). Furthermore, / (3 ) = 3. 

They compute that if G is a 3-regular graph with at most 10 vertices and P(G; z) = 0 

then \z\ < 3. Read and Roy le [26] extend this verification to all 3-regular graphs with 

at most 16 vertices, as well as some larger graphs. Biggs, Damerell, and Sands also 

derive formulae for the chromatic polynomials of prisms and Môbius ladders, and use 

Rouché's Theorem to show that all of their zeros have modulus at most 3 as well. 

Intriguingly, the set of zeros tends toward a limit set for these two families of graphs, a 

phenomenon explained by Beraha, Kahane, and Weiss [1, 2, 26]. One may ask for even 

more information, however. In addition to knowing the limit set of zeros of a sequence of 
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polynomials {fn'.n G N} (provided that it exists), we would also like to know the limit 
distribution of the set of zeros of {/*„}: that is, the measure /xonC such that for any Borel 
set U C C, if m(U',f) denotes the number of zeros of/ in U counted with multiplicities, 
then 

H(U) = hm ——— 
«->oo deg/„ 

(provided that it exists). For the recursive sequences of polynomials considered in [ 1, 2, 
4, 26] a satisfactory solution to this problem is still outstanding. 

In contrast to Conjecture 1.5, Woodall [41] uses the example of Kn%m to show that 
there can be no upper bound for the modulus of a zero of P(G; x) in terms of any function 
of the chromatic number x(G) of G. In fact for m fixed and « ^ o o w e have x(Kn.m) = 2, 
but P{Kn^m\x) has a real zero arbitrarily close to each integer in the interval [0, ra/2]. 

The results presented in this section were selected because of their relevance to the 
location of zeros of chromatic polynomials of arbitrary graphs. The class of planar graphs 
has received much attention as regards location of zeros of the chromatic polynomial 
[6, 33, 34, 35, 41] but we cannot do justice here to this subject. 

2. A hierarchy of conditions. Despite the bewildering complexity of the location of 
zeros of chromatic polynomials, the location of zeros of some closely related polynomials 
shows really surprising regularities. In this section we discuss these regularity properties; 
in the next section we begin to see when these properties hold. 

Let 

(6) P(G; x) = J2 ajiOxw = £ ( - 1 )n-JCj(G)x^ 

be the chromatic polynomial of a graph G, where x^ isthey-th falling factorial polynomial 
and JC^ = x(x + 1 ) • • • (x +j — 1 ) is they-th rising factorial polynomial. The a-polynomial 
of G is 

(7) a(G-x) = J2aJ(G)xj 

and the r-polynomial of G is 

(8) T(G;ar) = è ( - i r - ^ ( G ) y . 
./=o 

That is, we have cr(G;x) = SP(G;x) and T(G;X) = TP(G\x) where the linear trans
formations S and T: R[x] —> R[x] are defined by Sx^ = xj and Tx^ = x7 and linear 
extension. 

The cr-polynomial was introduced by Korfhage [21] (in a slightly different form) and 
is a special case of the "partition polynomial" considered by Wagner [36]. The other 
polynomials discussed here were introduced by Brenti [9], although our normalization 
of T(G\X) is slightly different from that in [9]. The reason for this is a symmetry between 
the transformations S and T which will be exploited in Section 5. 
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Standard results on rational generating functions (Corollary 4.3.1 of [29]) show that 
we may define the w-polynomial w(G; x) of G by 

,9) E*,^S*?=*f 
m7n ( i -*) 1 + « ( i -*) 1 + « 

where n = #V(G) is the degree of P(G,x), and that w(G\ 1) = n\. 
The coefficients <z/(G) and bj(G) have the combinatorial meanings mentioned above 

and so are nonnegative with no internal zeros. Brenti [91 shows that the coefficients q(G) 
and hj(G) also have combinatorial interpretations but they are not so straightforward, 
being related to Stanley's results connecting chromatic polynomials with acyclic orien
tations of graphs [28]. For a graph G and a subset B Ç V(G), let G\B denote the subgraph 
of G induced by the vertices B. Also, let acyc(G) be the number of acyclic orientations 
of G. For a proof of Proposition 2.1 see Theorem 5.3 of [9]. 

PROPOSITION 2.1. For any graph G andj G N, 

Cj(G) = £ n acyc(G|zO 
TT Ben 

where the summation is over all partitions ofV(G) into exactly j blocks. 

Incidentally, Proposition 2.1 shows that (— l)nr(G;— x) is a natural example of a 
"weighted partition polynomial", as discussed in Section 5 of [36]. We will not state the 
interpretation of hj(G), but see Theorem 4.2 of [9]. Nonetheless, this shows that c/(G) 
and hj(G) are nonnegative with no internal zeros, for any graph G. It follows that all the 
real zeros of P(G\x) and of r(G; JC) are nonnegative, and that all the real zeros of a(G;x) 
and of w(G\ x) are nonpositive. 

It sometimes happens that for a particular graph G, all of the zeros of P(G; x), cr(G; x), 
T(G\X) or w(G;x) are in fact real. In this case we say that G is P-real, a-real, r-real, 
or w-real, respectively. If a graph is not a-real then it is a-unreal, and so on. If the 
coefficients «/(G) of <J(G; x) form an SLC sequence then we say that G is a-SLC, and we 
define P-, r-, and w-SLC similarly for the sequences bj(G), Cj(G), and hj(G). Thus the 
Read-Hoggar conjecture is that every graph is P-SLC. 

The condition that a polynomial has only real nonpositive zeros is deeply connected 
with the theory of total positivity via the characterization of Pôlya frequency sequences, 
see [8, 20, 37]. We limit ourselves to indicating in Figure 2 the implications which hold 
among the various properties above, as developed in [9]. Analogous properties can be 
defined for arbitrary polynomials via the transformations presented in this section and in 
this general context there are no implications among the properties which are not implied 
in Figure 2 (see Section 2.6 of [8]). However, for the graph polynomials of this paper 
there may well be additional implications imposed by their special character (see, for 
example [38]). In particular, in view of the Read-Hoggar conjecture it would be very 
interesting to know if P-SLC were implied by any of the other properties. 
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P-reality and 
ifP(G;z) = Othenz<x(G) 

FIGURE 2: A HIERARCHY OF CONDITIONS 

3. Computations. Computation of chromatic polynomials is in general a very diffi
cult task even for moderately small graphs. However, by using the method of Read [25] 
we have been able to find and analyse the chromatic polynomials of all graphs on up 
to 9 vertices, 3-regular graphs on up to 16 vertices, and all other regular graphs on up 
to 13 vertices (with the exception of those of degree 6 on 13 vertices). The lists of 
graphs were obtained from various sources. The connected graphs on up to 9 vertices 
were extracted from the catalogues of Cameron, Colbourn, Read and Wormald [10], the 
3-regular graphs from the catalogues of McKay and Royle [23] and the other regular 
graphs were constructed by Rob Beezer (private communication). 

Having computed the chromatic polynomials, the number of complex zeros of each of 
the P-, a-, T- and w-polynomials was determined using the method of Sturm sequences. 
As these calculations were carried out with exact integer arithmetic we are confident that 
the validity of our results was not compromised by numerical inaccuracy. 

FIGURE 3: THE 8-VERTEX CT-UNREAL GRAPHS 

The following tables give the condensed results of these computations; the entries 
indicate the number of graphs (up to isomorphism) with given properties. We begin 
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No. of vertices 3 4 5 6 7 8 9 
chordal 
P-real 
P- unreal 

2 5 15 58 272 1614 11911 
2 5 15 58 273 1627 12121 
0 1 6 54 580 9490 248959 

(7-real 
cr-unreal 

2 6 21 112 853 11115 261038 
0 0 0 0 0 2 42 

r-real 
r-unreal 

2 6 21 112 853 11117 261080 
0 0 0 0 0 0 0 

w-real 
w-unreal 

2 5 18 96 737 9880 238565 
0 1 3 16 116 1237 22515 

TABLE 1 : THE CONNECTED GRAPHS ON UP TO 9 VERTICES 

with all connected graphs on up to 9 vertices, in Table 1. (Corollaries 4.6, 5.20, and 
Proposition 5.12 below explain this restriction to connected graphs.) One prominent 
feature of this table is that it provides the first example of a a-unreal graph. The 8-
vertex a-unreal graphs are shown in Figure 3: the graph on the left has G(G\\X) = 
x* + Ux1 + 38x6 + 36X5 + \\x4 +X3 which has zeros at -0.1924 ± 0.0499/, and the 
graph on the right has <J{GI, x) = JC8 + lOx7 + 30x6 + 3 Ix5 + \0x4 + x3 which has zeros at 
—0.2309 ± 0.0129/ (to 4 decimal places). The 9-vertex a-unreal graphs are depicted in 
the Appendix. 

Another prominent feature of Table 1 is the small proportion of P-real graphs. Exam
ination of these graphs shows that the vast majority of them are chordal (see Section 4), 
although there are a small number of others. Given the stringency of P-reality, it is 
perhaps surprising that such a large proportion of the graphs in Table 1 are w-real. Most 
remarkable, however, is the fact that all graphs on up to 9 vertices are r-real. 

Table 2 summarizes the results for the connected regular graphs on 10 to 13 vertices, 
and 3-regular graphs on up to 16 vertices. These computations produced even more 
examples of cr-unreal graphs, but again failed to find even a single r-unreal graph. 
Notice that while the proportion of w-real graphs in Table 2 is very much lower than 
in Table 1, among the 3-regular graphs the w-real graphs form a large majority. The 
3-regular w-unreal graphs in Table 2 are the same 3-regular graphs of high girth which 
exhibit extremal behaviour in [26]. All of the graphs in Table 2 are P-unreal, except 
for the complete graphs and the (n — 3)-regular graphs on n vertices with complements 
which have no cycles of length greater than four. 

4. cr-polynomials. We are now concerned with results which state that certain struc
tural conditions on a graph are sufficient to imply that it is a-real. Some of these results 
are known, and some are new. 

The class of supersolvable graphs is the smallest class containing all complete graphs, 
and such that if G and H are in the class and G H H is complete, then G U H is 
also in the class. Supersolvable graphs are also called chordal graphs because of an 
alternate characterization [14]. Note that Proposition 1.1 implies by induction that if G 

https://doi.org/10.4153/CJM-1994-002-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-002-3


64 F. BRENTI, G. F. ROYLE AND D. G. WAGNER 

is supersolvable then every zero of P(G\ x) is a nonnegative integer; thus, supersolvable 
graphs satisfy the strongest condition in Figure 2. The converse is false: there are graphs 
G which are not supersolvable but for which all zeros of P(G; x) are nonnegative integers 
(see page 35 of [27]). 

n k (j-real cr-unreal r-real r- unreal vv-real w-unreal 

10 3 

10 4 

10 5 

10 6 

10 7 

10 8 

10 9 

19 0 

59 0 

60 0 

21 0 

5 0 

1 0 

1 0 

19 0 
59 0 

60 0 

21 0 

5 0 

1 0 

1 0 

14 5 

6 53 

0 60 

0 21 

0 5 

0 1 
1 0 

11 4 

11 6 

1 11 8 
11 10 

265 0 
264 2 

6 0 

1 0 

265 0 

266 0 

6 0 

1 0 

44 221 

0 266 

0 6 

1 0 

12 3 
12 • 4 
12 5 
12 6 
12 7 
12 8 
12 9 
12 10 
12 11 

85 0 
1544 0 
8859 89 
7814 35 
1489 58 

92 0 

9 0 
1 0 

1 0 

85 0 
1544 0 
7848 0 

7849 0 
1547 0 
94 0 
9 0 
1 0 
1 0 

80 5 
318 1226 
60 7788 
0 7849 
0 1547 
0 94 
0 9 
0 1 

1 0 

13 4 
13 6 
13 8 
13 10 
13 12 

10778 0 
? ? 

10662 124 

10 0 
1 0 

10778 0 
? ? 

10786 0 

10 0 

1 0 

2643 8135 
? ? 
0 10786 
0 10 

1 0 
14 3 509 0 509 0 503 6 

16 3 4060 0 4060 0 4055 5 

TABLE 2: THE CONNECTED ^-REGULAR GRAPHS ON n VERTICES 

A graph G = (V, E) is an incomparability graph when there is a partial order < on V 
such that uv G E if and only if u and v are not comparable in (V, <). 

If G is a graph and H - {Hv : v G V(G)} is a collection of pairwise vertex-
disjoint graphs, then the composition of 9{ into G is the graph G[9{] with vertex-set 
U{V(//V) : v G V(G)} and with edges ij whenever ij G E(HV) for some v G V(G), or 
i G V(HU) and; G V(HV) with uv G E(G). 
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Proposition 4.1 summarizes some results of [9, 36] in this context. 

PROPOSITION 4.1. If G has any of the following properties then G is a-real: 

(a) G is a supersolvable graph; 

(b) the complement Gc of G contains no triangles; 

(c) G is an incomparability graph. 

(d) Furthermore, ifGc contains no triangles and Oi - {Hv : v G V(G)} is a collection 

ofpairwise vertex-disjoint a-real graphs, then the composition G\Oi\ is also a-real. 

Part (b) is a rephrasing of the Heilmann-Lieb Theorem on matching polynomials 

[16, 18]. Part (c) is equivalent to a result of Goldman, Joichi, and White [17]. Part (d) 

subsumes many constructions: the disjoint union KC
2[G, H] of G and / / , the join K2[G, H] 

of G and H which is usually denoted by G V / / , the complete multipartite graphs 

^m, v ' ' " v ^m ' a n d so on. It is worth noting that for the join of graphs we have 

cr(GV H\x) = a(G\x)a(H\x) 

(Theorem 3.13 of [9]). 

Although we will return to the case of cr-polynomials, some of our results are purely 

to do with the location of zeros of arbitrary polynomials. Of course, the type of result 

developed here is motivated by our combinatorial applications. The starting point for 

our presentation is the following proposition, which is implicit in [36] and can also be 

derived from the well-known identity 

X{i)XU)=^N
k%)\k)X{i+j-k) 

(Exercise 23, p. 83 of [12]). We use the notation D for the differentiation operator d/dx. 

PROPOSITION 4.2. Let S: R[x] —> R[x] be the linear transformation defined by Sx^ = 

rf and linear extension. Then for any f, g G R[x] we have S(fg) = (Sf) * (Sg), in which 

the operation *: R[x] x R[x] —> R[x] is given by 

x* 
/ > * * = £ TXDkp)(Dkq). 

The *-product satisfies a number of interesting identities. Let us say that in algebraic 

formulae * has a binding strength intermediate between addition and multiplication, so 

that an expression such a s / + Dg * xh is to be parsed a s / + ((Dg) * (x/z)). 

PROPOSITION 4.3. Letf, g e R[x]. 

(a) The operation * is commutative, associative, and R-bilinear. 

(b) xnf * g = x»(f * (1 + D)ng), for all n G N. 

(c) D(f*g)=f*Dg + Df*g + Df*Dg. 

(d) (1 +D)n(f *£) = (! +D)nf * (1 + Dfgjorall n G Z. 
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PROOF. Part (a) is immediate, since S: (R[JC],+, •) —> (R[x],+, *) is an R-algebra 

isomorphism. To prove part (b), just calculate using the product rule Dx = 1 + xD to 

deduce that xf * g = x(f * (1 + D)g\ and then use induction on n. The proof of part (c) 

is a similar application of the product rule and directly implies part (d) for n G N. Since 

the operator 1 + D is invertible on R[x], it follows that (d) holds for all n G l • 

The next fact is also implicit in [36] (see Theorem 4.5 and the formula at the top of 

page 153). 

PROPOSITION 4.4. If / , g E ïïl[x] are polynomials with only real nonpositive zeros 

thenf * g also has only real nonpositive zeros. 

We may now derive a Complete Cutset Theorem for cr-polynomials. 

THEOREM 4.5. Let G and H be graphs such that G H H is complete, and let m = 

# V(G H H). Then 
a(GUH;x) a{G\x) cr(H;x) 

= * . 
xm x171 x171 

PROOF. By Proposition 1.1 we have 

P(GUH;X)=
P{G>X)P{H>X) 

P{GC\H\x) 

since G D H is complete. Since #V(G H/ / ) = m w e have P(G D H; x) = x^ ; multiplying 
through by x^ and applying the transformation S we get 

xm * a(G U / / ; x) = a(G\ x) * o(H\ x). 

Since GHH is a complete subgraph of size m of both G and H, we have a/(G) = aj(H) = 0 

for j = 0 , . . . , m — 1. Thus there are polynomials g, h such that cr(G; x) = xtng(x) and 

a(H;x) = xnih(x). That is, 

V" * a(G U / / ; JC) = / ^ ( J C ) * ^/z(x) . 

From Proposition 4.3 we calculate that 

xm*(T(GUH;x)=xm(l+ D)m(j{G U / / ; JC) 

and that 

Hence 

jtTgix) * y"/i(jc) =xm(g(x) * (1 + DT^hix)). 

a(GUH;x) = (1 +D)^m(g(x) * (1 + D)mxmh(x)) 

= {\+D)-mg(x)^xmh{x) 

= xm(g(x)*h(x)) 

and the result follows. • 

COROLLARY 4.6. Let G and H be graphs such that G H H is complete. If both G and 

H are o-real then G U H is also cr-real. 
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PROOF. This follows at once from Proposition 4.4 and Theorem 4.5. • 

Using Proposition 4.4 we can also derive a condition on / G U[x] sufficient to imply 
that Sf has only real nonpositive zeros. This generalizes Theorem 2.4.2 of [8] and 
Proposition 3.4 of [36]. 

THEOREM 4.7. Letf G R[X] and m G M be such that all real zeros z of f satisfy z < m, 
and that all non-real zeros s + it off satisfy At < 1 + Am — As. Then Sxim\f has only real 
nonpositive zeros. 

PROOF. The polynomial/ factors over R a s / = p\p2 • • 'Pkqxqi ' ' *Qh where thept 

are linear and the qj are quadratic with non-real zeros; hence Sx^m^f = x™ * Sp\ * • • • * Spk * 
Sq\ * • • • * Sqi. From Proposition 4.3 we see that for any polynomials g,h\,h2 G R[x], 

xmg*hl *h2 = xm(g*{\+D)mhx)*h2 

= xm(g*(l+D)mh] *(l+D)m/*2). 

It follows that 

Sx{m}f = xm((l +D)mSP] * • • • * (1 +D)mSq?). 

Proposition 4.4 implies that in order to prove the theorem by induction on k +1 it suffices 
to check that if h G R[x] is a linear or quadratic polynomial satisfying the hypothesis of 
the theorem then (1 + D)mSh has only real nonpositive zeros. 

Firstly, if h(x) =x-r with r < m then ( 1 +D)mS(x- r) = ( 1 +D)m{x- r) = x- ( r -m) 
has only real nonpositive zeros. 

Secondly,ifh(x) = (x-(s+it))(x-(s-it)) = x2-2sx+(s2+t2)with4f2 < l+4ra-4s 
then 

(1 + D)mSh(x) = (1 + DTKx2 + x) - 2sx + 0 2 +12)] 

= x2 + (2m + 1 - 2s)x + 0 2 + t2 - 2ms + m2). 

By the quadratic formula, this has only real zeros if and only if 

(2m + 1 - 2s)2 - A(s2 + t2 - 2ms + m2) > 0, 

which is equivalent to At2 < 1 + Am — As. Now (1 +D)mSh(x) has only nonpositive zeros 
if and only if its coefficients are all nonnegative, and this is easily seen to be the case. • 

Because of Theorem 4.7 let us use the notation, for any m G N, 

%(m) = {s + it G C : 4?2 < 1 + Am — As}. 

COROLLARY 4.8. For any f G R[x] there is an mo G N such that for all m > mo, 
Sx/m\f has only real nonpositive zeros. There is also an mo G N such that for all m > mo, 
(1 + D)mf has only real nonpositive zeros. 
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PROOF. The first statement follows from Theorem 4.7 since %(m) C %(m + 1) for 
all m G N and the union of the regions %(m) for m G N is the whole complex plane. 
The second statement is equivalent to the first by considering Sx^S~lf. m 

Specializing to the case of graphs we obtain the following. 

PROPOSITION 4.9. Let the graph G be such that all the non-real zeros s + it of the 
chromatic polynomial P(G\ x) are in the region RS\Y(G)\ and all the real zeros z satisfy 
z < x(G). Then G is a-real. 

PROOF. Take m = \(G) and/(x) = P(G; x)/x^ in Theorem 4.7. • 

We can apply Proposition 4.9 to prove part of Conjecture 7.3 of [9]. 

PROPOSITION 4.10. The cycle Cn is a-real for all n>3. 

PROOF. AS is well-known, the chromatic polynomial of Cn is P{Cn\x) = (x — \)n + 
(- l ) n( jc- l ) , so that all the zeros ofP(C„;x)are in the disc {^+/r G C : (s-l)2+t2 < 1}. 
This disc is contained in %(2) and the result follows from Proposition 4.9. • 

Unfortunately, the results of [4, 26] show that the hypothesis of Proposition 4.9 is 
satisfied neither by prisms nor by Môbius ladders, and seems very rarely to be satisfied 
in general. An extension of Theorem 4.7 using cubic factors of / may lead to more 
applicable results, but the requisite calculations (using the discriminant of a cubic to test 
whether it has only real zeros) are too cumbersome to include here. 

Theorem 4.7 also has the following consequence, which shows that in the Complete 
Cutset Theorem only one factor need be cr-real if it has sufficiently large chromatic 
number. 

THEOREM 4.11. Let G and H be graphs such that GHH is a complete graph. Suppose 
that G is a-real, that all real zeros z of P(H\x) satisfy z < x(G), and that all non-real 
zeros ofP{H\x) are in the region %s\X(G)\ Then G U H is a-real. 

PROOF. Letting m = x(G) we have a{G; x) = xmg(x) for some g G R[x] with only real 
nonpositive zeros. Furthermore, putting h(x) = P(H; x) /P(GP\H; x) we have a(GUH; x) = 
S[P(G;x)h(x)] = xmg(x) * Sh(x) = Jt™(g(jc) * (1 + D)mSh(x)). Now Sx{m)h has only real 
nonpositive zeros, by Theorem 4.7. But Sx^h = x™ * Sh = xm(\ + D)mSh, so that 
(1 + D)mSh has only nonpositive zeros and the result follows from Proposition 4.4. • 

The results of Biggs, Damerell, and Sands [4] show that if H is a prism or a Môbius 
ladder then x(G) > 9 is sufficient in Theorem 4.11. Moreover, if Conjecture 1.5 is true 
then x(G) > 9 would suffice for all 3-regular graphs H. For any //, an 6>(#£(//)2) 
upper bound for the smallest x(G) which suffices in Theorem 4.11 can be obtained from 
Proposition 1.4 but this will be far from sharp. 
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(a) £ 2 = 1 

(b) ex{m)s = (-ir^m) 

(c) eDe = -D 
(d) eSe = T 
(e) e(l - A ) e = (l - A 

5. r- and w-polynomials. Despite the fact that we have no examples of r-unreal 

graphs, the known results which imply r-reality are weaker than those for cr-reality. There 

are two reasons for this: the combinatorial meaning of Cj(G) is more involved than that of 

cij(G), and the algebraic symmetry between S and T fails to hold up on the combinatorial 

level, essentially because there is no graph the chromatic polynomial of which is JC^ . 

The situation for w-reality is even more unclear. 

We begin by describing the connection between S and Tin detail. Let e: R[x] —> R[x] be 

the IR-algebra automorphism defined by ex = —x and linear and multiplicative extension, 

so that for a n y / G R[x] we have ef(x) = /(—x). Let A be the (backward) finite difference 

operator, so that fo r / G R[x] we have Af(x) = f(x) —f(x — 1). F o r / G R[x] we will also 

denote b y / the operator which acts as multiplication b y / on R[x]\ no confusion should 

arise. Proposition 5.1 gives a number of useful computation rules which are for the most 

part well-known. 

PROPOSITION 5.1. The following operator identities hold: 

(f) Sx = x(l +D)5 

(g) Tx = x(\-D)T 

(h) T(l-A) = (l-D)T 

(i) (x(l-A))m=x{m)(l-Ar 
(j) S~lx = x(l -A)S~l 

(k) Tx{m) = (x(l-D)2)mT(l-A)~m 

PROOF. Parts (a), (b), and (c) are immediate. Part (d) follows from (b) by applying 

eSe to x^mK For part (e) note that (1 - A)f(x) = f(x - 1). For part (f) Sxf(x) = x * 

Sf(x) = x(l + D)Sf(x), and part (g) follows from (c), (d), and (f). For part (h) note that 

x® = (JC+ 1 )W -jix+lfl-V, and calculate that T(l-A)x^ = T(x-1)® = T[x®-jxV-V] = 

xj —jxj~l = (1 — D)Tx^. Since {x^} is a basis for R[x] the result follows. Part (i) is a 

straightforward induction on m. For part (j) calculate that S~lxxj = X(j+^ = x(x — 1)^ = 

JC(1 — A)S~lxj and use the fact that {xj} is a basis for R[x]. Part (k) follows from (g), (h), 

and (i) since Tx{m) = T(x(l-A))m(l-A)-m = x(\ -D)T(\ -A) ( j c ( l -A) ) m _ 1 ( l ~A)~m = 

••• = (x(l-D)2)mT(l-Aym. m 

Using Proposition 5.1(a,b,c,d), the following facts about T follow from the corre

sponding ones for S. 

PROPOSITION 5.2. For any f,g G R[x] we have T(fg) = (Tf) • (Tg), in which the 

operation *: R[x] x R[x] —> R[x] is given by 

P*1=i: {-^-(Dkp)(Dk
q). 

keN k-

PROPOSITION 5.3. Letf,g e R[x\. 

(a) The operation * is commutative, associative, and R-bilinear. 

(b) x"f * g = x"(f * (1 - D)"g), for all n G N. 

(c) EHf*g) = <f*Dg) + (Df*g)-(Df*Dg). 
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(d) (1 - Dfif • g) = (1 - D)nf • (1 - Dfgjorall n G Z. 

PROPOSITION 5.4. Letf^g G IR[JC] be polynomials with only real nonnegative zeros. 

Thenf * g has only real nonnegative zeros. 

For m G N, let %(m) = {s + if : 4f2 < 1 + Am + 4s}. 

THEOREM 5.5. L^f / G IR|XI ««J m G N be such that all real zeros z off satisfy 

z > — m, and that all non-real zeros off are in the region %(m). Then Tx^'f has only 

real nonnegative zeros. 

COROLLARY 5.6. For any f G R[X] there is an mo G N such that for all m > mo, 

Tx^f has only real nonnegative zeros. There is also an mo G N such that for all m > mo, 

( 1 — D)mf has only real nonnegative zeros. 

Specializing to the case of graphs we obtain the following. 

PROPOSITION 5.7. Let the nonempty graph G be such that all the non-real zeros of 

P{G\x) are in the region %(1) . Then G is r-real. 

PROOF. Take m = 1 and/(*) = P(G; x)/x in Theorem 5.5. • 

PROPOSITION 5.8. (a) Every supersolvable graph is r-real. 

(b) The cycle Cn is r-real for all n > 3. 

PROOF. Both parts of the result follow from Proposition 5.7. • 

Part (a) of Proposition 5.8 was first proved in [9] in a completely different way. 

PROPOSITION 5.9. Let G and H be vertex-disjoint graphs. Then 

r(G WH;x) = G(G\X(\ - D)2)r{H\x). 

PROOF. From Proposition 5.l(i,j,k) we have r ^ " 1 ^ = (JC(1 -D)2)mTS~l. Applying 

this to the identity a(G V H\ x) = cr(G; x)a(H\ x) we get 

TS~la(G\/H;x) = (j(G;x(l - D)2)TS~l(7(H;x) 

which gives the result. • 

PROPOSITION 5.10. Let G be r-real. Then G V Km is r-real for all m G N. 

PROOF. From Proposition 5.9 we find that r{GWKm\x) = {x(\-D)2)mr(G\x). Rolle's 

Theorem and the Intermediate Value Theorem imply that \ff{x) has only real zeros then 

(1 — D)f(x) also has only real zeros. This suffices to prove the result by induction on m. 

m 

PROPOSITION 5.11. For any graph G there is an mo G M such that if m > mo then 

G V Km is r-real. 
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PROOF. For any fixed G, all the zeros of P(G; x — m) are eventually in the region 
%(1) for sufficiently large m. Since P(G V Km\x) = x^P(G;x — m) the result follows 
from Proposition 5.7. • 

We also have these partial results toward a Complete Cutset Theorem for r-
polynomials. 

PROPOSITION 5.12. If G and H are r-real graphs with #V(G OH) <\ then GUH is 
also r-real. 

PROOF. For GO H = 0 the result follows immediately from Propositions 1.1, 5.2, 
and 5.4. For #V(G H H) = 1 we get 

i n ( G U H \ x ) = r(G;X) • r(H;x) 

from which it follows that 

T(GUH;X) _ T(G\X) T(H\X) 

X X X 

and the proof follows the same pattern as that of Corollary 4.6. • 

PROPOSITION 5.13. Let G and H be graphs such that G DH is a complete graph. 
Suppose that G is r-real and that all the non-real zeros ofP(H\ x) are in the region ̂ j(O). 
Then G U H is r-real. 

PROOF. Let #V(G n H) = k. From Propositions 1.1 and 5.2 we have r(G U H\ x) = 
r(G\x) • Th(x), where h(x) = P(H;x)/x^ky By our hypothesis on //, h(x) satisfies The
orem 5.5 with m = 0, so that Th(x) has only real nonnegative zeros. The result follows 
from Proposition 5.4. • 

LEMMA 5.14. For any f e U[x], ifx^ divides T~lf then 

— Tlf = (1 - A)mT-l(x(\ - D)2Ymf. 

PROOF. This follows immediately from Proposition 5.1(k) since, whenever it is ap
plicable, x7\ T~l is the operator inverse to Tx^. m 

LEMMA 5.15. Let UJ be any word on the letters x, x~\ (1 — D), and (1 — D)~l, and 
define e(uo) to be the multiplicity of(\ — D) in u minus the multiplicity ofx in UJ. Then 
for any j \ g G IR[JC] such that ujf G R[x], 

cu(f*g) = ujf*(i-Dy^g. 

PROOF. This follows by induction on the length of UJ, using Proposition 5.3(b,d). • 

THEOREM 5.16. Let G and H be graphs such that GHH ~ Km. Then 

T(GU// ; JC) = (1 -D)m(x(\ - D)2)'m[r(G\x) • T(H\X)]. 
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PROOF. From Proposition 1.1 and various results of this section we calculate that 

P{G\x)P{H\x)] 
T(GUH;X) = T * < m > -

X (m) 

= (x(l -Df)mT{\ - A)-m[f — T~\{G\x)\( — T~lr(H-x)) 
l\x(m) J\x(m) J 

= « 1 -Df)m[(x{\ -D)2ymr(G',x)*(x(\ -D)2ymr(H-x)} 

= T(G;X) • (1 - D)m(x(\ - D)2ymr{H\x) 

= (1 - D)m(x(l - D)2)~m[r(G;x) • r(//;x)] 

as was to be shown. • 

Unfortunately, the operator (1 — D)m[x{\ — D)2) does not in general preserve 
the property of having only real nonnegative zeros, as can be seen even in the case 
m = 1. Thus if Theorem 5.16 can be used to prove the Complete Cutset Theorem for 
r-polynomials then some additional structure must be identified. 

There are several other formulas relating o(G;x) and r{G\x) with w{G\x) as well. 
From (1) and (9) a simple calculation yields 

(l-x)l+n l~*U J \l-xJ 

which motivates the definition of the augmented a-polynomial of G 

(10) â{G\x) = Y,j\a£G)jé 

as in [9]. Hence 
(11) w{G\x) = (\-x)nd{G\ X 

l-XJ 

Similarly, let us define the augmented r-polynomial of G by 

(12) f(G;x) = è(-ir-{/-!c7(G)y. 

From (6), (9), and (12) we deduce that 

(13) w(G\x)=x{\ -x)nf(G\- V 
V 1 — xJ 

Since every real zero of w(G;x) is nonpositive, from (11) one sees that every real zero 
of â{G\x) is in the interval [—1,0]. It also follows from (11) that d(G\x) has only real 
zeros if and only if the same is true of w{G\ x). Similarly, every real zero of f(G; x) is in 
[0, 1], and it has only real zeros if and only if w(G; x) does. 

Recall that the notation [tk]F(s, t) denotes the coefficient of f* when F(s, t) is expanded 
as a Laurent series in t. 
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PROPOSITION 5.17. The following identities hold. 
(a) Sx^ = m\ E£, ( J j . V / / ! (e) Tx(m) = m\ ££, (-^("ll)* Ifi 

(b) £*£*<*>//*! = exp(xy/(l -y)) (f) Ek 7*<4>//*! = exp(xy/(\ + y)) 
(c) a(G;x) = [z°]f(G;z-' + l)exp(xj) (g) T(G;X) = [z°]â(G;z~] - l)exp(xz) 
(d) j\aj(G) = T^i-iy-'QiMG) (h) jlcjiG) = ^ - ( - ly - 'Q / i f lKG) 

PROOF. We prove parts (a), (b), (c), and (d): the other parts may be proved similarly, 
or derived from these by Proposition 5.1. Part (a) follows from Proposition 2.1, but for 
a direct proof we use the well-known formulas x^ = £™=0 c(m, k)xk in which c(m, k) is 
a signless Stirling number of the first kind, and jt* = £JL0 S(kJ)x^ in which S(kJ) is a 
Stirling number of the second kind. It follows that 

m m 

7=0 H 

By the combinatorial interpretations of c(m, /:) and S(kJ), we see that [y'l&cM is the 
number of pairs (cr, 7r) in which a is a permutation of { 1 , . . . , m}, and ix is a partition of 
the cycles of cr into exactly 7 blocks. These pairs are in bijective correspondence with 
the pairs (#, p) in which 0 is a partition of { 1 , . . . , m] into exactly j blocks and p is a 
permutation of { 1 , . . . , m} which leaves each block of 6 invariant. To construct these 
pairs, choose any permutation a = a\ai • • -am of { 1 , . . . , m} (written in word notation) 
in one of ml ways, and choose an ordered partition v of this word into y blocks in one of 
{mI\) w ays. If (3 = ap+i - - • ap+q is a block of 1/ then let ail • • • aiq be the elements of (3 in 
increasing order. The rule ait 1—• ap+t defines a unique permutation on the block /3. Doing 
this for each block of 1/ defines a pair (#, p) as required. Each pair (6, p) is constructed y ! 
times in this manner, as the order of the blocks of v is irrelevant. This proves part (a). 

Part (b) follows from part (a) by standard manipulations with exponential generating 
functions. 

For part (c), notice that 

o{G\x) = SP(G;x) = ]£(-l)n-^-(G)Sjtw 

j 

= Z(-l)n~JJ^j(GW]cxp(xy/(\ -y)) 
j 

= [y°]E(-^n~JJ^j(G)y~J ^P^/^1 -30) . 
j 

Making the change of variables z = y/(l — y) we obtain 

CJ(G-X) = [z°]Y;(-Vn~JJ]'Cj(G)(z~l + ly'expfe) 
j 

which gives the result. 
Part (d) now follows from part (c) by equating coefficients of like powers of x. m 

The polynomial â(G;x) is somewhat easier to deal with than w(G;x) because of the 
relation â{G',x) = BP{G,x) in which B: R[x] —> R[x] is defined by Bx^ = mix™ and 
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linear extension. Similarly for f(G\ x), of course. This allows a development parallel to 

that of Section 4 but in this case the proofs are much more difficult. Propositions 5.18 

and 5.19 are proved as Theorems 2.7 and 0.3 of [37]. 

PROPOSITION 5.18. LetB: R[x] —• IR[JC] be the linear transformation just defined. Then 

for anyf, g G R[x] we have B(fg) = (Bf) o (Bg), in which the operation o: R[x] x R[x] —> 

R[x] is given by 

*<=N K'K' 

PROPOSITION 5.19. Ifbothf,g G R[x] have all their zeros in the interval [—1, 01 then 

fog also has all its zeros in the interval [—1,0]. 

Corollary 5.20 appears as Theorem 4.20 of [9]. 

COROLLARY 5.20. If G and H are vertex-disjoint w-real graphs then GU H is also 

w-reaL 

The analogue of Propositions 4.3 and 5.3 for the o-product appears in [37], but 

the complexity of these formulae has prevented us from obtaining analogues of Theo

rems 4.5, 4.7, and 5.16. However, the next proposition, equivalent to Theorem 4.3.4 of 

[8], gives us another partial Complete Cutset Theorem for w-polynomials. For a poly

nomial g G R[x] with only real zeros, let X(g) and A(g) denote the smallest and largest 

zeros of g, respectively. 

PROPOSITION 5.21. Letf G R[x] be such that all the zeros ofBf are in the interval 

[—1,0], and let the multiplicities of — I and 0 as zeros of Bf be I and m, respectively. 

Suppose that g G R[x] has only real zeros, and that g(z) = 0 for every integer z in 

the union of intervals [A(g), — 1 — I] U [m, A(g)]. Then all the zeros ofBifg) are in the 

interval [—1,0]. 

THEOREM 5.22. Let G and H be graphs such that G H H is a complete graph. Suppose 

that G is w-real and that H is P-real and all zeros z of P(H;x) satisfy z < x(H). Then 

GUH is w-real. 

PROOF. We check that g(x) = P(G;x) and h(x) = P{H\x)/P{G H H\x) satisfy the 

hypothesis of Proposition 5.21 ; the result then follows from Proposition 1.1. Let #V(G H 

H) = kmdX(H)=p. 
Since G is w-real, all the zeros of Bg(x) - a{G\x) are in the interval [—1,0]. The 

multiplicity of 0 as a zero of â{G\x) is the smallest j for which aj(G) ^ 0: this is 

X(G). Also, h(x) has only real zeros, 0 < X(h) and A(/z) < /?, and h(z) = 0 for every 

integer z in the interval [x(G),/?) because x^/x^ divides h(x) and k < x(G)- Now by 

Proposition 5.21, â(GUK;x) = B[P{G\ x)P{K\ x)/P{G H K;x)] has all its zeros in the 

interval [—1,0], which completes the proof. • 

The special case of Theorem 5.22 when #V(G D H) < 1 and H is complete appears 

as Theorem 4.17 of [9]. As an immediate consequence of Theorem 5.22 we obtain the 

following. 
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COROLLARY 5.23. Let G and H be graphs such that GC\H is complete. If G is w-real 

and H is supersolvable then GUH is w-real. In particular, any supersolvable graph is 

w-real. 

The second assertion of Corollary 5.23 is Theorem 4.11 of [9]. 

Finally, we can also give a condition on the location of zeros of P(G\ x) which is 

equivalent to symmetry of the coefficients of w(P;x). For a proof of the following 

proposition see Corollary 4.2.4(iii) of [29]. 

PROPOSITION 5.24. Letf(x) be a polynomial of degree d, and let 

fG{t) 
E Km)r = (\-t)l+d' 

where a G N, G(t) is a polynomial of degree b < d—aandG(0) ^ 0. Then G{t) - ^G(t l) 

if and only if the zeros off{x) are symmetric through the point (2a + b — d — l ) / 2 . 

PROPOSITION 5.25. For a graph G, the nonzero coefficients ofw(G\ x) are symmetric 

if and only if the zeros ofP(G',x) are symmetric through the point (x(G) — l ) / 2 . 

PROOF. Proposition 4.5 of [9] shows that the degree of w{P\ x) is #V(G) and that the 

multiplicity of 0 as a zero of w(P;x) is x(G). The result follows from Proposition 5.24, 

using P(G; x) in place of f(x). m 

Specializing to the case of cycles, we obtain the following. 

COROLLARY 5.26. For the cycles Cn, n > 3, the nonzero coefficients ofw(Cn;x) are 

symmetric if and only ifn is odd. 

6. Speculations. Regarding the zeros of chromatic polynomials, it seems likely that 

an extension of Theorem 1.3 using quartic factors could lead to some progress towards 

proving the Read-Hoggar conjecture. An extension of Theorem 4.7 using cubic factors 

would also be quite useful for proving cr-reality. In conjunction with these a description 

of the limit distribution of recursive sequences of polynomials would be very interesting. 

We wonder whether Conjecture 1.5 can be strengthened as follows. 

QUESTION 6.1. Is there a function/: N —-> R such that if G is a graph with maximum 

degree k and P(G; z) = 0 then \z\ <f(k)l 

As observed in Section 3, there appears to be some correlation among edge-density, w-

reality, and <r-reality. (Recall that the edge-density of an n-vertex graph G is #E(G)/ (").) 

For high edge-density the situation is problematic, for let G be any a-unreal graph and 

note that a(G V Kn\x) = cr(G;x)a(Kn\x) has non-real zeros and the edge-density of 

G V Kn tends to 1 as n —» oo. The situation for low edge-density may be different; note 

that w-reality seems to imply low edge-density, while low edge-density seems to imply 

<7-reality. 
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QUESTION 6.2. For n £ N let 8(n) be the minimum edge-density over all «-vertex 
cr-unreal graphs. Give a good lower bound for 6(n). In particular, is there a constant c > 0 
such that 6(n) > c for sufficiently large nl 

An affirmative answer to Question 6.2 would imply affirmative answers to both of 
the following questions. 

QUESTION 6.3. Is it true that for any k E N there are only finitely many a-unreal 
graphs with maximum degree kl 

QUESTION 6.4. Is it true that for any surface M there are only finitely many a-unreal 
graphs embeddable on Ml 

It is known that even cycles, supersolvable graphs, and incomparability graphs are 
all examples of perfect graphs. In view of Proposition 4.1 (a,c) and Proposition 4.10 it is 
natural to wonder whether all perfect graphs are cr-real. This is not true: several cr-unreal 
perfect graphs can be found in the Appendix. 

Concerning r- and w-reality, we are willing to make a few conjectures. 

CONJECTURE 6.5. Let G and H be graphs such that GO H is a complete graph. If 
both G and H are r-real then GUH is r-real. Also, if both G and H are w-real then GUH 
is w-real. 

CONJECTURE 6.6. Let G and H be vertex-disjoint graphs. If both G and H are r-real 
then the join G V H is also r-real. 

Note that w(C<\\x) = 14x4 + 8x3 + 2x2, so that C4 is w-unreal. Since K\ is w-real and 
KC

2V K2 — C4 this shows that w-reality is not preserved by taking joins. However, we 
have checked all other cycles on up to 20 vertices, and have found them to be w-real. 

CONJECTURE 6.7. The cycle Cn is w-real for all n > 5. 

Finally, there are three obvious questions which we are still far from being able to 
answer. 

QUESTION 6.8. Let pn denote the probability that an ^-vertex graph (chosen with 
uniform distribution) is cr-real. Does pn tend to a limit as n —> 00? If so, then what is the 
value of this limit? In particular, does pn —» 1 as n —+ 00? 

QUESTION 6.9. Are all graphs T-real? 

QUESTION 6.10. Let qn denote the probability that an «-vertex graph (chosen with 
uniform distribution) is w-real. Does qn tend to a limit as n —• 00? If so, then what is the 
value of this limit? In particular, does qn —> 0 as n —> 00? 

Of these, the second may be the easiest to answer: if it is true then the Deletion-
Contraction Algorithm and a variation of the Sturm sequence techniques of [36, 37] may 
yield a proof. The other two questions seem to require a "probabilistic Sturm sequence" 
approach, in whatever sense this can be made meaningful. Alternatively, one could show 
that the graph properties a-reality and w-reality obey a zero-one law, in the sense of [ 11 ]. 
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Appendix: the 9-vertex cr-unreal graphs 

77 

https://doi.org/10.4153/CJM-1994-002-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-002-3


78 F. BRENTI, G. F. ROYLE AND D. G. WAGNER 

https://doi.org/10.4153/CJM-1994-002-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-002-3


CHROMATIC POLYNOMIALS OF GRAPHS 79 

REFERENCES 

1. S. Beraha, J. Kahane and N. J. Weiss, Limits of zeros of recursively defined families of polynomials. In: 
Studies in Foundations and Combinatorics, (ed. G.-C. Rota), Adv. in Math., Supplementary Studies 1, 
Academic Press, New York, 1978, 213-232. 

2. , Limits of chromatic zeros of some families of graphs, J. Combin. Theory Ser. B 28( 1980), 52-65. 
3. N. L. Biggs, Algebraic Graph Theory, Cambridge Tracts in Math. 67, Cambridge U.P., Cambridge, 1974. 
4. N. L. Biggs, R. M. Damerell and D. A. Sands, Recursive families of graphs, J. Combin. Theory Ser. B 

12(1972), 123-131. 
5. G. D. Birkhoff, A determinantal formula for the number of ways of coloring a map, Ann. of Math. 

14(1912), 42-46. 
6. G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60( 1946), 355^451. 
7. A. Bjorner, The unimodality conjecture for convex poly top es, Bull. Amer. Math. Soc. 4( 1980), 187-188. 
8. F. Brenti, Unimodal, Log-concave, and Pôlya Frequency Sequences in Combinatorics, Mem. Amer. 

Math. Soc. 413, Providence, RI, (1989). 
9. , Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332(1992), 

729-756. 
10. R. D. Cameron, C. J. Colbourn, R. C. Read and N. C. Wormald, Cataloguing the graphs on 10 vertices, 

J. Graph Theory 9(1985), 551-562. 
11. K. J. Compton, A logical approach to asymptotic combinatorics I. First order properties, Adv. in Math. 

65(1987), 65-96. 
12. L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1974. 
13. H. H. Crapo, The Tutte polynomial, Aequationes Math. 3( 1969), 211 -229. 
14. G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25(1961 ), 71-76. 
15. D. Gernert, A survey of partial proofs for Read's conjecture and some recent results. In: IX Sym

posium on operations research, part I, sections 1-4, Osnabruck, (1984), Methods Oper. Res. 49, 
Athenaum/Hain/Hanstein, Konigstein/Ts., 1985, 233-238. 

16. C. D. Godsil, Matchings and walks in graphs, J. Graph Theory 5( 1981 ), 285-297. 
17. J. R. Goldman, J. T. Joichi and D. E. White, Rook Theory III: Rook polynomials and the chromatic 

structure of graphs, J. Comb. Theory Ser. B 25(1978), 135-142. 
18. O. J. Heilmann and E. H. Lieb, Theory of monômer-dimer systems, Comm. Math. Phys. 25(1972), 

190-232. 
19. S. Hoggar, Chromatic polynomials and logarithmic concavity, J. Comb. Theory Ser. B 16(1974), 248-

254. 
20. S. Karlin, Total Positivity, vol. /, Stanford U.P, Stanford, 1968. 
21. R. R. Korfhage, a-polynomials and graph coloring, J. Comb. Theory Ser. B 24( 1978), 137-153. 
22. L. Lovâsz, Combinatorial Problems and Exercises, North-Holland, Amsterdam, New York, 1979. 
23. B. D. McKay and G. F. Royle, Constructing the cubic graphs on up to 20 vertices, Ars Combin. 

21-A(1986), 129-140. 
24. R. C. Read, An introduction to chromatic polynomials, J. Comb. Theory 4( 1968), 52-71. 
25. , An improved method for computing chromatic polynomials of sparse graphs, Proceedings of 

the Sixth Carribean Conference on Combinatorics and Computing, Trinidad, 1991, to appear. 
26. R. C. Read and G. F Royle, Chromatic roots of families of graphs, in Graph Theory, Combinatorics, and 

Applications, (eds. Alavi, Chartrand, Oellermann, Schwenk), J. Wiley, New York, 1991. 
27. R. C. Read and W. T. Tutte, Chromatic polynomials. In: Selected Topics in Graph Theory 3 (eds. Beineke, 

Wilson), Academic Press, New York, 1988. 
28. R. P. Stanley, Acyclic orientations of graphs, Discrete Math. 5( 1973), 171-178. 
29. , Enumerative Combinatorics, vol. I, Wadsworth & Brooks/Cole, Monterey, CA, 1986. 
30. , Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Graph 

Theory and Applications: East and West (eds. Capobianco, Guan, Hsu, Tian), Annals of the New York 
Acad. Sci. 576(1989), 500-535. 

31. V. Thier, Graphen und Polynôme, Diploma Thesis, T.U. Miinchen, Miinchen, 1983. 
32. W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6( 1954), 80-91. 
33. , On chromatic polynomials and the golden ratio, J. Comb. Theory 9( 1970), 289-296. 
34. , Chromatic sums for planar triangulations, Canad. J. Math. 26( 1974), 893-907. 
35. , Chromials, in Springer Lecture Notes in Math. 411(1974), 243-266. 
36. D. G. Wagner, The partition polynomial of a finite set system, J. Comb. Theory Ser. A 56( 1991 ), 138-159. 

https://doi.org/10.4153/CJM-1994-002-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-002-3


80 F. BRENTI, G. F. ROYLE AND D. G. WAGNER 

37. , Total positivity of Hadamardproducts, J. Math. Anal. Appl. 163(1992), 459-483. 
38. , Zeros of rank-generating functions of Cohen-Macaulay complexes. In: Proceedings of the 

4th Conference on Formal Power Series and Algebraic Combinatorics, (eds. Labelle and Reutenauer), 
UQAM, Montreal, 1992. 

39. H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38(1932), 572-579. 
40. H. S. Wilf, Which polynomials are chromatic?, Colloq. Internaz. sulle Teorie Combinatorie, 1973 (ed. 

B. Segre), Atti dei Convegni Lincei 17, Rome, 1976, 247-256. 
41. D. R. Woodall, Zeros of chromatic polynomials, Combinatorial Surveys: Proc. Sixth British Combina

torial Conf. (ed. P. J. Cameron), Academic Press, London, 1977, 199-223. 

Dipartimento di Matematica 

Universita ' di Perugia 

Via Vanvitelli 1 

1-06123, Perugia 

Italy 

Department of Computer Science 

University of Western Australia 

Perth, Western Australia 

Australia 

Department of Combinatorics and Optimization 
University of Waterloo 
Waterloo, Ontario 
N2L 3G1 

https://doi.org/10.4153/CJM-1994-002-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-002-3

