IDENTITIES FOR MULTIPLICATIVE FUNCTIONS

M. V. Subbarao ${ }^{1}$ and A. A. Gioia ${ }^{2}$

(received November 11, 1965)

1. Introduction. Throughout this paper the arithmetic functions $L(n)$ and $w(n)$ denote respectively the number and product of the distinct prime divisors of the integer $n>1$, with $L(1)=0$ and $w(1)=1$. Also let

$$
\begin{aligned}
& C(m, n)= \begin{cases}(-1)^{L(n)}, & \text { if } w(m)=w(n) \\
0, & \text { otherwise; }\end{cases} \\
& E_{0}(n)= \begin{cases}1, & \text { if } n=1, \\
0, & \text { if } n>1 .\end{cases}
\end{aligned}
$$

We recall that an arithmetic function $f(n)$ is said to be multiplicative if $f(1)=1$ and $f(m n)=f(m) f(n)$ whenever $(m, n)=1$, where (m, n) denotes as usual the greatest common divisor of m and n . It is known (Vaidyanathaswamy [6], [7, section VI]; for another proof, Gioia [3],) that every multiplicative function f satisfies the identity

$$
\begin{align*}
f(m n)= & \sum_{a \mid m} f(m / a) f(n / b) f^{-1}(a b) C(a, b), \tag{1.1}\\
& b \mid n
\end{align*}
$$

[^0]Canad. Math. Bull. vol. 10, no. 1, 1967
where m and n are arbitrary positive integers and f^{-1} is the Dirichlet inverse of f defined by

$$
\sum_{d \mid n} f(d) f^{-1}(n / d)=E_{o}(n)
$$

We give here a generalization of this identity which holds in the case of generalized Dirichlet products of arithmetic functions introduced by the authors [5]. We also obtain another identity valid in the case of unitary products.
2. Preliminaries. Let $K(n)$ be a fixed arithmetic function satisfying $K(1)=1$ and for arbitrary positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}$,

$$
\begin{equation*}
K((a, b)) K((a b, c))=K((a, b c)) K((b, c)) \tag{2.1}
\end{equation*}
$$

For any arithmetic functions f and g, their generalized Dirichlet product f.g is the arithmetic function defined by

$$
(f . g)(n)=\sum_{d \mid n} f(d) g(n / d) K((d, n / d))
$$

It can be verified (see [4]) that (2.1) assures the associativity of the product, and together with the condition $K(1)=1$ it implies that the kernel $K(n)$ is multiplicative. In the sequel we shall refer to the generalized Dirichlet product as the K-product. We note without proof that under the K-product operation the set of multiplicative functions forms an Abelian group G with $E_{o}(n)$ as the identity element. The group inverse of f in G will be denoted by f^{-1}.

On taking $K(n)=1$ for all n, and $K(n)=E_{o}(n)$, the K-product of f and g becomes, respectively, the ordinary Dirichlet product $\Sigma \quad f(d) g(n / d)$ and the unitary product $\mathrm{d} \mid \mathrm{n}$

$$
\sum_{\substack{d \mid n \\(d, n / d)=1}} f(d) g(n / d)
$$

The latter of these has been studied extensively by Eckford Cohen ([1], [2]).
3. A generalized identity for the K -product. We will first note the following

LEMMA. If $(a, b)=1,(a, d)=1$, and $(b, c)=1$ then $K((a b, c d))=K((a, c)) K((b, d))$.

Proof. The result follows immediately from the multiplicativity of K after observing that under the hypotheses of the lemma we have $((a, c),(b, d))=1$ and $(a, c)(b, d)=(a b, c d)$.

COROLLARY.

$$
K\left(\left(\prod_{i=1}^{t} p_{i}^{x_{i}}, \prod_{i=1}^{t} p_{i}^{y_{i}}\right)\right)=\underset{i=1}{t} K\left(\left(p_{i}^{x_{i}}, p_{i}^{y_{i}}\right)\right), \quad \quad x_{i}, y_{i} \geq 0 .
$$

From the definition of the function $C(a, b)$, we notice that we also have
(3.1) $C\left(\underset{i=1}{\prod_{i}} p_{i}^{x_{i}}, \prod_{i=1}^{t} p_{i}^{y_{i}}\right)=\prod_{i=1}^{t} C\left(p_{i}^{x_{i}}, p_{i}^{y_{i}}\right), \quad \quad x_{i}, y_{i} \geq 0$.

We can now prove
THEOREM 1. For arbitrary positive integers m and n, every multiplicative function f satisfies the identity
$\begin{aligned} f(m n)= & \sum_{a \mid m} f(m / a) f(n / b) f^{-1}(a b) K((m n / a b, a b)) K((m / a, n / b)) C(a, b) . \\ & b \mid n\end{aligned}$

Proof. Define the function

$$
\begin{aligned}
& S(\mathrm{~m}, \mathrm{n})= \sum_{\mathrm{a} \mid \mathrm{m}} \mathrm{f}(\mathrm{~m} / \mathrm{a}) \mathrm{f}(\mathrm{n} / \mathrm{b}) \mathrm{f}^{-1}(\mathrm{ab}) \mathrm{K}((\mathrm{mn} / \mathrm{ab}, \mathrm{ab})) \mathrm{K}((\mathrm{~m} / \mathrm{a}, \mathrm{n} / \mathrm{b})) \mathrm{C}(\mathrm{a}, \mathrm{~b}) . \\
& \mathrm{b} \mid \mathrm{n}
\end{aligned}
$$

We shall show that $S(m, n)=f(m n)$ for all $m, n \geq 1$. First, let $m=p^{x}$ and $n=p^{y}$, where p is prime and $x, y \geq 1$. Then
$S(m, n)=f(m) f(n) K((m, n))$

$$
\sum_{a \mid m}^{a>1}<i\left(\frac{m}{a}\right) K\left(\left(\frac{m}{a}, n a\right)\right) \sum_{\substack{b \mid n \\ b>1}} f\left(\frac{n}{b}\right) f^{-1}(a b) K\left(\left(\frac{n}{b}, a b\right)\right),
$$

where we have used equation (2.1).
Since a p^{x},

$$
0=E_{0}(n a)=\sum_{b \mid a} f(n b) f^{-1}(a / b) K((n b, a / b))
$$

$$
+\sum_{\substack{b \mid n \\ b>1}} f(n / b) f^{-1}(a b) K((n / b, a b)),
$$

so that

$$
S(m, n)=f(m) f(n) K((m, n))
$$

$$
\begin{aligned}
& +\sum_{a \mid m}^{\sum} \sum_{a>1} f\left(\frac{m}{a}\right) K\left(\left(\frac{m}{a}, n a\right)\right) \sum_{b \mid a} f(n b) f^{-1}\left(\frac{a}{b}\right) K\left(\left(n b, \frac{a}{b}\right)\right) \\
& =\sum_{a \mid m}^{\sum} \sum_{b \mid a} f(m / a) f(n b) f^{-1}(a / b) K((n b, a / b)) K((n a, m / a)) .
\end{aligned}
$$

Inter changing the order of summation and using (2.1) again,

$$
\begin{gathered}
S(m, n)=\sum_{b \mid m} f(n b) K((n b, m / b)) \sum_{a \mid m} f(m / a) f^{-1}(a / b) K((a / b, m / a)) \\
b / a \\
=\sum_{b \mid m} f(n b) K((n b, m / b)) E_{o}(m / b)=f(m n)
\end{gathered}
$$

Furthermore, since $S(1, n)=f(n)$ and $S(m, 1)=f(m)$, we see that $S(m, n)=f(m n)$ for $m=p^{x}, n=p^{y}$ with $x, y \geq 0$. Now from the above corollary and (3.1) we have

$$
=\prod_{i=1}^{t} S\left(p_{i}^{x_{i}}, p_{i}^{y_{i}}\right)
$$

$$
=\prod_{i=1}^{t} f\left(p_{i}^{x_{i}+y_{i}}\right)=f\left(\Pi p_{i}^{x_{i}+y_{i}}\right),
$$

and the theorem is proved.
In addition to Vaidyanathaswamy's identity (1.1), the following is another interesting special case of Theorem 1, and is kindly supplied by the referee.

Let L denote the set of the integers n with the property that each prime divisor of n has multiplicity at least 2, and let λ (n) denote the characteristic function of L. It is easily observed that $\lambda(n)$ satisfies the associativity condition, (2.1). Theorem 1 becomes now, with f^{-1} representing the inverse of f with respect to the kernel λ,

$$
\begin{aligned}
& S\left(\prod_{i=1}^{t} p_{i}^{x_{i}}, \prod_{i=1}^{t} p_{i}^{y_{i}}\right)=\sum_{x_{1}} \sum_{y_{1}} f\left(\Pi \frac{p_{i}^{x_{i}}}{a_{i}}\right) f\left(\Pi \frac{p_{i}^{y_{i}}}{b_{i}}\right) f^{-1}\left(\Pi a_{i} b_{i}\right) \\
& a_{1}\left|p_{1} b_{1}\right| p_{1} \\
& a_{t}\left|p_{t}^{x_{t}} \quad b_{t}\right| p_{t}^{y_{t}} \\
& \times K\left(\left(\Pi \frac{p_{i}^{x_{i}}}{a_{i}}, \Pi \frac{p_{i}^{y_{i}}}{b_{i}}\right)\right) K\left(\left(\Pi \frac{p_{i}^{x_{i}+y_{i}}}{a_{i} b_{i}}, a_{i} b_{i}\right)\right) \\
& \times C\left(\Pi a_{i}, \Pi b_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(m n)= & \Sigma f(d) f(\delta) f^{-1}(a b) C(a, b) . \\
& a d=m, b \delta=n . \\
& (d, \delta) \in L \\
& (a b, d \delta) \in L
\end{aligned}
$$

4. An identity for unitary products. For Dirichlet products, $K((m, n))=1$ for all m and n, and the identity of Theorem 1 reduces to (1.1). However, in the case of unitary products, Theorem 1 reduces to a triviality. To see this, we require the

LEMMA. If f is a multiplicative function and if f^{-1} denotes the unitary inverse of f, then $f^{-1}(n)=(-1)^{L(n)} f(n)$ for all positive integers n.

Proof. The result is obvious if $n=1$. For any prime p and any positive integer x ,

$$
\begin{gathered}
0=E_{o}\left(p^{x}\right)=\sum_{d \mid p^{x}} f^{-1}(d) f\left(p^{x} / d\right)=f\left(p^{x}\right)+f^{-1}\left(p^{x}\right) \\
\left(d, p^{x} / d\right)=1
\end{gathered}
$$

or $f^{-1}\left(p^{x}\right)=(-1)^{L\left(p^{x}\right)} f\left(p^{x}\right)$. Since f^{-1} and f are multiplicative, the lemma follows for any n.

Now for the unitary product, $K((m, n))=E_{o}((m, n))$;
hence, if we write $m=m_{1} m_{2}$ and $n=n_{1} n_{2}$, where $w\left(m_{1}\right)=w\left(n_{1}\right)$ and $\left(m_{1}, m_{2}\right)=\left(n_{1}, n_{2}\right)=1$ and $\left(m_{i}, n_{j}\right)=1$ except for $i=j=1$, we see that

$$
\mathrm{K}((\mathrm{mn} / \mathrm{ab}, \mathrm{ab})) \mathrm{K}((\mathrm{~m} / \mathrm{a}, \mathrm{n} / \mathrm{b})) \quad \mathrm{C}(\mathrm{a}, \mathrm{~b})
$$

vanishes unless $a=m_{1}$ and $b=n_{1}$. Using the lemma it is seen that the identity reduces to the obvious relation $f(\mathrm{mn})=$ $f\left(m_{2}\right) f\left(m_{1} n_{1}\right) f\left(n_{2}\right)$.

We will now give a non-trivial identity for the unitary product. We write $d \| n$ to mean that d is a unitary divisor of n, i.e. $d \mid n$ and $(d, n / d)=1$. Let

$$
\lambda(a, b)= \begin{cases}(-1)^{L(a)}, & \text { if } w(a) \mid w(b) \\ 0, & \text { otherwise }\end{cases}
$$

THEOREM 2. For arbitrary positive integers m and n and for any multiplicative function f,

$$
\begin{aligned}
& f(m n)=\sum_{a \| m} f(m / a) f(n / b) f^{-1}(a b) \lambda(a, b) \\
& b \| n \\
& w(b) \mid w((m, n)) \\
& w(a) \cdot \mid w((m, n))
\end{aligned}
$$

Proof. Let $T(m, n)=\sum_{a \| m} f(m / a) f(n / b) f^{-1}(a b) \lambda(a, b)$

$$
\mathrm{b} \| \mathrm{n}
$$

$w(b) \mid w((m, n))$
$w(a) \mid w((m, n))$

$$
\left.\begin{array}{rl}
& =\sum_{a \| m} f(m / a) f(n / b) f(a b)(-1)^{L(a)+L(b)} \\
b \| n
\end{array}\right](a)|w(b)| w((m, n)) \quad l
$$

Clearly, $T(1, n)=f(n)$ and $T(m, 1)=f(m)$ for all m, n. If p is a prime and $x, y \geq 1$, for $m=p^{x}$ and $n=p^{y}$ we have

$$
T(m, n)=f(m) f(n)+f(m) f^{-1}(n)-f^{-1}(m n)=f(m n)
$$

using the above lemma. Therefore,

$$
\begin{aligned}
& T\left(\prod_{i=1}^{t} p_{i}^{x_{i}}, \quad \prod_{i=1}^{t} p_{i}^{y_{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a_{t}\left\|p_{t}^{x_{t}} \quad b b_{t}\right\| p_{t}^{y_{t}} \\
& w\left(a_{1}\right)\left|w\left(b_{1}\right)\right| w\left(\left(p_{1}{ }^{x_{1}}, p_{1}^{y_{1}}\right)\right) \\
& w\left(a_{t}\right)\left|w\left(b_{t}\right)\right| w\left(\left(p_{t}{ }_{t}, p_{t}^{y_{t}}\right)\right) \\
& =\prod_{i=1}^{t} T\left(p_{i}{ }^{i}, p_{i}^{y_{i}}\right) \\
& =\prod_{i=1}^{t} f\left(p_{i} x_{i}+y_{i}\right)=f\left(\prod_{i} p_{i}+y_{i}\right) .
\end{aligned}
$$

A restatement of theorem 2 would be as follows:
If f is multiplicative, then for arbitrary integers m, n, $f(m n)=\sum_{a \| m} f(m / a) f(n / b) f(a b)(-1)^{L(a)+L(b)}$. b $\| n$

$$
\mathrm{w}(\mathrm{a})|\mathrm{w}(\mathrm{~b})| \mathrm{w}((\mathrm{~m}, \mathrm{n}))
$$

REFERENCES

1. Eckford Cohen, Arithmetical functions associated with the
unitary divisors of an integer. Math. Zeit., 74 (1960), pages 66-80.
2. Eckford Cohen, Unitary functions (mod r). Duke Math. J., 28 (1961), pages 475-485.
3. A. A. Gioia, On an identity for multiplicative functions. Amer. Math. Monthly, 69 (1962), pages 988-991.
4. A. A. Gioia, The K-product of arithmetic functions. Can. J. Math., 17 (1965), pages 970-976.
5. A.A. Gioia and M.V. Subbarao, Generalized Dirichlet products of arithmetic functions (Abstract). Notices Amer. Math. Soc., 9 (1962), page 305.
6. R. Vaidyanathaswamy, The identical equation of the multiplicative functions. Bull. Amer. Math. Soc., 36 (1930), pages 762-772.
7. R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions. Trans. Amer. Math. Soc., 33 (1931) pages 579-662.

University of Alberta,
University of Kerala and
Texas Technological College

[^0]: ${ }^{1}$ Partially supported by National Science Foundation Grant No. GP 1222.

 2
 This author's contribution formed a part of his Ph.D. thesis submitted to the University of Missouri in January, 1964.

