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1. Introduction. Throughout this paper the arithmetic 
functions L(n) and w(n) denote respectively the number and 
product of the distinct pr ime divisors of the integer n > 1 , 
with L(l) = 0 and w(l) = 1 . Also let 

C(m, n) 
(-1) , if w(m) = w(n) 

0 , otherwise ; 

E (n) = ^ o 

1 , if n = 1 , 

0 , if n > 1 . 

We recal l that an arithmetic function f(n) is said to be multi
plicative if f(l) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1 , 
where (m, n) denotes as usual the greatest common divisor of 
m and n . It is known (Vaidyanathaswamy [6], [7, section VI]; 
for another proof, Gioia [3],) that every multiplicative function f 
satisfies the identity 

(1.1) f(mn) = 2 f(m/a) f(n/b) f (ab) C(a, b) 
a i m 

b | n 
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- 1 

where m and n a r e a rb i t r a ry positive integers and f is the 

Dirichlet inverse of f defined by 
S f(d)f"d (n/d) = E (n) . 

djn 

We give here a generalization of this identity which holds in the 
case of generalized Dirichlet products of ari thmetic functions 
introduced by the authors [5]. We also obtain another identity 
valid in the case of unitary products . 

2. P r e l imina r i e s . Let K(n) be a fixed ar i thmetic 
function satisfying K(l) = 1 and for a rb i t ra ry positive integers 
a ,b , c, 

(2.1) K((a fb))K((ab>c)) = K((a,bc))K((b, c)) . 

For any ari thmetic functions f and g , their generalized 
Dirichlet product f.g is the ar i thmetic function defined by 

(f. g)(n) = 2 f (d) g(n/d) K((d, n/d)) . 
d i n -

It can be verified (see [4]) that (2. 1) a s su re s the associa
tivity of the product, and together with the condition K(l) = 1 
it implies that the kernel K(n) is multiplicative. In the sequel 
we shall refer to the generalized Dirichlet product as the 
K-product. We note without proof that under the K-product 
operation the set of multiplicative functions forms an Abelian 
group G with E (n) as the identity element. The group in-

° -1 
verse of f in G will be denoted by f 

On taking K(n) = 1 for all n , and K(n) = E (n) , the 

K-product of f and g becomes, respectively, the ordinary 
Dirichlet product 2 f(d) g(n/d) and the unitary product 

d |n 

S f(d) g(n/d) . 
d | n 

{d,n/d) = l 

The latter of these has been studied extensively by Eckford 
Cohen ([1], [2]). 
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3. A generalized identity for the K-product. We will 
first note the following 

LEMMA. If (a,b) = l , (a,d) = l , and (b, c) = 1 
then K((ab, cd)) = K((a, c)) K((b, d)) . 

Proof. The result follows immediately from the multi-
plicativity of K after observing that under the hypptheses of 
the lemma we have ((a, c), (b,d)) = 1 and (a, c)(b,d) = (ab, cd) . 

COROLLARY. 

1 X i * Y i t Xi Yi x , y. > 0 . 
K(( n p . 1 , n p . 1 )) = n K ( ( P . 1 , p . 1 )) , i y i -

i=l i=l i=l 

From the definition of the function C(a, b) , we notice that 
we also have 

t x. t y. t x. y. 
( 3 . i ) c( n p. ' , n p . 2 ) = n c( P . 1,p.1) , x. , y . > o . 

. . i . , i . . i i i i — 
1=1 1=1 1=1 

We can now prove 

THEOREM 1. For arbitrary positive integers m and n , 
every multiplicative function f satisfies the identity 

f(mn) = Z f(m/a) f(n/b) f_1(ab) K((mn/ab, ab)) K((m/a,n/b)) C(a,b) . 
a Jm 

b | n 

Proof. Define the function 

S(m,n)= S f(m/a)f(n/b)f"1(ab)K((mn/ab,ab))K((m/a,n/b))C(a,b) . 
a |m 

b | n 

We shall show that S(m, n) = f(mn) for all m, n >̂  1 . First, 
X V 

let m = p and n = p , where p is prime and x, y >̂  1 . Then 
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S(m, n) = f (m)f (n)K((m, n)) 

S f ( - ) K ( ( - , n a ) ) 2 f(^)f_1 (ab)K((£ , ab)) , 
i a a , 1 b b 

a | m b | n 
a > l b > l 

where we have used equation (2. 1). 

Since a |p , 

0 = E (na) = Z f(nb) f"1(a/b) K((nb, a/b)) 
b |a 

+ Z f(n/b)f" (ab)K((n/b,ab)) , 
b | n 
b > l 

so that 

S(m,n) = f(m)f(n)K((m,n)) 

+ Z f ( ~ ) K ( ( - , n a ) ) Z f (nb)f~1 (~)K((nb, £ )) 
a |m b | a b b 
a > l 

S Z f(m/a)f(nb)f" 1(a/b)K((nb, a/b))K((na, m/a) ) 
a ni b I a 

Interchanging the order of summation and using (2.1) again, 

S(m,n) = Z f(nb)K((nb,m/b)) Z f(m/a)f" 1 (a /b)K((a/b, m/a) ) 
b | m a | m 

bj a 

= Z f(nb)K((nb,m/b)) E (m/b) =f(mn) . 
i O 

b m 
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Fur thermore , since S(l ,n) = f(n) and S(m, 1) = f(m) , 
x y 

we see that S(m, n) = f(mn) for m = p , n = p with x, y > 0 
Now from the above corollary and (3.1) we have 

x 
x. y. 

1 Y- P- P. A 

s( n p.1 , n p . 1 ) = s s f(n — i f t n - ^ - l f (na.b.) 
i=l 1=1 1 1 i i 

aJpibi | pi 

x y 
a t | p t N'Pt* 

x. y. x.+y. 
p. i p. i p. l l 

xK((n-f- , n-^))K((n-r-r-- . a.b.)) 
a. b. a.b. i i 

i i i i 
x C(na. , nb ) 

t x. y. 
: n sip.1, p . 1 ) 
i=l 1 1 

t x.+y. x.+y. 
= n ffc.1 l) = f ( n P . 1 x) , 

i=i x x 

and the theorem is proved. 

In addition to Vaidyanathaswamy's identity (1.1), the 
following is another interesting special case of Theorem 1, and 
is kindly supplied by the re fe ree . 

Let Li denote the set of the integers n with the property 
that each pr ime divisor of n has multiplicity at least 2, and 
let X (n) denote the character is t ic function of L . It is easily 
observed that X (n) satisfies the associativity condition, (2.1). 

-1 
Theorem 1 becomes now, with f representing the inverse of f 
with respec t to the kernel X , 
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f(mn) = Z f(d)f ( 6 ) f " 1 ( a b ) C ( a , b ) 

ad = m , bô = n . 

( d , 6 ) € la 

(ab, do) € L 

4 . An iden t i ty for u n i t a r y p r o d u c t s . F o r D i r i c h l e t 
p r o d u c t s , K((m, n)) = 1 for a l l m and n , and the iden t i ty of 
T h e o r e m 1 r e d u c e s to ( 1 . 1 ) . However , in the c a s e of u n i t a r y 
p r o d u c t s , T h e o r e m 1 r e d u c e s to a t r i v i a l i t y . To s ee t h i s , we 
r e q u i r e the 

- 1 
L E M M A . If f i s a m u l t i p l i c a t i v e funct ion and if f d e 

no tes the u n i t a r y i n v e r s e of f , then f (n) = (-1) f(n) for 
a l l p o s i t i v e i n t e g e r s n . 

P roo f . The r e s u l t i s obvious if n = 1 . F o r any p r i m e p 
and any pos i t i ve i n t e g e r x , 

0 = EQ(pX) = S f"1 (d) f (p X /d ) = f(pX) + f " 1 ^ * ) , 

d ! P
x 

(d ,p X / d ) = 1 

- 1 X T [ D ) x _ A 

or f (p ) = ( - 1 ) f(p ) . Since f and f a r e m u l t i p l i 
ca t i ve , the l e m m a follows for any n . 

Now for the u n i t a r y p rodu c t , K((m, n)) = E ((m,n)) ; 

h e n c e , if we w r i t e m = rn rn and n = n , n , w h e r e 
1 2 1 2 

w(m ) = w ( n j and (m . m ) = (n . n ) = 1 and (m. , n.) = 1 
1 1 1 2 1 2 l j 

excep t for i = j = 1 , we s e e t ha t 

K ( ( m n / a b , a b ) ) K ( ( m / a , n /b ) ) C(a, b) 

v a n i s h e s u n l e s s a = m^ and b = n . Us ing the l e m m a i t i s 
1 1 

s e e n tha t the iden t i ty r e d u c e s to the obvious r e l a t i o n f(mn) = 
f ( m . ) f ( m . n ) f(n ) . 

2 1 1 2 
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We will now give a non-trivial identity for the unitary pro
duct. We write d ||n to mean that d is a unitary divisor of n , 
i . e . d |n and (d,n/d) = 1 . Let 

X(a,b) = 
f ( - l ) L ( a ) , if w(a)|w(b) 

0 , otherwise. 

THEOREM 2. For a rb i t ra ry positive integers m and n 
and for any multiplicative function f , 

f(mn) = 2 f(m/a) f(n/b) f_1(ab) X(a,b) . 
a | |m 

b | | n 

w(b)|w((m, n)) 
w(a) |w((m, n)) 

Proof. Let T(m, n) = Z f(m/a) f (n/b) f" d(ab) X (a, b) 
a | |m 

b | | n 

w(b)|w((m,n)) 

w(a) jw((m,n)) 

= 2 f(m/a) f(n/b)f(ab) (-1) 
allm 

L(a)+L(b) 

b | | n 

w(a) |w(b) |w((m, n)) 

Clearly, T(l , n) = f(n) and T(m, 1 ) = f (m) for all m, n . If p is 

a pr ime and x, y >_ 1 , for m = p and n = p we have 

T(m,n) = f(m) f(n) + f(m) f ' ^ n ) - f"1(mn) = f(mn) , 

using the above lemma. Therefore, 
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t x. t y. 
T( n p.1 , n p.1 ) 

i=l l i=i l 

x. y. 
i i 

2 f (n^- )£ (n^- )£ (na .b . ) ( - i ) s [ L < a i , + L ( b i » I 
x v a. b. i i 

1 , H 1 i 

x 
w ( a i ) | w ( b i ) | w ( { p l

x , p a )) 
x y 

1 y l 

t Y t 
w(a ) |w(b )Jw((p , p )) 

t x. y. 
n T ( P * , p . 1 ) 

i=l 

t x. + y. x. + y. 
n ftp.1 ' ) = ftnp.1 x) 

i=i * 

A res ta tement of theorem 2 would be as follows: 

If f is multiplicative, then for a rb i t ra ry integers m, n , 

f(mn) = 2 f(m/a) f(n/b) f(ab) ( - l ) L ( a ) + L ( b ) . 
a | |m 

b | | n 

w(a) |w(b) |w((m, n)) 
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