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p-adic L-functions
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Abstract

In this paper, we give a new geometric definition of nearly overconvergent modular
forms and p-adically interpolate the Gauss–Manin connection on this space. This can
be seen as an ‘overconvergent’ version of the unipotent circle action on the space of
p-adic modular forms, as constructed by Gouvêa and Howe. This improves on results
of Andreatta and Iovita and has applications to the construction of Rankin–Selberg
and triple-product p-adic L-functions.
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1. Introduction

One of the central tools for studying complex L-functions associated with cuspidal modular eigen-
forms (or convolutions of such forms) is the Maass–Shimura differential operator, which acts on
the space of nearly holomorphic modular forms (first introduced by Shimura to study the alge-
braicity properties of the Rankin–Selberg L-function [Shi76, Shi86]). For various applications in
number theory and arithmetic geometry, such as for the construction of p-adic L-functions,
it is often desirable to understand how this operator varies p-adically for a given prime
number p.

Since the Maass–Shimura operator is closely related with the Gauss–Manin connection (which
makes sense in the p-adic world), one is led to understand how powers of this connection vary
p-adically on an appropriately defined space of ‘p-adic modular forms’. In the ordinary setting
(i.e., as the modular forms vary in Hida families), the situation is well understood – one can use
the ‘unit root splitting’ to construct the Atkin–Serre operator on Katz p-adic modular forms,
which is significantly easier to analyse than the full Gauss–Manin connection (on q-expansions it
is simply the operator Θ= qd/dq). Since the space of Katz p-adic modular forms comes equipped
with an ordinary idempotent for the Up-operator and satisfies a classicality theorem, this is
often sufficient for the construction p-adic L-functions in the ordinary setting (see, for example,
[DR14]).
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In the non-ordinary case the situation is much more delicate.

– On the one hand, the desired space of ‘p-adic modular forms’ (which we denote by N † and
refer to as nearly overconvergent modular forms) should have a good spectral theory for
the Up-operator (i.e., one can define ≤ h-slope parts for any integer h≥ 0). This property
means that the space cannot be ‘too large’ – for example, this property is not satisfied by
the space of Katz p-adic modular forms.

– On the other hand, the space N † should carry an action of the Gauss–Manin connection
which can be p-adically iterated, which means that N † cannot be ‘too small’ – for example,
the space of nearly overconvergent modular forms as defined by Urban [Urb14]1 has a good
spectral theory for Up, but is too small for p-adically iterating the Gauss–Manin connection.

To put this another way, one looks for an optimal intermediate space between classical modular
forms and Katz p-adic modular forms, which has a good spectral theory for Up, and on which the
Gauss–Manin connection can be p-adically iterated. If such a space exists, it is likely that the
method for constructing p-adic L-functions in the ordinary setting generalises to the finite-slope
setting.

In [AI21] the authors gave a construction of such a space of nearly overconvergent modular
forms and p-adically iterated powers of the Gauss–Manin connection. However, there is an ana-
lyticity assumption on the weight, and hence on the p-adic L-functions that they construct. We
also point out that in [HX14], the authors propose a construction of families of nearly overcon-
vergent Siegel modular forms, but they do not consider p-adic iterations of the Gauss–Manin
connection. The aim of this paper is to provide a new approach for the construction of nearly
overconvergent modular forms which is optimal in the aforementioned sense, that is, which has a
good spectral theory for the Up operator and over which we have a full p-adic interpolation of the
Gauss–Manin connection (where in particular the analyticity assumption of [AI21] is removed).
As an application, we describe how this can be applied to the construction of triple-product and
Rankin–Selberg p-adic L-functions in families of finite-slope modular forms.

1.1 The main result

Throughout the main body of this paper we will take G=GL2 and P =B ⊂G the upper trian-
gular Borel. We let T ⊂B denote the diagonal torus with character group X∗(T ) and we identify
characters κ∈X∗(T ) with pairs (k;w)∈Z2 via the rule diag(t, t−1z) �→ tkzw. We let X�(T )+ be
the cone of dominant weights given by the condition k≥ 0. In particular, the sum of positive
roots, denoted 2ρ, corresponds to the character (2;−1). We let P =B ⊂G denote the lower
triangular Borel subgroup.

Fix a neat compact open subgroup Kp ⊂G(Ap
f ) and let PdR denote the B-torsor over the

modular curveXK of levelK =GL2(Zp)K
p parameterising frames of the first de Rham homology

respecting the Hodge filtration. Then one can consider the following spaces.

– The space of nearly holomorphic modular forms N hol of levelK, obtained as sections of the
de Rham torsor PdR. This space carries an action of T (through the torsor structure), and
the isotypic pieces under this action are nearly holomorphic forms of a prescribed weight.
One has an ascending filtration Filr N hol given by nearly holomorphic modular forms
of degree less than or equal to r (see Proposition A.15). Furthermore, the Gauss–Manin
connection induces an operator ∇ : N hol→N hol which satisfies Griffiths transversality
and shifts the weight by 2ρ.

1Denoted by N∞,ρ
U in [Urb14, § 3.3].
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– The space of p-adic modular forms M of level K, obtained as sections of the Igusa
tower IG (which is a proétale T (Zp)-torsor) over the ordinary locus inside the modular
curve XK . The space M therefore comes equipped with an action of T (Zp) and, tak-
ing isotypic subspaces for this action, one can consider the space Mκ of weight κ p-adic
modular forms, for any locally analytic character of T (Zp). The Gauss–Manin connection
composed with the unit root splitting induces the Atkin–Serre differential operator
Θ: M →M .

There is a commutative diagram

N hol M

N hol M

∇ Θ (1.1)

where the horizontal arrows are induced from restricting to the ordinary locus and applying
the unit root splitting. In addition to this, the space of p-adic modular forms comes equipped
with a Up-operator, a Frobenius operator ϕ and the diamond operator Sp, and, as explained
in [How20], the space M carries an action of continuous functions Ccont(Zp,Qp) such that the
identity function acts as Θ. The main result of this paper is the following overconvergent version
of this picture.

Theorem 1. There exists a space N † of nearly overconvergent modular forms, which is an
LB-space of compact type and which comes equipped with actions of Up, ϕ, Sp, T (Zp), locally
analytic functions C la(Zp,Qp), and with an ascending filtration Filr N †. Moreover, there is a
natural map N †→M which is compatible with all these actions and N † satisfies the following
additional properties.

(i) The filtration is stable under Up, Sp, ϕ and T (Zp). Moreover, if κ : T (Zp)→C×
p is the

character given by diag(t, t−1z) �→ tkzw, then Filr N †
κ (the rth filtered piece of nearly

overconvergent modular forms of weight κ) is the space of nearly overconvergent modular
forms of weight k and degree r as constructed in [Urb14]. In particular, the composition of

the inclusion Filr N †
κ ⊂N † with the map N †→M induces the usual inclusion of nearly

overconvergent modular forms into p-adic modular forms.
(ii) For any locally analytic character κ : T (Zp)→C×

p , the weight κ nearly overconvergent

forms N †
κ admit slope decompositions with respect to Up, and the finite-slope part agrees

with the finite-slope part of
⋃

r≥0 Filr N †
κ .

(iii) The operator Sp is invertible, commutes with Up and ϕ, and satisfies Up ◦ϕ= pSp.
Furthermore, for any φ∈C la(Zp,Qp) and t=diag(t1, t2)∈ T (Zp), we have

t ◦ φ= φ(t−1
2 · − · t1) ◦ t, Up ◦ φ= φ(p · −) ◦Up, ϕ ◦ φ(p · −) = φ ◦ϕ, Sp ◦ φ= φ ◦ Sp

as endomorphisms of N †.
(iv) One has a T (Zp)-equivariant factorisation N hol ↪→N †→M of the horizontal map in (1.1).

In particular, the action of the identity function in C la(Zp,Qp) extends the Gauss–Manin
connection ∇ : N hol→N hol, and the action of the indicator function 1Z×

p
∈C la(Zp,Qp) is

given by the p-depletion operator 1− p−1S−1
p ϕUp.

Remark 1.1. The existence of the action of C la(Zp,Qp) in Theorem 1 allows one to p-adically
interpolate powers of the Gauss–Manin connection. Indeed, for any locally analytic character
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χ : Z×
p →C×

p one can define

∇χf [p] := (χ · 1Z×
p
) � f, f ∈N †⊗̂Qp

Cp,

where � denotes the action of C la(Zp,Qp)⊗̂Cp and χ · 1Z×
p
: Zp→Cp denotes the extension by

zero of the character χ.

Remark 1.2. It is possible to prove an analogue of Theorem 1 for any level at p (see Theorem
2.11 and § 2.4).

The idea for constructing N † is as follows. Let MdR = PdR ×B T denote the pushout of PdR

along the map B� T . This is a scheme whose global sections are equipped with an action of
T , and the isotypic pieces under this action are holomorphic forms of a prescribed weight and
level K. There is a natural map IG →Man

dR from the Igusa tower to the analytification of MdR

providing a reduction of structure to a T (Zp)-torsor over the ordinary locus. One can interpret
the space of overconvergent modular forms M † as overconvergent functions on the closure of
IG inside Man

dR (see [Pil13, AIS14]). To define N †, we follow a similar approach, but now we
make use of the unit root splitting. More precisely, the unit root splitting and the universal
trivialisation give rise to a natural map IG → P an

dR extending the morphism IG →Man
dR, which

can be encoded in the important diagram

P an
dR

IG Man
dR

Xord X

where X (respectively, Xord) denotes the adic generic fibre of the p-adic formal completion
X of XZp

(respectively, the ordinary locus Xord ⊂X). Inspired by the above interpretation of
overconvergent modular forms, we define the space of nearly overconvergent modular forms N †

as the space of overconvergent functions on the closure of IG inside P an
dR. The existence of the

Hecke and T (Zp) actions on N † follows almost immediately from this description.
The main technical part of this paper is the construction of the action of locally analytic

functions C la(Zp,Qp) on N † whose proof, occupying §§ 3–5, we now sketch. We hope that this
sketch will also serve as guide for the reader interested in the details of the proof. We first
note that ∇ extends to a bounded linear derivation on N †. Let f ∈C la(Zp,Qp) be a locally
analytic function. By a classical theorem of Amice, there exists a real number ε > 0 such that
the Mahler expansion f(x) =

∑
k≥0 ak

(
x
k

)
of the function f satisfies the condition pεk|ak|p→ 0

as k→+∞. We will denote by Cε(Zp,Qp)⊂Ccont(Zp,Qp) the subspace of continuous func-
tions whose coefficients satisfy this growth condition for some fixed ε > 0. Then, in order to
make sense of the expression f(∇) =

∑
k≥0 ak

(∇
k

)
, it suffices to show that the norm of the

operators

pkε
(∇
k

)
= pkε

∇(∇− 1) · · · (∇− k+ 1)

k!
, k≥ 1,

is uniformly bounded in k, for any ε > 0.
We first consider the local setting over a quasi-compact open affinoid U =Spa(A, A+)⊆X

arising as the adic generic fibre of an affine open subscheme Spf(A+)⊂X. Set Spa(Aord, A
+
ord) =
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U ×X Xord, IGA := IG ×X Spa(A, A+) = Spa(Aord,∞, A
+
ord,∞) and

N †
A := colimV H0(V,OV ),

where the colimit is over all open subsets of P an
dR,A := P an

dR ×X U containing the closure of IGA.
The strategy is to analyse the Gauss–Manin connection first over the ordinary locus, and then
on certain overconvergent neighbourhoods.

More precisely, in § 3.3 we construct, using the moduli space interpretation of the Igusa tower
IGA, a cofinal system of strict quasi-compact open neighbourhoods {UHT,n}n≥1 of IGA inside
P an
dR,Aord

= P an
dR ×X Spa(Aord, A

+
ord) which (after pulling back to IGA) is simply a disjoint union

over λ∈ T (Z/pnZ) of finitely many rigid balls Bλ ∼=
( 1+pnGan

a

pnGan
a 1+pnGan

a

)
of radius p−n, that is, we

have

Bλ ∼=Spa

(
Aord,∞

〈
X − 1

pn
,
Y

pn
,
Z − 1

pn

〉
, A+

ord,∞

〈
X − 1

pn
,
Y

pn
,
Z − 1

pn

〉)
.

We then show (Proposition 5.2) that the restriction of the Gauss–Manin connection to each of
these balls has a very simple description modulo pn, namely, it extends the Atkin–Serre operator
on A+

ord,∞ (which we know is integral and extends to an action of Ccont(Zp,Zp)) and is ‘nilpotent’
in the sense that ∇(X) = Y , ∇(Y ) =∇(Z) = 0. One can show (Propositions 4.6 and 4.10) that
any derivation satisfying these properties extends to an action of Cε(Zp,Qp), for any ε > 0,
provided that the integer n is sufficiently large. As a consequence of this, we show (Proposition
5.3) that, for any integer ε > 0 there exists some n(ε)≥ 1 such that the Gauss–Manin connection
extends to an action

Cε(Zp,Qp)×NUHT,n
→NUHT,n

(1.2)

for any n≥ n(ε). Here we use the notation NUHT,n
:=OUHT,n

(UHT,n).
We then establish an overconvergent version of this result (Proposition 5.4). For this, let

(Xr)r∈N≥1
denote the usual system of neighbourhoods of the ordinary locus defined as the loci

whose rank-one points | · |x satisfy |h|x ≥ p−1/pr+1

for any local lift h of the Hasse invariant. We set
Spa(Ar, A

+
r ) =Xr ×X Spa(A, A+). Since A+

ord =A+
r 〈1/h〉, any section defined over the ordinary

locus can be approximated modulo arbitrary large powers of p by an overconvergent section. This
allows us (Proposition 3.13) to overconverge the system {UHT,n}n≥1 of neighbourhoods of the
Igusa tower and build a cofinal system {Un,r} of quasi-compact open strict neighbourhoods of
IGA inside P an

dR,A such that one can control the norms of the restriction maps O(Un,r)→O(Un,s)
for s≥ r (see Corollary 3.15). Since the system {Un,r} is cofinal, we can locally describe the space
of nearly overconvergent modular forms as

N †
A = lim−→

n,r

O(Un,r).

Combining the above key property on the norms of the restriction maps with the fact that the
Gauss–Manin connection already exists on N †

A , we obtain (Proposition 5.4) an action

Cε(Zp,Qp)×N †
A →N †

A

extending the Gauss–Manin connection, for any ε > 0. In other words, the Gauss–Manin con-
nection on N †

A extends to an action of C la(Zp,Qp). Since this action is uniquely determined by
its interpolation property, it is functorial in A and glues to the desired action in Theorem 1.
We expect that this construction will readily extend to higher-dimensional Shimura varieties (at
least when one has a non-empty ordinary locus) – for example, such a generalisation appears in
[Gra24] in the setting of unitary Shimura varieties.
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Finally, we note that Theorem 1 has immediate applications to the construction of p-adic
L-functions for the triple product of modular forms (Theorem 7.16) and for the Rankin-Selberg
product of two modular forms (Theorem 7.20). In particular, one can use Theorem 1 to construct
three-variable versions of these p-adic L-functions without the restriction on the weight appearing
in [AI21], and without appealing to the Beilinson–Flach Euler system (as in [Loe18]). We refer the
reader to § 7 for the relevant statements. Theorem 1 is also a key ingredient in the construction
of p-adic L-functions for GSp4 ×GL2 and GSp4 ×GL2 ×GL2 appearing in [GR24].

1.2 Structure of the paper

The paper is organised as follows. In § 2, we introduce the main objects in the paper (p-adic
modular forms, nearly overconvergent modular forms, etc.) and state the main theorem, which
is a slightly more general version of Theorem 1. We also explain why it is sufficient to prove the
main theorem at hyperspecial level at p. In § 3, we describe certain ‘explicit’ neighbourhoods of
the Igusa tower in PdR that are useful for constructing the action of C la(Zp,Qp) on N †, which
takes place in § 5 and uses the abstract theory of actions on Banach spaces developed in § 4.
Finally, we describe the additional structures on nearly overconvergent modular forms (such as
the filtration and T (Zp) and Hecke actions) in § 6 and the application to p-adic L-functions in § 7.
When discussing the action of differential operators throughout the paper, we find it helpful to
use the language of D-modules. We have therefore summarised the main constructions regarding
this in Appendix A. Furthermore, since the notation in § 2 differs from the rest of the paper, we
have provided a glossary of notation in Appendix B.

1.3 Notation and conventions

We fix the following notation and conventions throughout.

– We say a Zp-algebra S is admissible if it is p-adically complete and separated, p-torsion-free,
and topologically of finite type over Zp.

– For any p-adic manifold X and LB-space V , we let Ccont(X, V ) and C la(X, V ) denote the
spaces of continuous and locally analytic maps X→ V , respectively.

– For an integer n≥ 0 and a partition m1 + · · ·+mr = n by non-negative integers, we let(
n

m1, · · · , mr

)
=

n!

m1! · · ·mr!

denote the associated multinomial coefficient.
– All adic spectra we consider are with respect to complete Huber pairs.
– All p-adic valuations are normalised so that |p|x = p−1.
– We let w0 denote the longest Weyl element of GL2.

We note that the ‘de Rham’ torsor PdR that we consider throughout the paper is a torsor
for the lower-triangular Borel subgroup P =B (so, in the language of [CS17, § 2], we take
μ : Gm→GL2 to be the fixed choice of Hodge cocharacter given by μ(z) =

(
z
1

)
. On the other

hand, our convention is that the positive root for GL2 lies in B (and the notion of dominant
or highest weight is with respect to this positive root). In addition to this, our weights are
characters of the standard torus inside GL2 (rather than SL2), so when defining ‘weight κ’
(nearly overconvergent) modular forms there is often a twist by the longest Weyl element w0.
Our conventions are arranged so that one can simply pass to the SL2-setting (as found in the
literature) by restricting weights to the torus in SL2 and identifying elliptic curves with their
dual via the principal polarisation.
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p-adic interpolation of Gauss–Manin connections

2. Nearly overconvergent modular forms and the main result

To state the main result, we first introduce some notation for the space of p-adic modular forms.
We warn the reader that, in order to present the most general result possible, the notation in
this section differs slightly from that in the rest of the paper (as explained at the end of this
section, it will be enough to establish the result with hyperspecial level at p, so we will often
omit the level subgroup from the notation). We hope this does not cause any confusion; we have
provided a glossary of notation in Appendix B outlining the differences.

2.1 Infinite-level Igusa towers and p-adic modular forms

Set G=GL2 and let P ⊂G denote the upper triangular Borel subgroup with diagonal torus T .
Fix a prime number p and a neat compact open subgroup Kp ⊂G(Ap

f ).
In this section, we will define the relevant spaces of p-adic modular forms. In order to

do this, we need to introduce the infinite-level Igusa varieties as constructed in [CS17, § 4.3]
(see also [How20] and [BP23, § 3.4] for some complementary details). Consider the p-divisible
group over Spf Zp given by Xord = μp∞ ⊕Qp/Zp and define the following group schemes over
Spf Zp:

Jord =QIsog(Xord) =

(
Q×

p μ̃p∞

0 Q×
p

)
, J int

ord =Aut(Xord) =

(
Z×
p Tp(μp∞)

0 Z×
p

)
,

where QIsog(−) (respectively, Aut(−)) denotes the self quasi-isogenies (respectively, automorph-
isms) of a p-divisible group and μ̃p∞ = lim×p μp∞ is the universal cover of μp∞ . Recall that the
universal cover sits in an exact sequence

0→ Tp(μp∞)→ μ̃p∞→ μp∞→ 0,

and note that Q×
p =QIsog(μp∞) =QIsog(Qp/Zp) (see [SW13, § 3.1]). We let

P ′ =

(
Q×

p Qp(1)

0 Q×
p

)
, (P ′)int = J int

ord ×Spa(Zp,Zp) Spa(Qp,Zp) =

(
Z×
p Zp(1)

0 Z×
p

)
,

which are (locally) profinite proétale group schemes over Spa(Qp,Zp). We let UP ′ ⊂ P ′ and
U int
P ′ ⊂ (P ′)int denote the unipotent radicals. There is a natural map P ′ ↪→ Jan

ord := Jord ×Spa(Zp,Zp)

Spa(Qp,Zp) from P ′ to the adic generic fibre of Jord, induced by Qp(1)→ μ̃p∞ (but note
that Jan

ord is a one-dimensional group scheme, and therefore much larger than P ′). We

will often write Ĝm for the p-divisible group μp∞ over Spf Zp to emphasise the fact that

Ĝm(Spf R) = 1+R00, where R00 ⊂R denotes the ideal of topologically nilpotent elements
(cf. [How20, Remark 2.1.3]).

We now recall the construction of the perfect Igusa tower IGKp . Let XGL2(Zp)Kp→ SpecZp

denote the (compact) modular curve of level GL2(Zp)K
p, and XGL2(Zp)Kp→ Spf Zp its com-

pletion along the special fibre. Set IG(P ′)intKp :=Xord
GL2(Zp)Kp to be the ordinary locus. We

also let IGU int
P ′ Kp→ IG(P ′)intKp denote the proétale T (Zp)-torsor parameterising trivialisations

μp∞
∼−→E[p∞]◦ and Qp/Zp

∼−→E[p∞]et of the connected and étale parts of the p-divisible group
associated with the universal (ordinary) elliptic curve (since E[p∞]et ∼= (E[p∞]◦)D the étale part
extends to a p-divisible group over the boundary). Note that there is a natural lift of Frobenius
ϕ on IGU int

P ′ Kp .

Definition 2.1. We define IGKp = limϕ IGU int
P ′ Kp . If YGL2(Zp)Kp ↪→XGL2(Zp)Kp denotes the

good reduction locus, then IGKp ×XGL2(Zp)Kp YGL2(Zp)Kp parameterises elliptic curves E with

a Kp-level structure and an isomorphism Xord
∼−→E[p∞] (see [CS17, § 4.3]).
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Proposition 2.2. The group Jord acts on IGKp .

Proof. By [CS17, Corollary 4.3.5], the group Jord acts on IGKp ×XGL2(Zp)Kp YGL2(Zp)Kp . Indeed,
one can formulate the moduli problem for IGKp ×XGL2(Zp)Kp YGL2(Zp)Kp equivalently as the
space of elliptic curves E with a Kp-level structure and a quasi-isogeny Xord→E[p∞], up
to quasi-isogeny (see [CS17, Lemma 4.3.4]). We claim that the action extends to an action
over IGKp . Since we already have an action of T (Qp), it suffices to prove that the action
of μ̃p∞ extends. By p-adic Fourier theory, this action amounts to an action of Ccont(Qp,Zp)
on OIGKp (see, for example, [How20, § 7]). On a cusp, this action is given by φ(

∑
anq

n) =∑
φ(n)anq

n by [How20, Theorem 7.1.1], and thus preserves the regular functions at the
cusp.

For any compact open subgroup Kp,P ⊆ P ′ (i.e., one which is commensurable to (P ′)int), we
let Kp,P denote its schematic closure in Jord. By [BP23, Lemma 3.4.8] the group scheme Kp,P

is a profinite flat group scheme over SpecZp with generic fibre Kp,P . We let IGKp,PKp be the
flat formal scheme equal to the categorical quotient of IGKp by Kp,P . This is the affine formal

scheme whose ring of functions is (OIGKp )Kp,P . Similarly, for any compact open

UKp,P
⊆UP ′ =

(
1 Qp(1)

1

)
,

we let IGUKp,P
Kp be the flat formal scheme equal to the categorical quotient of IGKp by UKp,P

.

If Kp,P is a compact open subgroup of P ′ and if we set UKp,P
=Kp,P ∩UP ′ , then there is a short

exact sequence

0→UKp,P
→Kp,P →MKp,P

→ 0.

The map IGUKp,P
Kp→ IGKp,PKp is a proétale torsor under the group MKp,P

.

Remark 2.3. Let Qcycl
p denote the p-adic completion of Qp(μp∞) with ring of integers Zcycl

p .

If we base change to Spa(Qcycl
p ,Zcycl

p ), then P ′ ∼= P (Qp) (i.e., it is isomorphic to the constant

étale group scheme associated with P (Qp)), and we may consider spaces IGKp,PKp,Zcycl
p

for any

compact open Kp,P of P (Qp).

Recall that the space of p-adic modular forms can be defined as (isotypic parts of)
sections of the classical Katz moduli space parameterising elliptic curves (modulo prime-
to-p quasi-isogenies) equipped with a trivialisation of the connected part of its associ-

ated p-divisible group. Let U int
P ′ denote the schematic closure of U int

P ′ in Jord (which is
equal to the unipotent part of J int

ord). By [How20, Lemma 5.1.1], the Igusa tower IGKp

is an fpqc U int
P ′ -torsor over the above Katz moduli space, which explains the following

definition.

Definition 2.4. The space of p-adic modular forms2 of tame level Kp is defined as

M+ := H0(IGU int
P ′ Kp ,OIGUint

P ′ Kp
).

The following theorem summarises some of its key structures.

2The Katz Igusa tower often considered in the literature is a Z×
p -torsor which parameterises isomorphisms µp∞

∼−→
E[p∞]◦. The version of the Igusa tower we use has better functoriality properties with respect to Hecke operators.
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p-adic interpolation of Gauss–Manin connections

Theorem 2.5. Let Ccont(Zp,Zp) denote the Zp-algebra of continuous functions Zp→Zp.

(i) The space M+ carries a Zp-algebra action of Ccont(Zp,Zp), an action of T (Zp) and the
Hecke operators

Up := [U int
P ′ · diag(1, p−1) ·U int

P ′ ],

ϕ := [U int
P ′ · diag(p−1, 1) ·U int

P ′ ],

Sp := [diag(p−1, p−1) ·U int
P ′ ],

and an action of the prime-to-p Hecke algebra HKp . The action of T (Zp) commutes with
that of Up, ϕ, Sp and we have the relations

Up ◦ϕ= pSp, Sp ◦Up =Up ◦ Sp, ϕ ◦ Sp = Sp ◦ϕ.
(ii) Let c : Spf Zp(ζN )[[q1/N ]]→ IGU int

P ′ Kp be a cusp, where N is a sufficiently large integer with

(p, N) = 1, which gives rise to a q-expansion map c : M+→Zp(ζN )[[q1/N ]]. Then for any
φ∈Ccont(Zp,Zp) and f ∈M+, one has

c(φ · f) =
∑

k∈(1/N)Z

φ(k)akq
k where c(f) =

∑
k∈(1/N)Z

akq
k.

(iii) Let φ∈Ccont(Zp,Zp). Then for any t=diag(t1, t2)∈ T (Zp), we have t ◦ φ= φ(t−1
2 · − ·

t1) ◦ t as endomorphisms of M+. Moreover, we have

Up ◦ φ= φ(p · −) ◦ Up, ϕ ◦ φ(p · −) = φ ◦ ϕ, Sp ◦ φ= φ ◦ Sp
as endomorphisms of M+.

Proof. The action of the prime-to-p Hecke operators HKp is clear. For the other opera-
tors, we note that the action of the group Jord on IGKp induces an action of T (Zp),

[U int
P ′ · diag(1, p−1) ·U int

P ′ ], [U int
P ′ · diag(p−1, 1) ·U int

P ′ ], [diag(p−1, p−1) ·U int
P ′ ] on IGU int

P ′ Kp , as well as

an action of μ̃p∞/Tp(μp∞) = μp∞ = Ĝm. By Fourier theory, this action amounts to an action of
Ccont(Zp,Zp). See [How20, § 7.1]. The relations are easily determined.

Let T+ ⊂ T (Qp) denote the submonoid of elements diag(t1, t2) such that vp(t1)≥ vp(t2). Then
we see that T (Zp), Up and Sp generate an action of T+. We let Θ: M+→M+ be the operator
corresponding to the action of the identity function IdZp

∈Ccont(Zp,Zp).

Remark 2.6. Let UKp,P
be a compact open subgroup of UP ′ . Since the unipotent part of Jord

is abelian, the action of Jord on IGKp induces an action of μ̃p∞/UKp,P
on IGUKp,P

Kp . Note

that μ̃p∞/UKp,P
is a formal torus with cocharacter group UKp,P

(−1), and p-adic Fourier theory

identifies measures on UKp,P
(−1)∨ with functions on UKp,P

(−1)⊗ Ĝm. The action of UKp,P
(−1)⊗

Ĝm thus gives an action of Ccont(UKp,P
(−1)∨,Zp) on sections of IGUKp,P

Kp . As in the proof of

Theorem 2.5, we identify U int
P ′ (−1)∨ with (the constant group scheme) Zp.

Let M+
UKp,P

=H0(IGUKp,P
Kp ,OIGUKp,P

Kp ). Using the action of diag(pn, 1)∈ Jord by conju-

gation, we can identify IGUKp,P
Kp with IGU int

P ′ Kp and M+ with M+
UKp,P

. This conjugation

action will transport the Up, ϕ, Sp-actions and will conjugate the action of Ccont(Zp,Zp) =
Ccont(U

int
P ′ (−1)∨,Zp) with Ccont(UKp,P

(−1)∨,Zp). Set MUKp,P
=M+

UKp,P
[1/p]. We let

ΘUKp,P
: MUKp,P

→MUKp,P
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denote the map induced by the action of the identity function of Qp in Ccont(UKp,P
(−1)∨,Zp)⊗

Qp. Note that conjugation by diag(pn, 1) sends ΘUKp,P
to pnΘ.

2.2 Relation to classical forms

To compare p-adic modular forms with classical modular forms (at this level of gener-

ality), we work over Spa(Qcycl
p ,Zcycl

p ). We fix an isomorphism Zp
∼=Zp(1). Therefore, we

can (and do) identify P ′ and P (Qp). We let XKp,Qcycl
p

be the perfectoid modular curve

and we let IGKp,Qcycl
p

= IGKp × Spa(Qcycl
p ,Zcycl

p ). We have a natural P (Qp)-equivariant map
IGKp,Qcycl

p
→XKp,Qcycl

p
.

Let Kp ⊆G(Qp) be a compact open subgroup and let g ∈G(Qp). The map

IGKp,Qcycl
p

·g−→XKp,Qcycl
p
→XKpKp,Qcycl

p

factors through an open immersion IGKp,PKp,Qcycl
p
→XKpKp,Qcycl

p
where Kp,P = gKpg

−1 ∩ P (Qp).
One can think of this open as a connected component of the ordinary locus in XKpKp,Qcycl

p
.

Remark 2.7. In general this open immersion IGKp,PKp,Qcycl
p
→XKpKp,Qcycl

p
is not defined over Qp

because the way we construct the level structure is different on both sides. On the other hand,
for hyperspecial or Iwahori level and g= 1, it is defined over Qp.

Let PdR,K→XK denote the right P -torsor parameterising frames ofHE respecting the Hodge
filtration (see §A.3). We now consider the MKp,P

-torsor IGUKp,P
Kp,Qcycl

p
→IGKp,PKp,Qcycl

p
. For

ease of notation, set K =KpKp. Then we have a commutative diagram

IGUKp,P
Kp,Qcycl

p

��

��

P an
dR,K,Qcycl

p

��

IGKp,PKp,Qcycl
p

�� XK,Qcycl
p

where P an
dR,K,Qcycl

p
denotes the analytification of PdR,K . The top map is induced by the Hodge–Tate

map and the unit root splitting. It isMKp,P
-equivariant via the natural mapMKp,P

→ T an ⊂ P an
.

The following proposition describes the relation between nearly holomorphic modular forms
and p-adic modular forms.

Proposition 2.8. We have a natural map

H0(PdR,K ,OPdR,K
)⊗Qp

Qcycl
p →MUKp,P

⊗̂Qp
Qcycl

p , (2.1)

which is equivariant for the action of the prime-to-p Hecke algebra HKp , as well as for the action
of MKp,P

via the map MKp,P
→ T ⊂ P . Hence, for any κ∈X∗(T ), we obtain a map

H0(XK ,Hκ)⊗Qp
Qcycl

p →HomMKp,P
(−w0κ,MUKp,P

)⊗̂Qp
Qcycl

p {w0κ}, (2.2)

where Hκ =HomT (−w0κ, π∗OPdR,K
) (with π : PdR,K→XK the structural map), and Qcycl

p {w0κ}
means that T+ acts on Qcycl

p through the character w0κ.
Assume that gKpg

−1 has an Iwahori decomposition

gKpg
−1 =UgKpg−1 · TgKpg−1 ·UgKpg−1 .

Let H+
Kp

be the subalgebra of the Hecke algebra HKp
generated by [Kp · g−1tg ·Kp] with t∈ T+.

Then the map (2.2) is equivariant for the morphism sending [Kp · g−1tg ·Kp] to t∈ T+.
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Proof. The existence of the first map just follows from the fact that IGUKp,P
Kp→ PdR,K is

equivariant for MKp,P
and functorial in Kp (the map is induced by restriction). Therefore, the

maps (2.1) and (2.2) are well defined.
Let t∈ T+. Set K ′ = (g−1tg)K(g−1tg)−1 ∩K and K ′′ = (g−1tg)−1K ′(g−1tg). set UKp,P

=
gKpg

−1 ∩UP ′ and UK′
p,P

= gK ′
pg

−1 ∩UP ′ . Then we have a correspondence

XK
p1←−XK′

p2−→XK ,

where p1 is the natural map, and p2 is the composition XK′
·(g−1tg)−−−−−→XK′′→XK . We also have

a diagram of correspondences (over Qcycl
p )

p−1
1 PdR,K p−1

2 PdR,K

PdR,K IGUK′
p,P

Kp PdR,K

IGUKp,P
Kp IGUKp,P

Kp

p1

λ

p2

q1 q2

where q1 is the natural map induced from the inclusion UK′
p,P
⊂UKp,P

, q2 is induced from right

multiplication by t via the inclusion t−1UK′
p,P
t⊂UKp,P

, and the map λ is the action of t (via

the torsor structure on PdR) composed with the morphism p−1
1 PdR,K→ p−1

2 PdR,K arising from
the G(Qp)-equivariant structure on PdR. The claim now follows from the fact that the left-hand
square is Cartesian. Indeed, one has

[K :K ′] = [gKpg
−1 : gK ′

pg
−1] = [UgKpg−1 : tUgKpg−1t−1 ∩UgKpg−1 ] = [UKp,P

:UK′
p,P

]

using the Iwahori decomposition for gKpg
−1.

By the results in §A.3, one has that Hκ =VBcan
K (M∨

κ ) is the quasi-coherent sheaf
associated with the dual Verma module of lowest weight w0κ. In particular, Hκ is natu-
rally a DXK

-module on XK . By composing the induced connection Hκ→Hκ ⊗Ω1
XK

(logD)
with the map Hκ ⊗Ω1

XK
(logD)→Hκ+2ρ induced from the Kodaira–Spencer isomorph-

ism, we obtain a Qp-linear derivation ∇ on H0(PdR,K ,OPdR,K
) =

⊕
κ∈X∗(T ) H

0(XK ,Hκ)
(cf. Proposition A.14(2)).

Proposition 2.9. One has the following commutative diagram.

H0(PdR,K ,OPdR,K
)⊗Qcycl

p

��

∇ �� H0(PdR,K ,OPdR,K
)⊗Qcycl

p

��

MUKp,P
⊗Qcycl

p

ΘUKp,P
�� MUKp,P

⊗Qcycl
p

Proof. This is essentially a reformulation of [How20, Theorem 5.3.1]. Alternatively, one can check
this on q-expansions.

2.3 The main theorem

We can now introduce the space of nearly overconvergent modular forms and state the main
theorem. Let Kp ⊂G(Qp) be a compact open subgroup, g ∈G(Qp) and Kp,P = gKpg

−1 ∩ P (Qp)
as above. Recall that we have a morphism IGUKp,P

Kp,Qcycl
p
→ P an

dR,K,Qcycl
p

.
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Definition 2.10. We define the space of nearly overconvergent modular forms to be

N †
UKp,P

:= colimU H0(U,OU ),

where the colimit is over all open subsets of P an
dR,K,Qcycl

p
which contain the closure of

IGUKp,P
Kp,Qcycl

p
(via the morphism above) with transition maps given by restriction. Similarly,

we define the space of overconvergent modular forms to be

M †
UKp,P

:= colimV H0(V,OV ),

where the colimit is over all open subsets of Man
dR,K,Qcycl

p
= P an

dR,K,Qcycl
p
×P

an

T an containing the

closure of IGUKp,P
Kp,Qcycl

p
. These are LB-spaces of compact type, and one has a natural map

N †
UKp,P

→MUKp,P
induced from restriction.

Theorem 2.11. The space N †
UKp,P

comes equipped with actions of Up, ϕ, Sp, MKp,P
and of

locally analytic functions C la(UKp,P
(−1)∨,Qp)⊂Ccont(UKp,P

(−1)∨,Qp) which are compatible

with the actions on p-adic modular forms via the map N †
UKp,P

→MUKp,P
. Furthermore, it also

carries an action of the lower triangular nilpotent Lie algebra n⊂ gl2 obtained by differentiating
the torsor structure on P an

dR,K,Qcycl
p

, providing an ascending filtration Filr N †
UKp,P

:=N †
UKp,P

[nr+1]

(the elements killed by nr+1).

The space N †
UKp,P

satisfies the following additional properties.

(i) The filtration is stable under Up, Sp, ϕ, MKp,P
and Fil0N

†
UKp,P

is the space of overconver-

gent modular forms. Furthermore, we have Up ◦ϕ= pSp and Sp commutes with both Up

and ϕ.
(ii) Let R+

0 be an admissible Zp-algebra, R0 =R+
0 [1/p] and set W =Spa(R0, R

+
0 ). Suppose

that κ : MKp,P
→R×

0 is a locally analytic character. Then for any x∈W(Qp) and h∈Q,
there exists a quasi-compact open affinoid neighbourhood Ω= Spa(R, R+)⊂W containing

x such that N †
UKp,P

,κ := HomMKp,P
(−w0κ,N

†
UKp,P

⊗̂R) admits a slope ≤ h decomposition with

respect to the operator Up. Furthermore, there exists an integer r≥ 0 such that

N †,≤h
UKp,P

,κ = (Filr N †
UKp,P

,κ)
≤h.

(iii) The analogous relations as in Theorem 2.5(3) hold for the actions of Up, ϕ, Sp, MKp,P
and

C la(UKp,P
(−1)∨,Qp) on N †

UKp,P
. In addition to this, there is a factorisation

H0(PdR,K ,OPdR,K)⊗Qcycl
p MUKp,P

⊗̂Qp
Qcycl

p

N †
UKp,P

(2.1)

which is compatible with filtrations. The operator ∇ intertwines with the action of the
identity function in C la(UKp,P

(−1)∨,Qp).

We will prove this theorem when Kp =GL2(Zp) and g= 1 in §§ 5 and 6 using results from
§§ 3 and 4. As explained in the following section, this is sufficient for proving the theorem for
general Kp and g.
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p-adic interpolation of Gauss–Manin connections

2.4 Reduction to hyperspecial level

We now explain why it suffices to establish Theorem 2.11 when Kp =GL2(Zp) and g= 1. Recall
that we denoted UP ′ = ( 1 Qp(1)

1
).

Lemma 2.12. Let Kp, K
′
p ⊂G(Qp) be compact open subgroups, and let g, g′ ∈G(Qp).

(i) Suppose that UKp,P
:= gKpg

−1 ∩UP ′ = g′K ′
p(g

′)−1 ∩UP ′ =:UK′
p,P

and (g′)−1gK ′
pg

−1g′ ⊂
Kp. Then the natural map PdR,K′

pK
p→ PdR,KpKp induced from right multiplication by

g−1g′ (via the G(Qp)-equivariant structure on PdR) induces an isomorphism

N †
UK′

p,P

∼−→N †
UKp,P

,

respecting filtrations and the MK′
p,P

and MKp,P
-actions. This implies that N †

UKp,P
is

intrinsic to the compact open subgroup UKp,P
.

(ii) Let n∈Z and t=diag(pn, 1)∈ T (Qp). Suppose that g= g′ = 1, and t−1K ′
pt=Kp (which

implies t−1UK′
p,P
t=UKp,P

). Then the isomorphism PdR,K′
pK

p→ PdR,KpKp obtained as the
composition of right translation by t (via the G(Qp)-equivariant structure) and right
translation by t (via the torsor structure) induces an isomorphism

N †
UK′

p,P

·t−→N †
UKp,P

,

respecting filtrations and the MK′
p,P

and MKp,P
-actions.

Therefore, since any compact open subgroup of UP ′ is conjugate to U int
P ′ via some diag(pn, 1),

by transporting structure it is enough to prove Theorem 2.11 when UKp,P
=U int

P ′ (e.g., when
Kp =GL2(Zp) and g= 1).

Proof. For the first part, let U =UKp,P
=UK′

p,P
. We have a commutative diagram

PdR,K′
pK

p

IGUKp PdR,KpKp

f

where f denotes the map induced by right multiplication by g−1g′, the diagonal map is induced
from right translation by g′ and the horizontal map is induced from right translation by g.
The map f is finite étale away from the cusps not lying in IGUKp , hence it induces a map
N †

UK′
p,P

→N †
UKp,P

.

Furthermore, we can find strict neighbourhoods V1 (respectively, V2) of IGUKp in P an
dR,KpKp

(respectively, P an
dR,K′

pK
p) such that f : V2→ V1 is an isomorphism (cf. [KL05, Proposition 2.2.1] –

the key point is that we can find a strict neighbourhood V of f−1(IGUKp)⊂ P an
dR,K′

pK
p such that

the connected components of f−1(IGUKp) and V are in bijection with one another). This proves
part (i).

Part (ii) follows immediately from the fact that the isomorphism IGUK′
p,P

Kp→IGUKp,P
Kp ,

induced from right translation by t intertwines with the isomorphism PdR,K′
pK

p→ PdR,KpKp in
the statement of the lemma.

When working at hyperspecial level, we will omit any subscript which includes the
level subgroup (e.g., N †, M †, M denote the spaces of (nearly) overconvergent and p-adic
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modular forms etc.). Furthermore, in this setting the morphism from the Igusa tower to PdR

is defined over Qp, so it is not necessary to base-change to Qcycl
p . In fact, to consider fami-

lies of nearly overconvergent modular forms, we will work over Spa(R, R+) for some admissible
Zp-algebra R

+.

3. A system of neighbourhoods of the Igusa tower

The purpose of this section is to define and study an explicit system of strict neighbourhoods of
the Igusa tower inside P an

dR, which will be crucial for our constructions. The basic idea behind
this construction is that, after multiplying by suitable powers of the Hasse invariant, one can,
modulo large powers of p, overconverge elements defined on the ordinary locus.

3.1 The setting

Let R+ be an admissible Zp-algebra and set R=R+[1/p]. Fix a neat compact open subgroup
Kp ⊂G(Ap

f ) and let X/ Spa(R, R+) be the compact modular curve of level GL2(Zp)K
p over

Spa(R, R+). We have (see [Kat73]) a system of neighbourhoods of the ordinary locus

Xord→ · · ·→Xr→ · · ·→X1→X ,

where Xr denotes the (unique) quasi-compact open whose rank-one points x satisfy |h|x ≥
p−1/pr+1

for any local lift h of the Hasse invariant.
For any integer n≥ 1, let IGn := IGP ′

nK
p be the Igusa tower of level

P ′
n =

(
1 + pnZp Zp(1)

1 + pnZp

)
,

which is a finite T (Z/pnZ)-torsor over Xord. We also use the notation IG∞ = IGUP ′ (Zp)Kp .
We define HE to be the canonical extension of the first relative de Rham homology of the
universal elliptic curve over the good reduction locus in X . The formal model X defines
a O+

X -lattice H
+
E ⊂HE . We similarly define ω+

E ⊂ ωE and ω+
ED ⊂ ωED for the Hodge bun-

dle of the universal and dual universal generalised elliptic curve and the corresponding
O+

X -lattices.
If Spa(A, A+)⊂X is a quasi-compact open affinoid subspace, then we let Spa(Ar, A

+
r )

(respectively, Spa(Aord, A
+
ord), Spa(Aord,n, A

+
ord,n)) denote the pullback to Xr (respectively, Xord,

IGn). We warn the reader that we will often implicitly assume that Spa(Aord, A
+
ord) �=∅,

otherwise most of what we say will be vacuous. Note that if ω+
E is trivial over Spa(A, A+)

and h∈A+ is a fixed local lift of the Hasse invariant, then A+
ord =A+〈1/h〉. If {e, f} is a

fixed basis of H+
E over Spa(A, A+) respecting the Hodge filtration (i.e., e∈ ω+

E ), then we
have

P an
dR ×X Spa(A, A+)∼= P

an
A =

(
(Gan

m )A
(Gan

a )A (Gan
m )A

)
and the basis {e, f} gives rise to coordinates T1, T2, U ∈O+(P an

dR ×X Spa(A, A+)) such that
the universal trivialisation of H+

E over P an
dR ×X Spa(A, A+) takes e (respectively, f) to (0, T1)

(respectively, (T2, U)). Equivalently, if {euniv, funiv} denotes the universal basis of H+
E over

P an
dR ×X Spa(A, A+) (with euniv ∈ ω+

E ) then we have e= T1euniv and f =Ueuniv + T2funiv.

Notation 3.1. For any 1≤ n≤∞, we will let Gn denote the Galois group Gal(IGn/Xord)∼=
T (Z/pnZ) (∼= T (Zp) if n=∞).
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p-adic interpolation of Gauss–Manin connections

For the rest of this section, we fix an open affinoid Spa(A, A+)⊂X over which ω+
E , H

+
E and

ω+
ED are trivial, and fix a basis {e, f} of H+

E respecting the Hodge filtration

0→ ω+
ED →H+

E → (ω+
E )

∨→ 0.

Recall that over IGn, one has universal trivialisations

ψ1 : (ED[pn]◦)D ∼−→Z/pnZ, ψ2 : E [pn]◦ ∼−→ μpn ,

which induce trivialisations

φ1 : O+
IGn

/pn
∼−→ (ω+

ED/p
n)|IGn

, φ2 : O+
IGn

/pn
∼−→ (ω+

E /p
n)∨|IGn

.

More precisely, φ1(1) is the vector dlog ◦ψ−1
1 (1) and φ2(1) is defined to be the vector dual to

dlog ◦ψD
2 (1). We set en := φ1(1) and define fn to be the image of φ2(1) under the unit root

splitting (ω+
E /p

n)∨ ↪→H+
E /p

n. Then {en, fn} defines a basis of H+
E /p

n over IGn respecting the
Hodge filtration.

Definition 3.2. Let αn, γn ∈ (A+
ord,n)

× and βn ∈A+
ord,n be any elements such that

e≡ αnen,

f ≡ βnen + γnfn,
mod pn,

and α−1
n βn ∈A+

ord.

Remark 3.3. We can choose αn, βn, γn in Definition 3.2 such that the last condition is satisfied
as follows. Let fur ∈H+

E |Spa(Aord,A
+
ord)

denote the image of f under the composition

H+
E |Spa(Aord,A

+
ord)

� (ω+
E )

∨|Spa(Aord,A
+
ord)

↪→H+
E |Spa(Aord,A

+
ord)
,

where the first map arises from the Hodge filtration and the second map is the unit root splitting.
There exists an element υ ∈A+

ord such that fur = υe+ f . We can then take αn, γn ∈ (A+
ord,n)

×

such that e≡ αnen and fur ≡ γnfn modulo pn, and set βn =−υαn.

Remark 3.4. Let λ= (λ1, λ2)∈ T (Z/pnZ) = (Z/pnZ)× × (Z/pnZ)×, which corresponds to an
element σλ ∈Gal(IGn/Xord) such that σλ(ψi) = λi ◦ψi for i= 1, 2. Then σλ(en)≡ λ−1

1 en and
σλ(fn)≡ λ−1

2 fn modulo pn. This implies that σλ(αn)≡ λ1αn, σλ(βn)≡ λ1βn, and σλ(γn)≡ λ2γn
modulo pn.

Remark 3.5. The map IG∞ ×X Spa(A, A+) = Spa(Aord,∞, A
+
ord,∞)→ P an

dR ×X Spa(A, A+)
induced from the universal trivialisations and the unit root splitting is described by the
point (

γ∞
β∞ α∞

)
∈ P an

(Aord,∞),

that is, the morphism sending T1 �→ α∞, U �→ β∞, and T2 �→ γ∞.

3.2 A preliminary lemma

We will first prove an elementary lemma that will be useful later for constructing strict neigh-
bourhoods of the Igusa tower over the ordinary locus. Let C+ be an admissible Zp-algebra,
C =C+[1/p], and let Y =Gan

m over Spa(C, C+) with coordinate T . Let n≥ 1 and suppose that
we have a collection of elements {cλ ∈ (C+)× : λ∈ (Z/pnZ)×} with the property that cλ ≡ λc1
modulo pnC+ for all λ∈ (Z/pnZ)×. Define

P (T ) :=
∏

λ∈(Z/pnZ)×

(T − cλ)∈C+[T ]⊂O+
Y (Y),
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and, for every 0≤m≤ n, let

ρn,m := p−mpn−m
∏

x∈(Z/pnZ)×

x �≡1 (mod pm)

|x− 1|p,

νn,m :=−vp(ρn,m),

where vp is the p-adic valuation satisfying vp(p) = 1. Note that νn,m ≥ 0 and ρn,m = p−νn,m =
|pνn,m |p.

Lemma 3.6. For any 0≤m<n, we have ρn,m/ρn,m+1 = pp
n−(m+1)

and νn,m+1 − νn,m = pn−(m+1).

Proof. We have

νn,m =mpn−m +

m−1∑
k=1

k · #{1 + pka : 0≤ a< pn−k, (a, p) = 1}

=mpn−m +

m−1∑
k=1

k(p− 1)pn−(k+1).

A simple computation shows that νn,m+1 − νn,m = pn−(m+1) as required.

The following lemma relates estimates of the norm of P (T ) to the norm of its linear factors.

Lemma 3.7. For any point x∈Y with associated valuation | · |x, one has

|P (T )|x ≤ |pνn,m |x⇐⇒∃λ∈ (Z/pnZ)× such that |T − cλ|x ≤ |pm|x.

Proof. Note that p is topologically nilpotent, so |p|x < 1 and |pi|x converges to zero as i→+∞
in the value group Γ∪ {0} of the valuation | · |x (i.e., for any γ ∈ Γ, there exists an integer i≥ 0
such that |pi|x < γ).

Suppose that there exists an element μ∈ (Z/pnZ)× such that |pi+1|x < |T − cμ|x < |pi|x for
some integer i≥ 0. Then |T − cμ|x is never equal to |cμ − cλ|x = |μ− λ|x for any λ �= μ. Let
Jμ,i+1 ⊂ (Z/pnZ)× be the subset of all elements λ such that λ≡ μ modulo pi+1, and let Jc

μ,i+1

denote its complement. Then we have

|P (T )|x =
∏

λ∈Jμ,i+1

|T − cμ|x ·
∏

λ∈Jc
μ,i+1

|λ− μ|x

=

{
|T − cμ|p

n−(i+1)

x |p−(i+1)pn−(i+1) |x|pνn,i+1 |x if 0≤ i < n,
|T − cμ|x|p−n|x|pνn,n |x if i≥ n.

We now return to the proof of the lemma. Suppose that there exists λ∈ (Z/pnZ)× such that
|T − cλ|x ≤ |pm|x. Then we must have that

|P (T )|x ≤
∏

λ′∈Jλ,m

|pm|x ·
∏

λ′∈Jc
λ,m

|cλ′ − cλ|x = |pνn,m |x.

Conversely, suppose that |P (T )|x ≤ |pνn,m |x. Suppose there exists μ∈ (Z/pnZ)× such that
|pi+1|x < |T − cμ|x < |pi|x for some integer i≥ 0. We may assume i≤m− 1 otherwise there is
nothing to prove. Then by the above calculation, we find that

|P (T )|x = |T − cμ|p
n−(i+1)

x |p−(i+1)pn−(i+1) |x|pνn,i+1 |x ≤ |pνn,m |x.
But since |T − cμ|x > |pi+1|x, this implies that νn,i+1 > νn,m for some i≤m− 1. This contradicts
Lemma 3.6.
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p-adic interpolation of Gauss–Manin connections

Finally, we suppose that for every μ, there exists an integer i≥ 0 such that |T − cμ|x = |pi|x,
and assume that |P (T )|x ≤ |pνn,m |x. Let j =max{i : |T − cλ|x = |pi|x for some λ}, and we assume
0≤ j ≤m− 1, otherwise there is nothing to prove. Let μ be such that |T − cμ|x = |pj |x. Then we
see that

|P (T )|x =
∏

λ∈Jμ,j

|T − cλ|x ·
∏

λ∈Jc
μ,j

|cλ − cμ|x ≥ |pjp
n−j |x

∏
y∈(Z/pnZ)×

y �≡1 (mod pj)

|y− 1|x = |pνn,j |x.

This implies that νn,j ≥ νn,m, which contradicts Lemma 3.6 because j ≤m− 1.

We note the following corollary.

Corollary 3.8. Let 1≤m≤ n and suppose that {dμ ∈ (C+)× : μ∈ (Z/pmZ)×} is a collec-
tion of elements such that dμ ≡ cλ modulo pmC+ whenever μ≡ λ modulo pm. Set Q(T ) =∏

μ∈(Z/pmZ)×(T − dμ). Then for any point x∈Y, one has

|P (T )|x ≤ |pνn,m |x ⇐⇒ |Q(T )|x ≤ |pνm,m |x.

Proof. By Lemma 3.7, it is enough to show that

∃λ∈ (Z/pnZ)× such that |T − cλ|x ≤ |pm|x⇐⇒∃μ∈ (Z/pmZ)× such that |T − dμ|x ≤ |pm|x.
But this holds by construction.

3.3 Ordinary neighbourhoods

Fix a quasi-compact open affinoid Spa(A, A+)⊂X as above. We now define the strict
(local) neighbourhoods of the Igusa tower over the ordinary locus. For any integer n≥ 1, we
define:

– Pαn
(T1) =

∏
λ=(λ1,1)∈T (Z/pnZ)(T1 − σλ(αn)) ∈ A+

ord[T1];

– Pγn
(T2) =

∏
λ=(1,λ2)∈T (Z/pnZ)(T2 − σλ(γn)) ∈ A+

ord[T2];

– Qn(T1, U) =U − α−1
n βnT1 ∈ A+

ord[T1, U ].

We view all of these polynomials as global sections of O+
P an

dR,Aord

via the coordinates T1, T2, U

arising from the fixed basis {e, f} as above.

Definition 3.9. For 1≤m≤ n, let UHT,n,m ⊂ P an
dR,Aord

be the quasi-compact open affinoid whose
points | · |x satisfy the inequalities

|Pαn
(T1)|x ≤ |pνn,m |x, |Pγn

(T2)|x ≤ |pνn,m |x, |Qn(T1, U)|x ≤ |pm|x.

For any element x∈ P an
(Aord,n) and integer m≤ n, we let Bn(x, p−m)⊂ P an

Aord,n

∼= P an
dR,Aord,n

denote the rigid ball of radius p−m, that is, if we have x=
( x2

y x1

)
, then it is the quasi-

compact open affinoid subspace defined by the conditions |T1 − x1| ≤ |pm|, |U − y| ≤ |pm|, and
|T2 − x2| ≤ |pm|.

Lemma 3.10. Let gn =
( γn

βn αn

)
. Then

UHT,n,m ×Xord
IGn =

⊔
λ∈T (Z/pmZ)

Bn(σλ(gn), p−m) =
⊔

λ∈T (Z/pmZ)

σλ(gn) · Bn(1, p−m),

where, by a slight abuse of notation, σλ denotes any lift of σλ ∈ Gm to an element of Gn. In
particular, we have UHT,n := UHT,n,n = UHT,n,m for any 1≤m≤ n.
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Proof. This follows immediately from Lemma 3.7 and Corollary 3.8 applied to {σλ(αn) : λ=
(λ1, 1)∈ T (Z/pnZ)} and {σλ(γn) : λ= (1, λ2)∈ T (Z/pnZ)} (see Remark 3.5 for the congruence
properties of these elements) and each of the (Gan

m )Aord
components of P an

dR,Aord
.

Corollary 3.11. The family {UHT,n : n≥ 1} forms a cofinal system of strict quasi-compact
open neighbourhoods of IG∞ ×X Spa(A, A+) inside P an

dR,Aord
.

Proof. It suffices to prove this after base-change along the map Spa(Aord,∞, A
+
ord,∞)→

Spa(Aord, A
+
ord), because this morphism is profinite proétale and hence closed. But

UHT,n ×Spa(Aord,A
+
ord)

Spa(Aord,∞, A
+
ord,∞) =

⊔
λ∈T (Z/pnZ)

B∞(σλ(g∞), p−n),

where σλ denotes a lift to G∞ (here we are using the fact that gn ≡ g∞ modulo pn). These are
clearly cofinal.

3.4 Overconvergent neighbourhoods

Fix a quasi-compact open affinoid Spa(A, A+)⊂X over which H+
E , ω

+
E and ω+

ED trivialise. We
now define a cofinal system of strict neighbourhoods of IG∞,A inside P an

dR,A.

Definition 3.12. Let n≥ 1 be an integer. We say that a quasi-compact open affinoid subspace
U ⊂ P an

dR,A is an overconvergent extension of UHT,n if:

(i) one has UHT,n = U ∩ P an
dR,Aord

;

(ii) U contains the closure of IG∞,A inside P an
dR,A.

Given an overconvergent extension U , we set Ur := U ∩ P an
dR,Ar

for any integer r≥ 1. Note that
any Ur is also an overconvergent extension.

Proposition 3.13. For any n≥ 1, there exists an overconvergent extension of UHT,n. Moreover,
the collection of overconvergent extensions of UHT,n for varying n forms a cofinal system of
quasi-compact open strict neighbourhoods of IG∞,A inside P an

dR,A.

Proof. Let n≥ 1. Then UHT,n+1 = UHT,n+1,n+1 (respectively, UHT,n = UHT,n+1,n) is described by
the inequalities

|Pαn+1
(T1)| ≤ |pνn+1,n+1 |, |Pγn+1

(T2)| ≤ |pνn+1,n+1 |, |Qn+1(T1, U)| ≤ |pn+1|
(respectively, |Pαn+1

(T1)| ≤ |pνn+1,n |, |Pγn+1
(T2)| ≤ |pνn+1,n |, |Qn+1(T1, U)| ≤ |pn|).

Since A+
ord =A+〈1/h〉, there exists a sufficiently large integer N ≥ 0, and elements P ′

αn+1
(T1)∈

A+[T1], P
′
γn+1

(T2)∈A+[T2], Q
′
n+1(T1, U)∈A+[T1, U ] such that

P ′
αn+1

(T1)≡ hNPαn+1
(T1), P ′

γn+1
(T2)≡ hNPγn+1

(T2), Q′
n+1(T1, U)≡ hNQn+1(T1, U),

modulo ptA+
ord, for some fixed integer t such that p−t ≤ ρn+1,n+1.

Define V (respectively, U) to be the rational subset of P an
dR,A defined by the inequalities

|P ′
αn+1

(T1)| ≤ |pνn+1,n+1 |, |P ′
γn+1

(T2)| ≤ |pνn+1,n+1 |, |Q′
n+1(T1, U)| ≤ |pn+1|

(respectively, |P ′
αn+1

(T1)| ≤ |pνn+1,n |, |P ′
γn+1

(T2)| ≤ |pνn+1,n |, |Q′
n+1(T1, U)| ≤ |pn|).

Then IG∞,A ⊂V ⊂U . Since |pνn+1,n+1 |< |pνn+1,n | (Lemma 3.6) and |pn+1|< |pn|, we see that
V ⊂U , where the closure is in P an

dR,A. This implies that U is an overconvergent extension of
UHT,n. The rest of the proposition follows from a standard compactness argument, and the fact
that {UHT,n : n≥ 1} are cofinal over the ordinary locus.
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Let U be an overconvergent extension of UHT,n for some integer n≥ 1. Then we have a chain
of quasi-compact open affinoid neighbourhoods

U1 ⊃U2 ⊃ · · · ⊃ Ur ⊃ · · · ⊃ U∞ := UHT,n,

such that U∞ is the locus in Ur (:= U ∩ P an
dR,Ar

) where the Hasse invariant h∈O+(Ur) is invertible,
for any r≥ 1. On sections, this chain of inclusions is induced by maps

B+
1 →B+

2 → · · ·→B+
∞,

where B+
r =O+(Ur). Each Br :=O(Ur) is a Banach space – denote the norm for which B+

r is
the unit ball by || · ||r. The key result of this section is to show that these morphisms are very
close to being isometries, with the failure to be an isometry measured by powers of the Hasse
invariant (whose valuation can be made arbitrarily small). This will allow us to overconverge
the Gauss–Manin connection to p-adic powers.

Proposition 3.14. Let r≥ 1. With notation as above, there exists an integerM ≥ 0 (depending
on r) such that for any k≥ 1, the kernel of the map

B+
r /p

k→B+
∞/p

k

is killed by hkM .

Proof. We first establish the case k= 1. Note thatB+
∞ =B+

r 〈1/h〉 because Ur is an overconvergent
extension of U∞. This implies that (B+

∞/p) = (B+
r /p)[1/h], and hence any element x∈B+

r /p in
the kernel of the map B+

r /p→B+
∞/p is killed by some power of the Hasse invariant. Since B+

r /p
is Noetherian, the kernel of this map is a finitely generated ideal, and hence we can find a
sufficiently large integer M ≥ 0 such that hM kills the kernel.

This proves the proposition in the case k= 1. The general case now follows from a simple
induction argument using the fact that B+

∞ is p-torsion-free.

The following corollary is a generalisation of [AI21, Proposition 4.10] and will be key for the
proof of our main result.

Corollary 3.15. With notation as above, for any real number 0< δ < 1 there exists an integer
s= s(δ)≥ r such that the following assertion holds: for all k≥ 1, x∈Br and c∈Q, one has

||x||∞ ≤ pc−k and ||x||r ≤ pc⇒ ||x||s ≤ pc−δk.

Proof. By raising x to an integral power, it is enough to prove the statement for c∈Z, and by
rescaling it is enough to prove the statement for c= 0. Therefore, we have an element x∈B+

r

whose image is in pkB+
∞. By Proposition 3.14, there exists an M ≥ 0 such that ||(p−1hM )kx||s ≤

||(p−1hM )kx||r ≤ 1 for any s≥ r and any k≥ 1. Since ||h−1||s→ 1+ as s→+∞, taking s large
enough such that ||h−1||s ≤ p(1−δ)/M , we obtain

||x||s ≤ ||(ph−M )k||s ≤ p−δk

as required.

4. The p-adic interpolation of continuous operators

In this section we establish the general abstract results on p-adic interpolation of operators that
are used in § 5 in order to p-adically interpolate the Gauss–Manin connection. It is likely that the
results in this section can be generalised to the setting of PEL Shimura varieties – in particular,
some of the notation in this section will differ from the rest of the paper.
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Remark 4.1. At this point it might be useful to recall the strategy we described in the intro-
duction for showing the p-adic interpolation of the Gauss–Manin connection. We make some
comments concerning how the abstract results will be used in the following section.3

(i) In § 4.2 we introduce general definitions of continuous, analytic and locally analytic actions
on topological modules over R[1/p] for some admissible Zp-algebra R. Proposition 4.6 will
be helpful as we will show that the Gauss–Manin connection has locally a very simple
description modulo large powers of p (cf. Proposition 5.2).

(ii) In § 4.3 we will specialise to a more precise situation and the rings Lm = S+〈(X −
1)/pm, Y/pm, (Z − 1)/pm〉 will correspond by Proposition 5.2 to (the ring of functions of)
one of the balls whose disjoint union forms the strict quasi-compact open neighbourhoods
UHT,m of the Igusa tower over the ordinary locus of Corollary 3.11.

(iii) Finally, the sequence V0 ⊆ · · · ⊆ Vr ⊆ · · · ⊆ V∞ considered in § 4.4 will correspond (locally)
to a collection of overconvergent extensions of the neighbourhoods UHT,m.

4.1 Function spaces

Let R+ be an admissible Zp-algebra and set R=R+[1/p]. Let Ccont(Zp, R), C
h -an(Zp, R) and

C la(Zp, R) denote the R-algebras of continuous, analytic of radius p−h (h∈N), and locally
analytic functions from Zp to R, respectively. We also set Ccont(Zp, R

+) to be the R+-algebra of
continuous functions from Zp to R+. We recall the following classical result.

Proposition 4.2 (Amice). For k≥ 0 set
(
x
k

)
= (x(x− 1) · · · (x− k+ 1))/k!. Then the following

assertions hold.

– The family
(
x
k

)
is an orthonormal basis of Ccont(Zp, R) (over R).

– The family �k/ph�!
(
x
k

)
is an orthonormal basis of Ch -an(Zp, R).

– A function f =
∑

k∈N ak
(
x
k

)
∈Ccont(Zp, R) is locally analytic if and only if for some ε > 0,

the term pkε|ak| → 0 as k→+∞, where | · | denotes the Banach norm on R with unit
ball R+.

Proof. See [Col10, Corolaire I.2.4, Théorème I.4.7, Corolaire I.4.8].

For any ε > 0 we will denote by Cε(Zp, R) the subspace of functions f =
∑

k∈N ak
(
x
k

)
with

pkε|ak| → 0 as k→+∞. Observe that C la(Zp, R) = lim−→h→+∞ Ch -an(Zp, R) = lim−→ε>0
Cε(Zp, R).

4.2 Continuous and analytic actions

We begin with some elementary calculations. Let R+ be an admissible Zp-algebra, R=R+[1/p],
and let V be a Qp-Banach vector space equipped with a topological R-module structure.

Definition 4.3. Let C =Ccont(Zp, R) or Cε(Zp, R) or C la(Zp, R) and let W be a topological
R-module. If T ∈EndR(W ) is a continuous operator, then we say that T extends to a contin-
uous (respectively, ε-analytic, locally analytic) action if there exists a continuous R-algebra
action of Ccont(Zp, R) (respectively, Cε(Zp, R), C

la(Zp, R)), that is, a continuous R-bilinear
map

C ×W →W

3The reader can also choose to read § 5 before reading this section.
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p-adic interpolation of Gauss–Manin connections

(where the left-hand side is equipped with the product topology) that respects the algebra
structure on C given by multiplication of functions, such that the structural map Zp→R acts
as T .

Lemma 4.4. Let T ∈EndR(V ) be a continuous operator and let || · || denote the operator norm
on EndR(V ). Then the following assertions hold:

(i) T extends to a continuous action if and only if the norms∣∣∣∣∣∣∣∣T (T − 1) · · · (T − k+ 1)

k!

∣∣∣∣∣∣∣∣
are uniformly bounded for all k≥ 0;

(ii) T extends to an ε-analytic action if and only if the norms

p−kε

∣∣∣∣∣∣∣∣T (T − 1) · · · (T − k+ 1)

k!

∣∣∣∣∣∣∣∣
are uniformly bounded for all k≥ 0;

(iii) T extends to a locally analytic action if and only if for all ε > 0 the norms

p−kε

∣∣∣∣∣∣∣∣T (T − 1) · · · (T − k+ 1)

k!

∣∣∣∣∣∣∣∣
are uniformly bounded for all k≥ 0.

Moreover, any such extension of T is unique.

Proof. This is an immediate consequence of the characterisation of continuous, ε-analytic and
locally analytic functions in Proposition 4.2.

We will also need the following uniqueness property for ε-analytic/locally analytic actions on
LB-spaces with injective transition maps.

Lemma 4.5. Let {Vi}i∈I be a (filtered) countable sequence of R-modules which are also
Qp-Banach spaces, with each transition map injective. Let V := lim−→i∈I Vi equipped with the direct
limit topology. Let ε > 0 and let Ti : Vi→ Vi be continuous R-linear operators, all compatible with
each other via the transition maps. Set T = lim−→i∈I Ti.

(i) Let j ∈ I and C(Zp, R)
pol ⊂Cε(Zp, R) be the subalgebra of polynomial functions. There

is a natural R-algebra action of C(Zp, R)
pol on Vj extending Tj . Then any continuous

R-linear action

Cε(Zp, R)× Vj→ V,

which extends this R-algebra action of C(Zp, R)
pol is unique.

(ii) Any continuous R-algebra action

Cε(Zp, R)× V → V

extending T is unique.
(iii) Any continuous R-algebra action

C la(Zp, R)× V → V

extending T is unique.
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Proof. In this proof we will continually use the fact that if X is a Qp-Banach space and
Y = lim−→i∈I Yi is a countable filtered colimit of Qp-Banach spaces (with the direct limit topology)
where all the transition maps are injective, then any continuous Qp-linear map

U : X→ lim−→
i∈I

Yi = Y,

factors through Yi for some i∈ I (see [Sch02, Corollary 8.9]). Note that Cε(Zp, R) is a Qp-Banach
space, and C la(Zp, R) = lim−→ε>0

Cε(Zp, R) with the direct limit topology.

For part (i), let f ∈Cε(Zp, R) and v ∈ Vj . Then f can be written as the limit of {fk}k≥1,
where fk ∈C(Zp, R)

pol. The map

Cε(Zp, R)→ V, g �→ g · v,
is continuous (by assumption), so by the above, factors though some Vi. Since Vi is Hausdorff,
we must have that f · v is the (unique) limit of fk · v, which are already determined.

Part (ii) is similar, using the fact that the action of polynomial functions are already
determined by T (because it is an algebra action). Part (ii) just follows from part (ii).

The following useful result explains how one can perturb a locally analytic action to produce
an ε-analytic action for some appropriately chosen ε.

Proposition 4.6. Let T1, T2 ∈EndR(V ) and suppose that T1 extends to a locally analytic
action and that ||T2|| ≤ 1. Then for any ε > 0, there exists an integer Nε ≥ 1 (depending on T1
but not on T2) such that T1 + pNεT2 extends to an ε-analytic action.

Proof. Let N ≥ 0 and denote T = T1 + pNT2. Let fk(X) denote the polynomial

fk(X) =
X(X − 1) · · · (X − k+ 1)

k!
.

Let Λ denote the set of all ordered tuples I = (−1 = t0 ≤ t1 < t2 < · · ·< t2r−1 ≤ t2r = k− 1)
with r≥ 1. For such an I ∈Λ and any 1≤ i≤ r, let ki = t2i−1 − t2i−2 and �i = t2i − t2i−1, and
set

zI = fk1
(T1 − (t0 + 1)) · T �1

2 · fk2
(T1 − (t2 + 1)) · T �2

2 · . . . · fkr
(T1 − (t2r + 1)) · T �r

2 .

Then we can write

fk(T ) = fk(T1) +
∑

I∈Λ,b �=0

pNb

b!

(
k

a

)−1( a

k1, . . . , kr

)−1

zI , (4.1)

where we have denoted a=
∑r

i=1 ki and b=
∑r

i=1 �i so that a+ b= k.
We now give a bound for the operators zI . Note that for any integer t∈Z, fk(X − t) is also

a polynomial in X and the Mahler expansion of fk(X − t) is of the form

fk(X − t) =
k∑

i=0

aifi(X)

for ai ∈Zp because fk(x− t)∈Zp for any x∈Zp and the coefficients are just computed using the
discrete difference operator. This implies that, if ε > 0 and C ∈R>0 is such that

p−kε/2||fk(T1)|| ≤C
for all k≥ 0, then, for any t∈Z and k≥ 0, we have

p−kε/2||fk(T1 − t)|| ≤C.
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p-adic interpolation of Gauss–Manin connections

Hence, by the fact that ||T2|| ≤ 1, we deduce

p−aε/2||zI || ≤Cr. (4.2)

Using that for any multinomial coefficient we have vp
((

n
a1,...,as

)−1)≥− logp(n), we get from (4.1)

and (4.2) that

p−kε||fk(T )|| ≤max(C, p−kεp−Nb+b/(p−1)p2 logp(k)p(k−b)ε/2Cr).

Since b≥ r− 1, taking N such that p−N+1/(p−1) ≤C−1 we deduce that p−Nb+b/(p−1)Cr ≤C and
the right-hand side is bounded above by

p−kε/2+2 logp(k)C,

which is uniformly bounded in k as ε > 0. This concludes the proof.

4.3 Nilpotent operators

Let R+→ S+ be a morphism of p-adically complete and separated, p-torsion-free Zp-algebras
with R+ admissible, and denote by R=R+[1/p], S = S+[1/p] their associated Qp-Banach
algebras.

Definition 4.7. Let L0 = S+〈X, Y, Z〉 and, for any integer m≥ 1, let Lm = S+〈(X −
1)/pm, Y/pm, (Z − 1)/pm〉. Set V0 =L0[1/p], Vm =Lm[1/p].

We equip V0 with the norm induced by the lattice L0, or equivalently the norm
given by ||

∑
a,b,c sa,b,cX

aY bZc||=maxa,b,c ||sa,b,c||, where the norm on the right-hand side is
the Qp-Banach norm of S. This allows us to view V0 as a Banach algebra with unit
ball L0. Analogously, for m≥ 1, we can view Vm as a Banach algebra with the norm
induced by the lattice Lm, or equivalently defined by ||

∑
a,b,c sa,b,c(X − 1)aY b(Z − 1)c||m =

maxa,b,c p
−m(a+b+c)||sa,b,c||.

Let θ : S+→ S+ be an R+-linear derivation, which can naturally be viewed as an S+-linear
functional Ω1

S+/R+→ S+. We define ∇θ : Vm→ Vm to be the unique R-linear derivation such that
it acts as θ on S and satisfies

∇θ(X) = Y, ∇θ(Y ) =∇θ(Z) = 0.

In particular, we have a commutative diagram

Vm Vm

S S

∇θ

θ

where the vertical maps are induced by sending X �→ 1, Y �→ 0, Z �→ 1.
We will show next that, whenever θ : S+→ S+ extends to a continuous action, the action of

C la(Zp, R)⊆Ccont(Zp, R) on S extends to Vm for any m≥ 0. We begin with some elementary
lemmas for which we introduce some notation. For any k ∈N>0 and 0≤ r≤ k, let Σk,r be the
set of subsets of {0, . . . , k− 1} of size r. If I ∈Σk,r, let k1, . . . , k� (with � and the ki depending

on I) be the lengths of the largest blocks of consecutive integers in I, so that
∑�

i=1 ki = r. More
precisely, I can be written as

I =
⋃

1≤j≤�

[ij , ij + kj − 1] =
⋃

1≤j≤�

Ij ,
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with no adjacent intervals, that is, ij > ij−1 + kj−1 for all 2≤ j ≤ �. For any I ∈Σk,r, we denote

gI(X) =
∏
i∈I

(X − i), fI(X) =
∏

1≤j≤�

1

kj !

∏
i∈Ij

(X − i),

with the convention that g∅ = f∅ = 1. The following easy lemma will be very useful.

Lemma 4.8. We have

fk(∇θ)(sX
aY bZc) =

min(k,a)∑
r=0

∑
I∈Σk,k−r

(
k− r

k1, . . . , k�

)−1(k
r

)−1(a
r

)
fI(θ)(s)X

a−rY b+rZc.

Proof. First observe that, since everything is linear with respect to the variable Z, we may
assume that c= 0. We have(

k− r
k1, . . . , k�

)−1(k
r

)−1(a
r

)
fI(θ)(s) =

a(a− 1) · · · (a− r+ 1)

k!
gI(θ)(s),

so that we need to prove the formula

fk(∇θ)(sX
aY b) =

min(k,a)∑
r=0

∑
I∈Σk,k−r

a(a− 1) · · · (a− r+ 1)

k!
gI(θ)(s)X

a−rY b+r.

We check the formula by induction. For k= 1 we need to prove that

fk(∇θ)(sX
aY b) = θ(s)XaY b + asXa−1Y b+1,

which follows from Leibniz rule. Assume the result holds for k. We calculate

fk+1(∇θ)(sX
aY b) =

(∇θ − k)
k+ 1

fk(∇θ)(sX
aY b)

= (∇θ − k)
min(k,a)∑

r=0

∑
I∈Σk,k−r

a(a− 1) · · · (a− r+ 1)

(k+ 1)!
gI(θ)(s)X

a−rY b+r.

We have

(∇θ − k)gI(θ)(s)Xa−rY b+r = (θ− k)gI(θ)(s)Xa−rY b+r + gI(θ)(s)(a− r)Xa−(r+1)Y b+(r+1),

and observe that (θ− k)gI(X) = gI∪{k}(X). The result follows by decomposing Σk+1,k−r as those
subsets containing k and those not containing k.

The following corollary implies that, if the extension of ∇θ to Vm extends to an ε-analytic
action, then the same holds for any m′ ≥m.

Corollary 4.9. Let m′ ≥m, s∈ S, a, b∈N and k≥ 0. Then∣∣∣∣∣∣∣∣fk(∇θ)

(
s

(
X − 1

pm

)a ( Y

pm

)b (Z − 1

pm

)c )∣∣∣∣∣∣∣∣
m

=

∣∣∣∣∣∣∣∣fk(∇θ)

(
s

(
X − 1

pm′

)a ( Y

pm′

)b (Z − 1

pm′

)c )∣∣∣∣∣∣∣∣
m′
.

In particular,

sup
x∈Lm

||fk(∇θ)(x))||m = sup
x∈Lm′

||fk(∇θ)(x))||m′ ,

for all m′ ≥m.

Proof. The first assertion follows immediately from Lemma 4.8. Indeed, calling

αr(s) =
∑

I∈Σk,k−r

(
k− r

k1, . . . , k�

)−1(k
r

)−1(a
r

)
fI(θ)(s),
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which is independent of m or m′ we have, for all m′ ≥m,∣∣∣∣∣∣∣∣fk(∇θ)

(
s

(
X − 1

pm′

)a( Y

pm′

)b(Z − 1

pm′

)c )∣∣∣∣∣∣∣∣
m′

=

∣∣∣∣∣∣∣∣ min(k,a)∑
r=0

αr(s)

(
X − 1

pm′

)a−r( Y

pm′

)b+r(Z − 1

pm′

)c∣∣∣∣∣∣∣∣
m′

= sup
r
||αr(s)||,

which is independent of m′. The last assertion follows from the first one. This finishes the
proof.

Proposition 4.10. Assume that θ extends to a continuous action on S+. Then the operator
∇θ extends uniquely to a locally analytic action on Vm for any m≥ 0.

Proof. By Corollary 4.9 and a change of coordinates, we can assume m= 0. By Lemma 4.4, it
suffices to show that, for any ε > 0, there exists a constant Cε ∈R>0 such that for all k≥ 0 we
have

p−kε||fk(∇θ)|| ≤Cε,

that is, for all F ∈ V0, we have

p−kε||fk(∇θ)(F )|| ≤Cε||F ||.
It suffices to prove this for F = sXaY bZc with s∈ S+. By Lemma 4.8, it suffices to show that,
for each 0≤ r≤min(k, a) and any I ∈Σk,k−r, the value

p−kε

∣∣∣∣∣∣∣∣( k− r
k1, . . . , k�

)−1(k
r

)−1(a
r

)
fI(θ)(s)

∣∣∣∣∣∣∣∣
is uniformly bounded. But, since ||fI(θ)|| ≤ 1 (because θ extends to a continuous action on S+) this
value is bounded above by p−kε+2 logp(k), which is uniformly bounded in k as −kε+ 2 logp(k)→
−∞ as k→+∞. This finishes the proof.

4.4 Overconvergence

We finish this section with the abstract results that will allow us to extend the locally analytic
action from the ordinary locus to overconvergent neighbourhoods. The setting is as follows.
Let

V0 ⊆ · · · ⊆ Vr ⊆ · · · ⊆ V∞

be a sequence of topological R-modules which are also Qp-Banach spaces and let ∇ : V∞→ V∞
be a continuous R-linear operator stabilising each Vi. Let || · ||i denote the Banach norm on Vi
and suppose that ||x||s ≤ ||x||r for all x∈ Vr and r≤ s≤∞.

Proposition 4.11. Assume that the following property holds: for any 0< δ < 1 and r ∈N, there
exists s= s(δ)≥ r such that, for all c∈Q, h∈N and x∈ Vr, we have

||x||r ≤ pc and ||x||∞ ≤ pc−h =⇒ ||x||s ≤ pc−δh. (4.3)

Assume that, for some ε > 0, the operator ∇ extends to an ε-analytic action on V∞. Then, for
any r ∈N and γ > ε, there exists s∈N (depending only on ε, γ and ||∇||r) such that, for any
x∈ Vr,

p−kγ ||fk(∇)(x)||s→ 0 as k→+∞.

In particular, the operator ∇ extends to a continuous R-linear action Cγ(Zp, R)× Vr→ Vs.
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Proof. Let x∈ Vr be such that ||x||r ≤ 1 (and hence ||x||∞ ≤ 1), and let Cr ∈Q≥0 be a constant
such that ||∇||r ≤ pCr . From the inequality ||∇||r ≤ pCr we deduce that

||k!fk(∇)(x)||r ≤ pkCr .

On the other hand, since ∇ extends to an ε-analytic action on V∞, there exists Cε > 0 such that

||k!fk(∇)(x)||∞ ≤ p−vp(k!)+Cε+kε = pkCr−(kCr−Cε−kε+vp(k!))

for all k ∈N. Let k be large enough such that kCr −Cε − kε+ vp(k!)> 0, which is always possible
as soon as Cr ≥ ε. Applying (4.3) to the element k!fk(∇)(x) with c= kCr and h= kCr −Cε −
kε+ vp(k!)> 0 (which we may assume to be an integer) we deduce that, for any δ < 1, there
exists s∈N such that

||k!fk(∇)(x)||s ≤ pkCr−δ(kCr−Cε−kε+vp(k!)).

Now let γ > ε. We obtain

p−kγ ||fk(∇)(x)||s ≤ pkCr−δkCr+δCε+kδε−δvp(k!)−kγ+vp(k!)

≤ p−k((δ−1)Cr+(γ−δε)+(δ−1))+δCε, (4.4)

where the last inequality follows from vp(k!)≤ k. One can easily show that one can choose δ
(which will depend on ε, γ and Cr) in such a way that ((δ − 1)Cr + (γ − δε) + (δ − 1))> 0,
which implies that (4.4) goes to 0 as k→+∞. This finishes the proof.

Remark 4.12. It is not necessary that the maps V0→ V1→ · · ·→ V∞ are injective, and the above
proof still holds without this assumption.

5. The p-adic interpolation of the Gauss–Manin connection

This section is devoted to the proof of the assertion of Theorem 2.11 concerning the existence
of the action of locally analytic functions on the space of nearly overconvergent modular forms.
We will establish this by first proving a local version over some affinoid Spa(A, A+)⊂X , and
then explain how the construction globalises. We assume throughout that Spa(A, A+) is the adic
generic fibre of an open formal subscheme Spf A+ ⊂X.

5.1 The Gauss–Manin connection

Recall from Appendix A that π∗OPdR
=VBcan(OP ) is naturally aDX -module, where π : PdR→X

denotes the structural map and OP denotes sections of the lower-triangular Borel P ⊂GL2.
The (g, P )-module OP carries some additional structure, namely P acts through algebra auto-
morphisms of OP and g acts through derivations OP →OP . Therefore, we obtain a derivation
∇ : π∗OPdR

→ π∗OPdR
as the composition

π∗OPdR
→ π∗OPdR

⊗OX
Ω1
X/R(logD)→ π∗OPdR

, (5.1)

where the first map is induced from the DX -module structure, and the second is induced from
the Kodaira–Spencer isomorphism Ω1

X/R(logD)∼= ωE ⊗ ωED , the adjoint map to the universal

trivialisation π∗(ωE ⊗ ωED)
∼−→OPdR

, and the multiplication structure on π∗OPdR
.

Since π is affine, the derivation ∇ is equivalent to a derivation ∇ : OPdR
→OPdR

. We also
let ∇ : OP an

dR
→OP an

dR
denote the corresponding derivation on the associated adic space. This

immediately induces a derivation

∇ : N †→N †,
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where N † = colimU π∗OU is the colimit over all quasi-compact strict open neighbourhoods of
IG∞ in P an

dR (with structural map π : U →X ). This is compatible with the Atkin–Serre operator
via the map to p-adic modular forms.

5.1.1 Local description. We note the following local description of ∇ : OP an
dR
→OP an

dR
, which

follows from the way the DX -module structure is constructed in the proof of Lemma A.3.
Let Spa(A, A+)⊂X be a quasi-compact open affinoid subspace as above, over which HE , ωE ,
ωED trivialise. Let {e, f} denote a basis of HE respecting the Hodge filtration, and let f̄ ∈ ω∨

E
denote the image of f under the projection HE � ω∨

E (we also denote this projection by (−)).
Via the Kodaira–Spencer isomorphism, there exists a unique differential κ∈Ω1

A/R(logD) such
that

∇(e) = f̄ ⊗ κ∈ ω∨
E ⊗Ω1

A/R(logD).

Let D : A→A denote the derivation dual to κ. Then we can write

∇D((f e)) = (f e) · δ,

for some δ ∈ gA. Let F ∈A[U, T1, T2, T−1
1 , T−1

2 ]⊂OP an
dR
(P an

dR,A) be a polynomial, which we view

as an element of OP ⊗Qp
A=A[U, T1, T2, T

−1
1 , T−1

2 ] – here we write a general element in P as(
T2

U T1

)
. Then the action of ∇ is described as

∇(F )(U, T1, T2) = (D · F (U, T1, T2) + δ �l F (U, T1, T2)) · T1T−1
2 ,

where D · F (U, T1, T2) is the application of the derivation D on the coefficients, and �l denotes
the g-action on OP . The extra factor T1T

−1
2 arises from the second map in (5.1).

Example 5.1. Suppose that δ =
(
0 1
0 0

)
. Then the action δ �l − is given by the differential

UT1T
−1
2 ∂T1

−U∂T2
.

5.2 The local construction

Fix a quasi-compact open affinoid Spa(A, A+)⊂X as in § 5.1.1. Let n≥ 1 be an integer. In this
subsection, we will prove the local version of Theorem 2.11 using results from §§ 3 and 4. The
first step is to understand the derivation

∇ : OUHT,n
→OUHT,n

,

where UHT,n is as in Definition 3.12. Note that, since IG∞→Xord is a proétale T (Zp)-torsor,
this derivation extends uniquely to a derivation ∇ : OUHT,n,Aord,∞

→OUHT,n,Aord,∞
, and via the

decomposition in Lemma 3.10 and the local description in § 5.1.1, this decomposes as

∇=⊕σλ∈Gn
∇λ :

⊕
λ∈T (Z/pnZ)

OB∞(σλ(g∞),p−n)→
⊕

λ∈T (Z/pnZ)

OB∞(σλ(g∞),p−n).

Proposition 5.2. Let n≥ 1 be an integer and σλ ∈ G∞ corresponding to λ= (λ1, λ2)∈ T (Zp).
For ease of notation, set Bλ =B∞(σλ(g∞), p−n).

(i) The operator ∇λ : OBλ(Bλ)→OBλ(Bλ) is integral, that is, it preserves O+
Bλ(Bλ).

Moreover, the operator ∇λ has the following explicit description: via the A+
ord,∞-algebra

isomorphism

O+
Bλ
(Bλ) ∼−→A+

ord,∞

〈
X − 1

pn
,
Y

pn
,
Z − 1

pn

〉
, (5.2)
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given by sending T1 �→ σλ(α∞)X, U �→ σλ(β∞)X + σλ(γ∞)Y , T2 �→ σλ(γ∞)ZX−1, the
operator ∇λ is an R+-linear derivation such that

– ∇λ(g)≡ sλ · θ(g) (mod pn) for some sλ ∈Z×
p and all g ∈A+

ord,∞,

– ∇λ(X)≡ Y (mod pn), and ∇λ(Y ) =∇λ(Z) = 0,

where θ : A+
ord,∞→A+

ord,∞ is the Atkin–Serre differential operator.

(ii) The operator ∇ : OUHT,n
(UHT,n)→OUHT,n

(UHT,n) is integral, that is, it preserves
O+

UHT,n
(UHT,n).

Proof. First recall that for λ= (λ1, λ2) we have σλ(α∞) = λ1α∞, σλ(β∞) = λ1β∞ and σλ(γ∞) =
λ2γ∞. Via the local description in § 5.1.1, we can calculate the Gauss–Manin connection using the
basis {λ−1

1 e∞, λ
−1
2 f∞} of HE over Aord,∞. Let κ∈Ω1

Aord,∞/R(logD) denote the unique differential
satisfying

∇(λ−1
1 e∞) = λ−1

2 f̄∞ ⊗ κ,

and let D : Aord,∞→Aord,∞ denote the derivation dual to κ. It is well known (see, for exam-
ple, [How20]) that D= sλθ for some sλ ∈Z×

p (this factor arises from comparing the universal
trivialisations over IG∞ via the polarisation on E). Let δ ∈ gAord,∞ be the element such that

∇D(λ
−1
2 f∞ λ−1

1 e∞) = (λ−1
2 f∞ λ−1

1 e∞) · δ.
We have that δ=

(
0 1
0 0

)
. The coordinates corresponding to this basis are given by X, Y, Z ′

satisfying the identity(
T2
U T1

)
=

(
Z ′

Y X

)
σλ(g∞), g∞ =

(
γ∞
β∞ α∞

)
,

and we find that the action of δ �l − on OP ⊗Qp
Aord,∞ is given by Y X(Z ′)−1∂X − Y ∂Z′ (see

Example 5.1). Set Z =Z ′X. Then we calculate that:

– ∇λ(g) = (Dg) ·X(Z ′)−1 = sλ · θ(g)X2Z−1 for any g ∈Aord,∞;
– ∇λ(X) = Y X(Z ′)−1 ·X(Z ′)−1 = Y X4Z−2;
– ∇λ(Y ) = 0;
– ∇λ(Z) =∇λ(Z ′X) = (−Y X(Z ′)−1)X +Z ′Y X4Z−2 =−Y X3Z−1 + Y X3Z−1 = 0.

This completes the proof of part (i) of the proposition since X ≡Z ≡ 1 (mod pn). Part (ii) follows
from the fact that IG∞→Xord is a proétale T (Zp)-torsor, so it is enough to check integrality of
∇ after base-change along this torsor.

We are now in a position to apply the general results in § 4 as we have an inte-
gral derivation ∇ which is congruent mod pn to a nilpotent derivation that extends
the Atkin–Serre operator. Recall that the Atkin–Serre operator θ : A+

∞→A+
∞ extends to

a R+-algebra action of Ccont(Zp, R
+). Set NUHT,n

=OUHT,n
(UHT,n). We have the following

proposition.

Proposition 5.3. Let ε > 0. Then there exists n(ε)> 0 such that for any n≥ n(ε) there exists
a unique continuous R-algebra action

Cε(Zp, R)×NUHT,n
→NUHT,n

,

extending ∇ : NUHT,n
→NUHT,n

.
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Proof. It is enough to check this for the operators ∇λ introduced at the start of this section.
Indeed, the operator ∇=⊕λ∇λ is Galois invariant and the map NUHT,n

↪→NUHT,n
⊗̂Aord

Aord,∞
is an isometry (as IG∞→Xord is a proétale T (Zp)-torsor). In this case, we have that:

– by Proposition 5.2, the derivation∇λ is congruent modulo pn to the operator ‘∇sλθ’ defined
in § 4.3, extending the derivation sλθ;

– the derivation sλθ extends to an action of Ccont(Zp, R
+).

Therefore, the result follows from Propositions 4.6 and 4.10. The action is unique because NUHT,n

is a Qp-Banach space and we can compute the action using Mahler expansions.

We now overconverge the above proposition. For any n≥ 1, let Un denote an overconvergent
extension of UHT,n as in Definition 3.12, and set Un,r = Un ∩ P an

dR,Ar
. Without loss of generality,

we may assume that Un = Un,1. Set N †
Un,r

=OUn,r
(Un,r), and recall from § 3.4 that we have a

chain of restriction maps

N †
Un

=N †
Un,1
→N †

Un,2
→ · · ·→NUHT,n

(5.3)

induced from the inclusions UHT,n ⊂ · · · ⊂ Un,2 ⊂Un,1 = Un. Recall that Corollary 3.15 holds for
this chain of maps.

Proposition 5.4. Let ε > 0. Then for any quasi-compact strict open neighbourhood U of IG∞,A

in P an
dR,A, there exists a quasi-compact strict open neighbourhood V ⊆U of IG∞,A in P an

dR,A and
a unique continuous R-linear action

Cε(Zp, R)×N †
U →N †

V

extending the action of polynomial functions in Cε(Zp, R) induced from the operator ∇ : N †
U →

N †
U →N †

V . Moreover, these actions are all compatible if one changes ε, U or V .

Proof. Let n≥ 1 be such that n≥ n(ε/2) as in Proposition 5.3 and such that U ⊂U for some
overconvergent extension U of UHT,n (i.e., we can find a sufficiently large integer n such that
U contains an overconvergent extension of UHT,n; this is always possible since overconvergent
extensions are cofinal by Corollary 3.11). Then, by Proposition 4.11, there exists some r > 0 such

that ∇ extends to an ε-analytic function on N †
Un,r

. This implies the result with V = Un,r. The
last part follows from the unicity of the action.

5.3 The global construction

We now explain how the construction in the previous subsection globalises. Let U be any
quasi-compact open strict neighbourhood of IG∞ in P an

dR with structural map π : U →X . Set
N †

U = π∗OU . Let Spa(A, A
+)⊂X be a quasi-compact open affinoid as in the previous section. Let

UA =U ×X Spa(A, A+)⊂ P an
dR,A and note that UA is a quasi-compact strict open neighbourhood

of IG∞,A in P an
dR,A. We have N †

U (Spa(A, A
+)) =OUA

(UA).
By Proposition 5.4 (and passing to the limit as ε→ 0), there exists a continuous R-linear

action

C la(Zp, R)×N †
U (Spa(A, A

+))→N †(Spa(A, A+)),

which is compatible with changing U . Furthermore, by the unicity property in Proposition 5.4,
this action is functorial in Spa(A, A+). Since the opens Spa(A, A+)⊂X satisfying the conditions
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in the previous subsection are stable under finite intersections and cover X , we obtain an induced
action

C la(Zp, R)×H0(X ,N †)→H0(X ,N †),

extending the action of ∇. This action is unique on global sections because N † =H0(X ,N †) =
colimU H0(U,OP an

dR
) as U runs over all quasi-compact open strict neighbourhoods of IG∞ (the

topological space X is quasi-compact and satisfies condition (4) in [Sta22, Tag 009F]), and one
can choose a cofinal system of quasi-compact open neighbourhoods such that the transition maps
in this colimit are injective (see Proposition 6.5). One then applies Lemma 4.5. This completes
the proof of the locally analytic action in Theorem 2.11.

6. Additional structures on nearly overconvergent modular forms

In this section we study various natural structures on the space of nearly overconvergent modular
forms. We start by showing that N † is equipped with a natural action of T (Zp) and define
(nearly) overconvergent modular forms of weight κ as the (−w0κ)-isotypic component for this
action, where w0 denotes the longest Weyl element of GL2. We then define a filtration on N † and
the Up-operator, and study how all of these operators interact with each other. We conclude with
the construction of the overconvergent projector, the relation with p-depletion, and a comparison
with the spaces of nearly overconvergent modular forms introduced in [AI21].

6.1 The group action

The definition of the T (Zp)-action on (nearly) overconvergent modular forms is almost immediate
from the construction. Indeed, by viewing T (Zp) as a subgroup of T an ⊂ P an, we obtain an action
of T (Zp) on P an

dR. Since IG∞ is stable under this action, we see that the T (Zp)-action on P an
dR

maps any (quasi-compact) strict open neighbourhood of IG∞ into another (quasi-compact) strict
open neighbourhood; hence we obtain an action of T (Zp) on N †. By exactly the same argument
for Man

dR, we also obtain a T (Zp)-action onM†, and these actions are compatible via the natural
maps M†→N †→M. Here M† := colimU π∗OU , where the colimit runs over all strict open
neighbourhoods of IG∞ in Man

dR (with structural map π : U →X ).

Definition 6.1. Let κ : T (Zp)→R× be a locally analytic character. We define the sheaf of
nearly overconvergent modular forms of weight κ as

N †
κ :=N †[−w0κ] = HomT (Zp)(−w0κ,N †),

that is, the (−w0κ)-isotypic part for the action of T (Zp) on N †. We defineM†
κ analogously and

we set N †
κ (respectively, M †

κ) to be the global sections of N †
κ (respectively,M†

κ).

We note that our space of overconvergent modular forms of a specified weight agrees with
the construction in [AIP18]. We begin with the following lemma.

Lemma 6.2. For every integer r≥ 1, Man
dR ×X Xr has a reduction of structure to an étale torsor

Fr→Xr for the group

Tr :=Z×
p (1 + pr+1−1/(p−1)G+

a )×Z×
p (1 + pr+1−1/(p−1)G+

a )⊂Gan
m ×Gan

m = T,

where G+
a =Spa(Qp〈t〉,Zp〈t〉) denotes the unit ball. Furthermore, the torsors {Fr}r≥1 form a

cofinal system of strict quasi-compact open neighbourhoods of IG∞ in Man
dR.

Proof. This follows directly from the results in [Pil13] and [AIS14] (see also [BP22, Proposition
5.15]).
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This leads to the following proposition.

Proposition 6.3. Let κ : T (Zp)→R× be a locally analytic character. ThenM†
κ is a locally free

O†
X -module of rank one, where O†

X := colimr OXr
. Moreover, it is equal to the sheaf of weight κ

overconvergent modular forms as in [AIP18].4

Proof. As above, Fr→Xr denotes the étale Tr-torsor providing a reduction of structure of
Man

dR ×X Xr. The proposition follows immediately from the fact that the torsors {Fr}r≥1 form a
cofinal system of quasi-compact strict open neighbourhoods of IG∞ in Man

dR.

We finish this subsection by describing how the locally analytic action in § 5 interacts with
the group action.

Lemma 6.4. Let φ∈C la(Zp, R). Then for any t=diag(t1, t2)∈ T (Zp), we have

t ◦ φ= φ(t−1
2 · − · t1) ◦ t

as endomorphisms of N †.

Proof. Since N † is a (topological) C la(Zp, R)-module and polynomial functions are dense in
C la(Zp, R), it suffices to check this with φ equal to the structural map Zp ↪→R, that is, one has
t ◦∇= t−1

2 t1∇◦ t as endomorphisms of N †. This amounts to checking the relation on π∗OP an
dR

=
VBcan

K (OP ). But this just follows from the description of the DFL-module structure in Lemma
A.3. Indeed, if we identify the DFL-module associated with OP with π∗OG (where π : G→FL=
G/P is the structural map), then the action of ∇ corresponds to

f �→ (g �→ (Ad(g)X �l f)(g) + (X �r f)(g)), f ∈ π∗OG,

where �l (respectively, �r) denotes the g-action obtained from left translation (respectively, right
translation) of the argument and X =

(
0 1
0 0

)
. The action of t is given by right translation of the

argument (i.e., the torsor structure), so the relation follows from Ad(t)X = t−1
2 t1X.

6.2 Reductions of structure of PdR

It turns out that we can extend the torsors in Lemma 6.2 to reductions of structure of P an
dR.

More precisely, for any integer r≥ 1, let

Pr := T (Zp) · {x∈P : x≡ 1 modulo pr+1−1/(p−1)},
where P denotes the adic generic fibre of the formal p-adic completion of PZp

.

Proposition 6.5. For any integer r≥ 1, there exist an integer s≥ r and an étale Pr-torsor
F̃r,s→Xs such that the following assertions hold.

(i) Here, F̃r,s provides a reduction of structure of P an
dR ×X Xs (to an étale Pr-torsor) and IG∞

provides a reduction of structure (to a proétale T (Zp)-torsor) of F̃r,s ×Xs
X∞. In particular,

F̃r,s is a quasi-compact open subset of P an
dR containing the closure of IG∞.

(ii) The pushout F̃r,s ×Pr Tr along the natural projection Pr � Tr coincides with Fr ×Xr
Xs.

Moreover, for any two étale Pr-torsors F and G over Xs satisfying (i), there exists an integer
s′ ≥ s such that we have an identification of torsors

F ×Xs
Xs′ = G ×Xs

Xs′ , (6.1)

4Note that, in [AIP18], the authors define overconvergent modular forms with weight given by a locally analytic
character on Z×

p , which implicitly uses the polarisation on E . However, the extension to characters of T (Zp) easily
follows from their methods.
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(viewed as open subspaces of P an
dR). The collection of torsors {F̃r,s}r,s as r, s vary form a cofinal

system of quasi-compact open subsets of P an
dR containing the closure of IG∞.

Proof. Let IGr,s denote the pushout of Fr ×Xr
Xs along the natural map Tr � T (Z/pr+δZ),

where δ= 0 (respectively, δ= 1) if p= 2 (respectively, p is odd). We first establish existence of
the torsors F̃r,s. Note that we have a Cartesian diagram

IGr,∞ IGr,s

X∞ Xs

where IGr,∞→X∞ denotes the Igusa cover with Galois group T (Z/pr+δZ). Let {Spf A+,(i)}i∈I
be a finite open cover of X over which HE and ωE trivialise, and let U (i) =Spa(A(i), A+,(i)) denote

the adic generic fibre of Spf A+,(i). Let U
(i)
s =Spa(A

(i)
s , A

+,(i)
s ) and U

(i)
r,s =Spa(A

(i)
r,s, A

+,(i)
r,s ) denote

the pullbacks of U (i) to Xs and IGr,s, respectively. For (i, j)∈ I × I, set
U (i,j)
r,s =U (i)

r,s ×Xs
U (j)
r,s =Spa(B(i,j)

r,s , B+,(i,j)
r,s ).

Note that A
+,(i)
r,∞ =A

+,(i)
r,s 〈1/h〉 and B

+,(i,j)
r,∞ =B

+,(i,j)
r,s 〈1/h〉, where h is a local lift of the Hasse

invariant, and the natural restriction maps A
+,(i)
r,s →A

+,(i)
r,∞ and B

+,(i,j)
r,s →B

+,(i,j)
r,∞ are injec-

tive (since all of these open subspaces arise from a cover of the formal scheme X). From the

construction of Fr (see [AIP18]), we observe that Fr has sections over U
(i)
r,s (for any s≥ r).

Let ti : U
(i)→ P an

dR,A(i) be a section of the torsor P an
dR→X . Then a section of Fr+1 over

U
(i)
r+1,r+1 can be described as

ui := ti · gi : U (i)
r+1,r+1→Fr+1 ×Xr+1

U
(i)
r+1,r+1,

for some gi ∈ T an(A
(i)
r+1,r+1). We can choose the sections ti such that we have

ti|U (i)∩U (j) = tj |U (i)∩U (j) · xi,j ,
with xi,j ∈P(A(i,j)). Then the image of g−1

j xi,jgi under the projection P
an→ T an is contained

in Tr+1(B
(i,j)
r+1,r+1). Let

ũi : U
(i)
r+1,∞

ui−→Fr+1 ×Xr+1
U

(i)
r+1,∞→ P an

dR ×X U
(i)
r+1,∞,

where the second map is given by the unit root splitting. Then we can write ũi = ti · g̃i for

some g̃i ∈ P
an
(A

(i)
r+1,∞) whose image under the projection P

an
(A

(i)
r+1,∞)→ T an(A

(i)
r+1,∞) coincides

with gi. Furthermore, we have g̃−1
j xi,j g̃i ∈Pr+1(B

(i,j)
r+1,∞).

By using the fact that A
+,(i)
r+1,∞ =A

+,(i)
r+1,r+1〈1/h〉, we can find elements hi ∈ P

an
(A

(i)
r+1,r+1) such

that g̃−1
i hi ∈Pr+1(A

(i)
r+1,∞). Set vi,j = h−1

j xi,jhi ∈ P
an
(B

(i,j)
r+1,r+1). Then we see that (because I is

finite) we can find a sufficiently large integer s� r+ 1 such that vi,j ∈Pr(B
(i,j)
r+1,s). We may also

choose s such that the image of hi under the projection map P
an→ T an (denoted h′i) satisfies

g−1
i h′i ∈ Tr(A

(i)
r+1,s). The étale Pr-torsor F̃r,s is then defined by the collection of sections

{ti · hi : U (i)
r+1,s→ P an

dR : i∈ I}
or alternatively by the transition matrices {vi,j : (i, j)∈ I × I}. The cocycle condition is auto-

matic, and F̃r,s provides a reduction of structure of P an
dR by construction. Clearly the pushout

of F̃r,s along the map Pr→Tr is given by the sections {ti · h′i}i∈I , which describe the torsor
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p-adic interpolation of Gauss–Manin connections

Fr ×Xr
Xs (by the condition g−1

i h′i ∈ Tr(A
(i)
r+1,s) and the fact that Fr ×Xr

Xs is the pushout of

Fr+1 ×Xr+1
Xs along the map Tr+1→Tr). Finally, the pullback F̃r,s ×Xs

X∞ is described by the
orbit

(Fr+1 ×Xr+1
X∞) · Pr ⊂ P an

dR ×X X∞,

where we view (Fr+1 ×Xr+1
X∞)⊂ P an

dR ×X X∞ via the unit root splitting. Therefore, we imme-

diately see that IG∞ defines a reduction of structure of F̃r,s ×Xs
X∞. This completes the proof

of existence.
Suppose that G is an étale Pr-torsor over Xs satisfying (i). Then it suffices to establish an

identification of the form (6.1) for F = F̃r,s′ (with s′ ≥ s). We will continue to use the same

notation as above for the construction of F̃r,s′ . We have sections

{ti · hi : U (i)
r+1,s′→ P an

dR,A
(i)

r+1,s′
: i∈ I},

whose pullback to U
(i)
r+1,∞ gives sections of IG∞ ×T (Zp) Pr+1. Since G satisfies (i), we see that

G is a strict neighbourhood of IG∞ ×T (Zp) Pr+1 inside P an
dR. This implies that there exists a

sufficiently large integer s′′� s′ such that ti · hi factors as

U
(i)
r+1,s′′→ G ×Xs

U
(i)
r+1,s′′→ P an

dR ×X U
(i)
r+1,s′′ ,

that is, we obtain a section of G . This implies that G ×Xs
Xs′′ = F̃r,s′ ×Xs′ Xs′′ as required.

Furthermore, one easily verifies that the system {F̃r,s}r,s is a cofinal collection of strict
neighbourhoods of IG∞.

We consider the following representations and sheaves. Let T+ ⊂ T (Qp) denote the submonoid
of diagonal matrices diag(t1, t2) satisfying vp(t1)≥ vp(t2). One has an isomorphism Z2 × T (Zp)∼=
T (Qp) given by sending (n1, n2)× t to the matrix

( pn1

pn2

)
t. We let 〈·〉 : T (Qp)→ T (Zp) denote

the projection to the second component.

Definition 6.6. Let r≥ 1 and let Σr =Pr · T+ · Pr.

(i) Let Vr =O(Pr) denote the Qp-Banach algebra of global sections Pr→A1,an. We view this
as a representation of Σr via the following action:

(p �l f)(−) = f(p−1 · −), (t �l f)(−) = f(t−1 · − · t〈t〉−1), p∈Pr, t∈ T+, f ∈ Vr.

(ii) If κ : T (Zp)→R× is an r-analytic character, then we set

Vr,κ := {f ∈ Vr⊗̂R : f(xt) = (w0κ)(t
−1)f(x) for all t∈ Tr}.

This sub-Banach space is stable under the action of Σr.
(iii) For any torsor π : F̃r,s→Xs as in Proposition 6.5, we let

Vr,s = (π∗O ˜Fr,s
⊗̂Vr)Pr,�l ∼= π∗O ˜Fr,s

,

where the invariants are with respect to the �l-action above. This is a locally projective
Banach sheaf of OXs

-modules in the sense of [BP21, Definition 2.5.2], and comes equipped
with an action �r of Pr via the torsor structure (or equivalently via the action (p �r f)(−) =
f(− · p) on Vr). Similarly, we set

Vr,s,κ = (π∗O ˜Fr,s
⊗̂Vr,κ)Pr,�l ,
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which is also a locally projective Banach sheaf of OXs
-modules. We can view Vr,s,κ ⊂Vr,s

as the subsheaf of sections f ∈ Vr,s satisfying t �r f = (w0κ)(t
−1)f for all t∈ Tr (recall that

we are viewing X as an adic space over Spa(R, R+)).

Remark 6.7. Note that Vr,s and Vr,s,κ depend on the choice of the torsor F̃r,s, but for any
two choices, one can always find an integer s′ ≥ s such that the pullback of the sheaves to Xs′

coincides (see Proposition 6.5). We will therefore omit the choice of torsor from the notation.

Remark 6.8. Let T++ ⊂ T+ be the semi-group of diagonal matrices diag(t1, t2) which satisfy
vp(t1)> vp(t2). Then, for any t∈ T++, we have t �l Vr+1,κ ⊂ Vr,κ. Since the inclusion Vr,κ→ Vr+1,κ

is compact, we see that the operator t �l − : Vr+1,κ→ Vr+1,κ is also compact.

Since the system of torsors {F̃r,s}r,s is cofinal, we see that

N † = lim−→
r,s

H0(Xs, Vr,s) and N †
κ = lim−→

r,s

H0(Xs, Vr,s,κ),

where the transition maps are with respect to restriction and the natural inclusions Vr ⊂ Vr+1

and Vr,κ ⊂ Vr+1,κ. We also have versions of this on the level of sheaves, namely

N † = lim−→
r,s

Vr,s and N †
κ = lim−→

r,s

Vr,s,κ.

Here we are implicitly viewing Vr,s and Vr,s,κ as sheaves of OX -modules by pushing forward
along the inclusion Xs ⊂X . These descriptions are beneficial for the discussion of filtrations and
Hecke operators below.

6.3 Filtrations

We now define an ascending filtration on nearly overconvergent forms.

Definition 6.9. Let r≥ 1 and κ : T (Zp)→R× be an r-analytic character.

(i) For an integer h≥ 0, let Filh Vr ⊂ Vr denote the sub-Σr-representation consisting of global
sections f ∈ Vr, (

x
y z

)
�→ f(x, y, z),

(
x
y z

)
∈Pr,

which are polynomial in the variable y of degree less than or equal to h. This coincides
with the subspace of elements in Vr killed by the action of nh+1 under �r. Similarly, we
let Filh Vr,κ ⊂ Vr,κ denote the subrepresentation of elements which are polynomial in the
variable y of degree less than or equal to h (or equivalently the elements killed by nh+1).

(ii) For an integer h≥ 0, let Filh Vr,s ⊂Vr,s and Filh Vr,s,κ ⊂Vr,s,κ denote the subsheaves
given by

Filh Vr,s = (π∗O ˜Fr,s
⊗̂ Filh Vr)

Pr,�l , Filh Vr,s,κ = (π∗O ˜Fr,s
⊗̂Filh Vr,κ)

Pr,�l .

As in (i), these are the subsheaves killed by the action of nh+1. The sheaf Filh Vr,s,κ is a
locally free OXs

-module of finite rank which is independent of r. We set

FilhN † = lim−→
r,s

Filh Vr,s and FilhN †
κ = lim−→

r,s

Filh Vr,s,κ,

where, as above, we are implicitly considering Filh Vr,s and Filh Vr,s,κ as sheaves on X by
pushing forward along the inclusion Xs ⊂X .

2414

https://doi.org/10.1112/S0010437X25102479
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 02:24:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X25102479
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


p-adic interpolation of Gauss–Manin connections

(iii) We let Filh N † =H0(X ,FilhN †) and Filh N †
κ =H0(X , FilhN †

κ). Equivalently, we have

Filh N † = lim−→
r,s

H0 (Xs, Filh Vr,s) and Filh N †
κ = lim−→

r,s

H0 (Xs,Filh Vr,s,κ).

Remark 6.10. One can easily verify that Filh Vr,κ =Symh St⊗R(w0κ+ h(1;−1)), where St is
the standard representation of GL2 and R(w0κ+ h(1;−1)) denotes the one-dimensional line
given by the character w0κ+ h(1;−1) (inflated to Pr). If we view κ as a pair (κ′;w) satisfying
κ(t, st−1) = κ′(t)w(s), then we have

Filh Vr,s,κ =SymhHE ⊗ (ωκ′−h+w
ED ⊗ ω−w

E ),

which agrees with the definition given in [Urb14] (after identifying ωE and ωED via the
polarisation).

Similarly, we have

Filh Vr,s =SymhHE ⊗̂ ω−h
ED ⊗̂ π′∗OFr×XrXs

,

where π′ : Fr ×Xr
Xs→Xs denotes the structural map. One easily sees that Fil0N † =M† and

Fil0N †
κ =M†

κ.

6.3.1 Compatibility with the Gauss–Manin connection. Let U =Spa(B, B+)→Xs be an
étale morphism over which the torsor π : F̃r,s→Xs trivialises. Then any section f ∈ Vr,s(U) is
described as a morphism f : π−1(U)→ Vr⊗̂B such that f(xp) = p−1 �l f(x) for all x∈ π−1(U)
and p∈Pr. If we identify π

−1(U) =U ×Pr then the connection ∇ on Vr,s(U) has the description

∇(f)(p) = (D · f(p) + δ �l f(p)) · y,
for p∈U ×Pr and f ∈ Vr,s(U), where D : B→B is some derivation and δ ∈ gB. Here y ∈
Fil0 Vr,s,2ρ(U) is the element arising from the Kodaira–Spencer isomorphism. If f ∈Filh Vr,s(U)
then the action δ �l − can increase the degree of f(p) in the unipotent variable by at most 1, so
we immediately obtain the following lemma.

Lemma 6.11. For all h≥ 0, one has ∇ (Filh Vr,s)⊂Filh+1 Vr,s.

Let Grh Vr,s,κ =Filh Vr,s,κ/Filh−1 Vr,s,κ (with the convention Fil−1 Vr,s,κ = 0). We have the
following lemma describing the connection on graded pieces.

Lemma 6.12. Let κ : T (Zp)→R× be an r-analytic character which we view as a pair (κ′;w) of
r-analytic characters Z×

p →R× such that κ(t, st−1) = κ′(t)w(s). Let uκ ∈R be the element such
that κ′(t) = exp(uκ log(t)) for t∈ 1 + prZp. Then

∇ : Grh Vr,s,κ→Grh+1 Vr,s,κ+2ρ

is an isomorphism multiplied by uκ − h.

Proof. By using the polarisation E ∼−→ED, we can identify this map with that in [AI21, Theorem
3.18], from which the result follows.

6.4 The Up-operator

Let r≥ 1. We have a correspondence

Xr
p1←−Cr

p2−→Xr+1,

where Cr denotes the moduli of order p subgroups C ⊂ E [p] which are disjoint from the canonical
subgroup Hcan

1 . The map p1 is the natural one, and p2(E) =E/C is the quotient by the order
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p subgroup. Note that p1 is finite flat of degree p and p2 is an isomorphism. Let (E , C) denote
the universal generalised elliptic curve and order p subgroup over Cr, and set E ′ = E/C. Let
λ : E → E ′ denote the corresponding isogeny, and λD : (E ′)D→ED its dual. We have a natural
isomorphism λ∗ : HE

∼−→HE ′ .

Definition 6.13. Let P an
dR,r = P an

dR ×X Xr. Let φ : p
−1
1 P an

dR,r→ p−1
2 P an

dR,r+1 denote the isomorph-

ism given by sending a trivialisation ψ : O⊕2 ∼−→HE to the trivialisation

λ∗ ◦ψ ◦
(

1
p−1

)
: O⊕2 ∼−→HE/C ,

where C ⊂E[p] denotes the choice of order p subgroup which is disjoint from the canonical
subgroup.

We consider the commutative diagram

P an
dR,r p−1

1 P an
dR,r p−1

2 P an
dR,r+1 P an

dR,r+1

Xr Cr Xr+1

p1 φ p2

p1 p2

and we set q2 = p2 ◦ φ.
We have an analogue of this for Igusa towers over the ordinary locus, namely

IG∞
p1←− p−1

1 IG∞
φ−→ p−1

2 IG∞
p2−→IG∞,

where the map φ sends a pair of trivialisations (ψ1, ψ2) of E[p∞]◦ and E[p∞]et respectively to
(λ ◦ψ1, p

−1λ ◦ψ2). This is well defined because the canonical subgroup of E is E[p]◦, and C is
étale. As above, we set q2 = p2 ◦ φ. Then we have a commutative diagram

IG∞ p−1
1 IG∞ IG∞

P an
dR,r p−1

1 P an
dR,r P an

dR,r+1

p1 q2

p1 q2

with the left-hand square Cartesian.
If we let Z (respectively, Z ′) denote the closure of IG∞ (respectively, p−1

1 IG∞) inside P an
dR,r

(respectively, p−1
1 P an

dR,r) then we have the following commutative diagram.

Z Z ′ Z

P an
dR,r p−1

1 P an
dR,r P an

dR,r+1

p1 q2

p1 q2

Lemma 6.14. The left-hand side square above is Cartesian (i.e., p−1
1 (Z) =Z ′).

Proof. Clearly Z ′ ⊂ p−1
1 (Z). Now p1 is finite flat, hence it is an open morphism. Suppose

that x∈ p−1
1 (Z)−Z ′. Set U = p−1

1 P an
dR,r −Z ′ which is open. Then p1(U) is open and p1(x)∈

p1(U)∩Z. Since p1(U) is open, this means we must have p1(U)∩ IG∞ �=∅. But this implies
that

U ∩ p−1
1 (IG∞) =U ∩ p−1

1 IG∞ �=∅,

which is a contradiction.
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We now have the following construction of the Up-operator. Thanks to the above lemma,
for any quasi-compact open Z ⊂U ⊂ P an

dR,r+1, there exists a quasi-compact open Z ⊂U ′ ⊂ P an
dR,r

such that q−1
2 (U)⊃ p−1

1 (U ′). Therefore, we get maps

OP an
dR,r+1

(U)
q∗2−→Op−1

1 P an
dR,r

(q−1
2 (U))

res−−→Op−1
1 P an

dR,r
(p−1

1 (U ′))
Trp1−−−→OP an

dR,r
(U ′),

where Trp1
denotes the trace map associated with p1. All of these maps are compatible, so we

obtain an induced map on the limit, namely the Up-operator Up : N †→N †.

Remark 6.15. Exactly the same construction works for M † and the Up-operators are compatible
under the natural map M †→N †.

Remark 6.16. One also has similar constructions for the Frobenius operator ϕ and diamond
operator Sp, which are defined with respect to the action of

(
p−1

1

)
and

(
p−1

p−1

)
, respectively.

One can easily show that Up ◦ϕ= pSp and Sp commutes with Up and ϕ. We leave the details to
the reader.

6.4.1 Compatibility with the group action. Recall that we have a cofinal system {Ui} of
neighbourhoods of the closure of IG∞→ P an

dR,r satisfying T (Zp) ·Ui ⊂Ui. Here we are considering

the action T an × P an
dR,r→ P an

dR,r through the inclusion T an ⊂ P an
.

Lemma 6.17. The T (Zp)-action commutes with Up, ϕ and Sp on M † and N †.

Proof. For Up, we just need to show that the group action commutes with p1 and q2. But this
is clear (since T (Zp) commutes with diag(1, p−1)). The proofs of the claims for ϕ and Sp are
identical.

6.4.2 Compatibility with the connection. Let r≥ 1 be an integer. By the construction above,
one has a map R-modules

Up : H0(P an
dR,r,OP an

dR,r
)

res−−→H0(P an
dR,r+1,OP an

dR,r+1
)→H0(P an

dR,r,OP an
dR,r

).

We have the following lemma.

Lemma 6.18. For any φ∈C la(Zp, R), one has:

– φ(p · −) ◦Up =Up ◦ φ;
– φ ◦ϕ=ϕ ◦ φ(p · −);
– φ ◦ Sp = Sp ◦ φ

as endomorphisms of N †.

Proof. By the density of polynomial functions in C la(Zp, R), it suffices to check this for φ equal
to the structural map Zp ↪→R (i.e., for the operator ∇). The functoriality results in [AI21, § 6.2]
imply that p∇◦Up =Up ◦∇ on H0(P an

dR,r,OP an
dR,r

). Furthermore, Up ◦∇ and p∇◦Up are two

continuous R-linear morphisms N †→N † extending Up ◦∇= p∇◦Up on H0(P an
dR,r,OP an

dR,r
) for

any r≥ 1. But any such extension must be unique because H0(P an
dR,r,OP an

dR,r
) is dense in N †

U for
any quasi-compact strict open neighbourhood U of the Igusa tower. This proves the first bullet
point. The second and third bullet points are similar (again following from the functoriality
results in [AI21, § 6.2] and a density argument).
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6.4.3 A reinterpretation. We can also reinterpret the construction of Up using the torsors
constructed in Proposition 6.5. We begin with the following lemma.

Lemma 6.19. Let r≥ 1 be an integer. Then there exists an integer s≥ r such that

p−1
2 F̃r+1,s+1 ⊂ φ(p−1

1 F̃r,s)⊂ p−1
2 F̃r,s+1,

where φ : p−1
1 P an

dR,s
∼−→ p−1

2 P an
dR,s+1 is the morphism in Definition 6.13.

Proof. Let s≥ r be an integer such that F̃r,s and F̃r+1,s+1 exist, and recall that the map p2 is

an isomorphism. Let G = φ(p−1
1 F̃r,s), which is an étale torsor under the group

t−1Prt⊂Pr, t=

(
1

p−1

)
.

Then we see that the pushout G ×t−1Prt Pr is an étale Pr-torsor which is a reduction of structure
of p−1

2 P an
dR,s+1. Furthermore, p−1

2 IG∞ defines a reduction of structure of G . Since p2 is an iso-

morphism, we see from Proposition 6.5 that we can increase s (if necessary) so that G ×t−1Prt Pr

coincides with p−1
2 F̃r,s+1, and p−1

2 F̃r+1,s+1 is a reduction of structure of G via the embedding
Pr+1 ⊂ t−1Prt.

Let κ : T (Zp)→ (R+)× be an r-analytic character, and let s≥ r be a sufficiently large integer
such that the conclusion of Lemma 6.19 holds. Let

π1 : p
−1
1 F̃r,s→Cs, π2 : p

−1
2 F̃r+1,s+1→Cs, σ : G →Cs,

denote the structural maps of the torsors, where G is as in Lemma 6.19. Let t=
(
1
p−1

)
∈ T++.

Then the morphism φ∗ ⊗ (t �l −) induces a cohomological correspondence

φκ : p
∗
2Vr,s+1,κ = ((σ)∗OG ⊗̂Vr,κ)t

−1Prt,�l→ ((π1)∗Op−1
1

˜Fr,s
⊗̂Vr,κ)Pr,�l = p∗1Vr,s,κ,

where the first equality holds because Vr,κ is a representation of Pr and G ×t−1Prt Pr = p−1
2 F̃r,s+1.

The Up-operator can then be seen as the following composition:

H0 (Xs, Vr,s,κ) res−−→H0 (Xs+1, Vr,s+1,κ)

p∗
2−→H0 (Cs, p∗2Vr,s+1,κ)

φκ−→H0 (Cs, p∗1Vr,s,κ)
Trp1−−−→H0 (Xs, Vr,s,κ),

where the first map is induced from restriction. These operators are compatible as one varies r, s,
and the resulting operator on the limit N †

κ = lim−→r,s
H0 (Xs, Vr,s,κ) is precisely the Up-operator

constructed in the previous sections. For s≥ r+ 1 sufficiently large, we have a factorisation

H0 (Xs+1, Vr+1,s+1,κ) H0 (Xs+1, Vr+1,s+1,κ)

H0 (Xs, Vr,s,κ) H0 (Xs, Vr,s,κ)

Up

Up

(6.2)

because the cohomological correspondence p∗2Vr+1,s+1,κ
φκ−→ p∗1Vr+1,s,κ factors through p∗1Vr,s,κ ⊂

p∗1Vr+1,s,κ (see Remark 6.8).
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p-adic interpolation of Gauss–Manin connections

Remark 6.20. Using this reinterpretation, one can easily see that Up preserves the filtration

Fil• N †
κ .

6.4.4 Slope decompositions. We now discuss the spectral theory of the Up-operator on N †
κ .

Let r≥ 1 be an integer. Let R+
0 be an admissible Zp-algebra, R0 =R+

0 [1/p], and consider the
affinoid adic spaceW := Spa(R0, R

+
0 ). Suppose that we have an r-analytic character κ : T (Zp)→

R×
0 . We have the following theorem.

Theorem 6.21. Let x∈W(Qp) and h∈Q. Then there exists an open affinoid neighbourhood

Spa(R, R+)⊂W of x such that N †
κ and Fil• N †

κ have slope ≤ h decompositions with respect to
Up. Furthermore, there exists an integer k such that

(N †
κ )≤h = (Filk N †

κ )≤h.

Proof. Since the inclusion Vr,κ→ Vr+1,κ is compact and Xs+1 �Xs is a strict inclusion, the
factorisation in (6.2) (and the standard theory of slope decompositions) implies that Lκ :=
lim−→s

H0 (Xs, Vr,s,κ) admits a slope ≤ h decomposition over a neighbourhood Spa(R, R+) of x in
W. Furthermore, one can check that as k→+∞, the norm of the operator

(t �l −) : Grk Vr,κ→Grk Vr,κ

tends to zero. Hence, there exists an integer k≥ 0 such that L ≤h
κ = (Filk N †

κ )≤h. To conclude

the proof, we note that the factorisation (6.2) implies that Up is pointwise nilpotent on N †
κ /Lκ,

so N †
κ admits a slope ≤ h decomposition and (N †

κ )≤h =L ≤h
κ .

6.5 Overconvergent projectors

We now have all the ingredients to define an overconvergent projector on N †
κ . As in the pre-

vious subsection, let R+
0 be an admissible Zp-algebra, R0 =R+

0 [1/p], and set W =Spa(R0, R
+
0 ).

Suppose that we have a locally analytic character κ : T (Zp)→R×
0 .

Theorem 6.22. Let x∈W(Qp) and h∈Q. Then there exists an open affinoid neighbourhood
Spa(R, R+)⊂W containing x and an overconvergent projector

≤h,oc∏
: N †

κ → (M †
κ)

≤h ⊗R Frac(R),

with finitely many poles, interpolating the overconvergent projectors in [Urb14, § 3.3.4] for
classical specialisations.

Proof. By Theorem 6.21, it is enough to construct an overconvergent projector for
(Filk N †

κ )≤h, and this follows from exactly the same arguments as in [AI21, § 3.9] (using
Lemma 6.12).

6.6 The p-depletion

In this section we discuss the relation between the action of C la(Zp, R) and p-depletion. We
begin with the following lemma.

Lemma 6.23. The action of 1Z×
p
∈Ccont(Zp, R) coincides with the operator 1− p−1S−1

p ϕUp on
p-adic modular forms M .
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Proof. Without loss of generality, we may assume that R=Qcycl
p . The space M can be described

as sections of IGKp invariant under right translation by U int
P ′ . Then, by p-adic Fourier theory

(see [How20, § 7.1]), the action of 1pZp
is given by

f �→ 1

p

∑
ζ∈μp

(
1 ζ̃

1

)
· f,

for f ∈M , where ζ̃ ∈ μ̃p∞ denotes any lift of ζ. Here
(
1 ˜ζ

1

)
is an element of Jord(Q

cycl
p ) acting

on a function by right translation of the argument. On the other hand, we have

(p−1S−1
p Up)(f) =

1

p

∑
ω∈Tp(μp∞ )/pTp(μp∞ )

(
p ω

1

)
· f,

ϕ(f) =

(
p−1

1

)
· f.

Hence, p−1S−1
p ϕUp coincides with the action of 1pZp

and the result follows.

We now prove an overconvergent version of this lemma.

Proposition 6.24. The action of 1Z×
p
∈C la(Zp, R) coincides with the operator 1− p−1S−1

p ϕUp

on nearly overconvergent modular forms N †.

Proof. We first claim that the action of 1Z×
p
preserves the filtration Fil• N †. This can be checked

locally on sections of overconvergent extensions of some UHT,n, for n sufficiently large (see
§§ 3.3–3.4). If U is such an overconvergent extension, then we have

H0(U ,OU ) ↪→H0(UHT,n,Aord,∞ ,OUHT,n,Aord,∞
) =

⊕
λ∈T (Z/pnZ)

H0(B∞(σλ(g∞), p−n),OB∞(σλ(g∞),p−n)),

respecting filtrations (it is equivariant for the action of n), so it suffices to check the claim for each
direct summand in the right-hand side. But the action of 1Z×

p
on such a direct summand is given

by limm→+∞(∇λ)p
m−1(p−1), and one can see from the explicit description of ∇λ in the proof of

Proposition 5.2 that this operator preserves the filtration (it acts as 1Z×
p
on the Aord,∞-coefficients

of the power series in the coordinates X, Y, Z).
Since

⋃
r≥0 Filr N † is dense in N † it therefore suffices to show that the operator T :=

1− p−1S−1
p ϕUp − 1Z×

p
= 1pZp

− p−1S−1
p ϕUp is zero on Filr N †, for any integer r≥ 0. But for any

integer r≥ 0, we have a morphism

Filr N † �Grr N † ↪→M ,

which is equivariant for the action of T . Hence, Lemma 6.23 implies that T is zero on the graded
pieces of Filr N † – in particular, we must have T r+1 = 0 on Filr N †. Finally, we note that T is
idempotent. Indeed,

T 2 = 1pZp
− p−1S−1

p ϕUp1pZp
− p−11pZp

S−1
p ϕUp + p−1S−1

p ϕUp = 1pZp
− p−1S−1

p ϕUp = T

where we have used the fact that p−1S−1
p ϕUp is idempotent (because Upϕ= pSp) and the relations

in Lemma 6.18. This proves that T = T r+1 is zero on Filr N † as required.

6.7 Comparison with the work of Andreatta and Iovita

We end this section by comparing the space of nearly overconvergent forms constructed in this
paper with the space constructed in [AI21]. For this, consider the group

PAI
r := T (Zp) · {x∈P :m(x)≡ 1 modulo pr+1−1/p−1},
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p-adic interpolation of Gauss–Manin connections

where m : P →T denotes the projection to the torus. With notation as in Proposition 6.5,

consider the pushout F̃AI
r,s := F̃r,s ×Pr PAI

r . Set V AI
r =O(PAI

r ), which carries an action of ΣAI
r =

PAI
r · T+ · PAI

r by the exact same formulae as in Definition 6.6. If κ : T (Zp)→R× is an r-analytic
character, then we set

V AI
r,κ := HomT (Zp)(−w0κ, V

AI
r ⊗̂R).

We let VAI
r,s,κ = (π∗O ˜FAI

r,s
⊗̂V AI

r,κ )
PAI

r denote the corresponding locally projective Banach sheaf on

Xs, where π : F̃AI
r,s→Xs denotes the structural map. Note that VAI

r,s,κ is independent of the choice
of r such that κ is r-analytic (whereas the sheaf Vr,s,κ from Definition 6.6 very much depends
on r).

Set N †,AI
κ := lim−→s

H0(Xs, VAI
r,s,κ), where the colimit is over the restriction maps. This space

carries actions of Up, Sp and ϕ by exactly the process as in § 6.4, and N †,AI
κ admits slope

decompositions with respect to Up (up to possibly shrinking Spa(R, R+)). We have the following
comparison result.

Proposition 6.25. Let I = [0, pb] with b �=∞, and suppose that k is the universal character
of the open WI of weight space introduced in [AI21, p.2004]. Let κ= (k;w) : T (Zp)→O(WI)

×

denote any locally analytic character extending k. Then the following assertions hold.

(i) For s sufficiently large, the sheaf VAI
r,s,κ is identified with the sheaf Wk,I [1/p] of nearly

overconvergent forms over Xs in [AI21, § 3.3].
(ii) The actions of p−1Up and S−1

p ϕ on

N †,AI
κ = lim−→

s

H0 (Xs,Wk,I [1/p]) (6.3)

coincide with the actions of U and V constructed in [AI21, § 3.6–§ 3.7].
(iii) The Gauss–Manin connection ∇ : N †,AI

κ →N †,AI
κ+2ρ intertwines with the connection con-

structed in [AI21, § 3.4] under the identifications in (6.3).

Proof. Let V0(H
1
dR(E)#, scan)→Xs denote the adic generic fibre of the formal vector bun-

dle with marked section as constructed in [AI21, § 3.3]. Here, we use the notation ΩE ⊂
H1

dR(E)# (respectively, scan ∈ΩE/p
r+1−1/(p−1)) in place of the notation ΩE ⊂H#

E (respectively,
s∈ΩE/p

r+1−1/(p−1)) used by Andreatta and Iovita in order to avoid clashes with notation
used previously in this paper. The space V0(H

1
dR(E)#, scan) carries a left action of the group

T ′
r :=Z×

p (1 + pr+1−1/(p−1)G+
a ); since this group is abelian, we can (and do) view this as a right

action.
Over V :=V0(H

1
dR(E)#, scan), one has a universal morphism ρ : H1

dR(E)#→O+
V which

restricts to an isomorphism ΩE
∼−→O+

V mapping the marked section scan to 1 modulo pr+1−1/(p−1).
In particular, the kernel U of the universal morphism ρ induces a decomposition H1

dR(E)# =
ΩE ⊕U (and U is a locally free O+

V -module of rank one). We let W → V denote the (right)
G+

m-torsor parameterising bases {e, f} of H1
dR(E)# with e∈ΩE , f ∈ U , and e mapping to 1

under the universal morphism ρ. Here G+
m(Spa(R, R+)) = (R+)× and it acts on the basis by

rescaling the vector f by the inverse of the element in G+
m. Furthermore, the map W → V is T ′

r -
equivariant, where the action on the source is given by rescaling e by the inverse of the element
in T ′

r . Finally, we equip W with an action of the group

P ′
r :=

(
T ′
r

G+
a G+

m

)
,

2421

https://doi.org/10.1112/S0010437X25102479
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 02:24:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X25102479
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A. Graham, V. Pilloni and J. Rodrigues Jacinto

by declaring g · {e, f}= {ae, be+ cf} for tg−1 =
(
a b

c

)
. Note that W →Xs is a P ′

r-torsor. By

using the fact that HE ∼=
(
H1

dR(E)#[1/p]
)∨

and the fact that H1
dR(E)# has a canonical decom-

position ΩE ⊕Ucan (where Ucan denotes the unit root subsheaf) over the ordinary locus, one has
morphisms

IG ↪→W ↪→ P an
dR,

with both maps defining reductions of structure. Therefore, by an argument similar to

Proposition 6.5, one can identify W with F̃AI
r,s ×PAI

r P ′
r after possibly increasing s. We conclude

that there are natural isomorphisms

VAI
r,s,(k;−k)

∼=HomTr
((k; 0), πW,∗OW )∼=HomT ′

r
(k, πV,∗OV )∼=Wk,I [1/p].

Here πW : W →Xs and πV : V →Xs denote the structural maps, and we have used the fact that
−w0(k;−k) = (k; 0).

The result for general κ= (k;w) follows from the identification VAI
r,s,κ
∼= VAI

r,s,(k;−k) arising

from identifying E and ED via the principal polarisation. Parts (ii) and (iii) follow from trac-
ing through the definitions and constructions in §§ 5.1, 6.4 and [AI21, §§ 3.4, 3.6–3.7] (again,
identifying E with its dual ED).

If we set N †,AI := lim−→r,s
H0(F̃AI

r,s ,O ˜FAI
r,s
), then we see that we have an inclusion

N †,AI ⊂N †, (6.4)

and the inclusion N †,AI
κ ⊂N †

κ is an isomorphism on finite-slope parts (with respect to the
action of Up). The space N † is much larger than N †,AI though; the difference between the
two spaces in (6.4) is that N † incorporates ‘congruences between the subspace U in the proof
of Proposition 6.25 and the unit root subsheaf Ucan’ – roughly speaking, when restricting to
the Igusa tower, the space N † locally looks like the colimit over n of a number of copies of
A+

ord,∞〈(X − 1)/pn, Y/pn, (Z − 1)/pn〉 (see Proposition 5.2), whereas N †,AI looks like the colimit

over n of a number of copies of A+
ord,∞〈(X − 1)/pn, Y, (Z − 1)/pn〉. This is the key difference

which allows us to extend ∇ to an action of C la(Zp,Qp).
It does not seem possible to improve the results of [AI21] without incorporating such congru-

ences with the unit root subsheaf. More precisely, as indicated in [AI21, Remark 3.39], in order

to define an action of ∇s on N †,AI
κ for a locally analytic character s of Z×

p , it is necessary to
assume that s and κ are analytic up to finite-order twist when restricted to 1 + pZp (in the lan-
guage of [AI21], this condition is written as us ∈Λ0

Is
and uk ∈Λ0

I). The reason for this is due to
the presence of the ‘unbounded denominators’ in the displayed equation of [AI21, Remark 3.39].
In our definition of N †, we allow the coordinate ‘V = Y (1 + pZ)−1’ (in Andreatta and Iovita’s
notation) to be arbitrarily divisible by p, which cancels out these problematic denominators.5

Remark 6.26. Let N̂∞,ρ
U (N) denote the space of nearly overconvergent modular forms defined

in [Urb14, § 3.3.2] (in Urban’s notation). As explained in [AI21, §B.2, p.2077], the construction
of Andreatta and Iovita corresponds to the integral structure alluded to in [Urb14, Remark 10];
in particular, one has

lim−→
ρ

N̂∞,ρ
U (N)∼= lim−→

s

H0(Xs,WkU [1/p]) =N †,AI
κU

,

5One could also try to bound the action of
(∇
k

)
on N †,AI in a similar way to this paper (by the formula in

Lemma 4.8, for example), but one runs into the same issue with ‘unbounded denominators’ (because the local
coordinate Y is not arbitrarily divisible by powers of p in the definition of N †,AI).
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where kU denotes the universal character of U, κU is any locally analytic character of T (Zp)
extending kU, and WkU [1/p] denotes the restriction of Wk,I [1/p] to U (for any choice of interval
I = [0, pb] such that U⊂WI , which always exists because U is assumed to be quasi-compact). We

therefore see that the space N̂∞,ρ
U (N) is also not large enough for p-adically interpolating the

Gauss–Manin connection in the level of generality of this paper (i.e., extending ∇ to an action
of C la(Zp,Qp)) for the same reasons as above.

7. The p-adic L-functions

In this final section, we describe an application of our theory to the construction of triple-
product and Rankin–Selberg p-adic L-functions in families, without the restriction on the weight
imposed in [AI21]. Throughout, we let p > 2 and let N ≥ 4 be an integer which is prime to p.
We take K =GL2(Zp)K

p to be the compact open subgroup of all matrices which lie in the

upper-triangular unipotent modulo N Ẑ.
We fix an isomorphism ιp : Qp

∼−→C throughout, which gives a canonical choice of Nth root of

unity ζN := ι−1
p (e2πi/N ) (after fixing i=

√
−1). Any q-expansion in this section will refer to the

q-expansion at the cusp (Tate(q), αcan
N ), where Tate(q) is the Tate curve over Z[1/N ]((q)), and

αcan
N is the canonical level Γ1(N)-structure given by ζN . Note that the map from overconvergent

modular forms to q-expansions at this cusp is injective, as can be seen by using the q-expansion
principle for p-adic modular forms ([Kat73]) and the inclusion of overconvergent modular forms
into p-adic modular forms. Furthermore, we base-change everything in this section over a finite
Galois extension L/Qp containing ζN , but omit this from the notation.

Convention 7.1. As is customary in the literature, our weights will be locally analytic char-
acters of Z×

p and not T (Zp). This amounts to choosing a normalisation: for any locally analytic
character κ : Z×

p →R×, we set

N †
κ :=N †

(κ;w(κ)),

where w(κ) =−κ/2 (respectively, w(κ) = (1− κ)/2) if κ(−1) = 1 (respectively, κ(−1) =−1).
These weight spaces are stable under the action of C la(Zp, R). We adopt similar notation for
overconvergent modular forms.

Finally, we set U◦
p = p−1Up, which is the normalisation giving the usual description of the

Up-Hecke operator on q-expansions. All slope decompositions will be with respect to U◦
p .

7.1 The eigencurve

Let C denote the Buzzard–Coleman–Mazur cuspidal eigencurve (over Spa(L,OL)) of tame level
Γ1(N), which comes equipped with a weight map w : C →W, whereW denotes the weight space
parameterising continuous characters on Z×

p . Over C, we have a universal eigenform

Funiv =
∑
n≥1

anq
n ∈O(C)[[q]],

with a1 = 1 and ap ∈O(C)×, satisfying the following universal property: for any affinoid U
with a weight morphism κ :U →W, and any family FU of finite-slope eigenforms over U
of tame level Γ1(N) and weight κ, there exists a unique morphism U →C lifting κ such
that FU is the pullback of Funiv (cf. the discussion just after [Loe18, Definition 3.5]).
For any quasi-compact open affinoid V ⊂ C, we let FV ∈O(V )[[q]] denote the pullback of
Funiv to V .
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Let S † ⊂M † denote the subspace of cuspidal overconvergent modular forms, that is, those
which vanish at all the cusps (not just the specific choice above). This space is stable under the
actions of T (Zp) and Up. Over W we have a universal sheaf of cuspidal overconvergent modular

forms S†, such that for any quasi-compact open U ⊂W, we have S†(U) =S †
κ (where κ is the

universal character of U). We let S†C :=w∗S† denote the pullback to C.
We have the following proposition.

Proposition 7.2. Let V ⊂C be a quasi-compact open affinoid subspace, and let U =w(V )⊂W
denote its image in weight space with universal character κ : Z×

p →O(U)×. Then there exists a
‘universal cohomology class’

ωV ∈ S†C(V ) =S †
κ ⊗̂O(U)O(V )

with q-expansion given by FV . Moreover, the restriction of ωV to S†C(V ′) is equal to ωV ′ for

V ′ ⊂ V , so these classes glue to give a universal cohomology class ωC ∈ S†C(C).

Proof. This follows from the duality between cuspidal overconvergent forms and Hecke algebras
(cf., for instance, [Urb14, § 4.2] for trivial tame level, or [Col97, Proposition B5.6]). Observe
that, since we are working at tame level Γ1(N), here we consider the Hecke algebra generated
by the Hecke operators T� for � �Np, U� and the diamond operators 〈�〉 for � |N , and the Hecke
operator Up.

7.1.1 The dual class. Let V ⊂C be a quasi-compact open affinoid subspace, and let ωV ∈
S†C(V ) denote the universal cohomology class provided by Proposition 7.2. We will now explain
how to associate a ‘dual class’ to ωV . As explained in [AI21, § 5.2], one has an Atkin–Lehner
involution wN on X =X1(N) (as ζN ∈OL), which extends to involutions on MdR and IG∞,
compatible with the morphism IG∞→Man

dR. This induces an involution wN : M †→M † which
commutes with the T (Zp) and Up actions and preserves S †.

Definition 7.3. Let ωc
V denote the ‘dual class’ given by

ωc
V :=wN (ωV )∈ S†C(V ).

These classes are compatible for V ′ ⊂ V because the same is true for the Atkin–Lehner involution
wN , and we denote by ωc

C ∈ S
†
C(C) the dual class obtained by gluing.

7.1.2 A linear functional. For any integer M |N , let C(M) denote the Buzzard–Coleman–

Mazur cuspidal eigencurve of tame level Γ1(M), and we let S †
κ1(M) denote the space of cuspidal

overconvergent modular forms of weight κ1 and tame level Γ1(M). If M =N , we omit this from
the notation and we keep the notation of the previous sections.

Definition 7.4. We say that a point x∈ C(M) is:

– classical if w(x)∈Z≥2 and the specialisation Funiv
x of the universal eigenform Funiv over

C(M) at the point x is the q-expansion of a normalised cuspidal modular form of weight
w(x) and level Γ1(M)∩ Γ0(p

r), for some integer r≥ 1;
– crystalline if x is classical and the newform associated with the modular form Funiv

x has
level Γ1(M

′) for some M ′|M ;
– p-regular crystalline if x is crystalline and the roots of the Hecke polynomial at p,

X2 − ap(f)X + εf (p)p
w(x)−1,

are distinct, where f denotes the newform associated with Funiv
x with nebentypus εf .

2424

https://doi.org/10.1112/S0010437X25102479
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 02:24:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X25102479
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


p-adic interpolation of Gauss–Manin connections

We make the following assumption.

Assumption 7.5. Let U1 ⊂W be a connected quasi-compact open affinoid subspace in weight
space with universal character κ1 : Z×

p →O(U1)
×. We suppose that there exists an integer

NF dividing N and an open V1 ⊂ C(NF ) lying over U1 such that the following assertions
hold.

– The weight map w : V1→U1 is an isomorphism.
– Every specialisation of the Coleman family F :=FV1

at a classical point x∈ V1 with w(x)∈
Z≥2, is noble; that is, it is the p-stabilisation of a normalised cuspidal newform of level
Γ1(NF ) that is p-regular, with the additional condition that its local Galois representation
is not the sum of two characters if it is of critical slope (see [LZ16, Definition 4.6.3]).

Remark 7.6. Many such opens V1 exist by starting with a noble eigenform and taking a
sufficiently small neighbourhood of its corresponding point in the eigencurve (see [Bel12]).

The Coleman family F will constitute the first variable of the triple p-adic L-function.

Lemma 7.7. Let ωV1
∈S †

κ1(NF ) denote the universal class over V1, as in Proposition 7.2. After
possibly shrinking V1, there exists a unique O(V1)-linear Hecke equivariant (for the Hecke
operators {T� : � � pNF} ∪ {Up}) map

S †
κ1
(NF )→O(V1), (7.1)

sending the universal class ωV1
to 1, where the action of the Hecke algebra on O(V1) is through

the Hecke eigensystem corresponding to the Coleman family F .

Proof. If αF denotes the Hecke eigencharacter associated with the Coleman family F , then
ωV1

is an eigenclass for the Hecke action with eigencharacter αF . We claim that this appears

as a direct summand in S †
κ1(NF ) with multiplicity one. Indeed, it suffices to show this in

S †
κ1(NF )≤h for sufficiently large h∈N, since the slope ≤ h part is a direct summand of

S †
κ1(NF ). Let Th =T(S †

κ1(NF )≤h) denote the Hecke algebra over O(U1) (generated by the
same Hecke operators as in the proof of Proposition 7.2) acting faithfully on the module

S †
κ1(NF )≤h.
Since the weight map induces an isomorphism on V1 (Assumption 7.5), there exists an idem-

potent e in Th such that eTh =O(V1)∼=O(U1) and eTh ⊂Th is the (generalised) eigenspace
for the character αF . We note that we also have a stronger property, namely, eTh ⊂Th is
the (generalised) eigenspace for the action of the Hecke operators {T� : � � pNF} ∪ {Up} with
eigencharacter αF . This is because any Coleman family over U1 with the same prime-to-NF
Hecke eigensystem as F must coincide with F (this follows from the second bullet point in
Assumption 7.5).

Finally, by the duality between overconvergent modular forms and Hecke algebras (see

the proof of Proposition 7.2), the same properties are true for S †
κ1(NF )≤h, namely: one has

eS †
κ1(NF )≤h ∼=O(U1) and eS †

κ1(NF )≤h ⊂S †
κ1(NF )≤h is the (generalised) eigenspace for the

action of the Hecke operators {T� : � � pNF} ∪ {Up} with eigencharacter αF . This completes the
proof of the lemma.

We extend this to a linear functional on S †
κ1 as follows. For any divisor a≥ 1 of N/NF , we

have a finite étale morphism [a] : X1(N)→X1(NF ) as described at the start of [AI21, § 5]. This
induces a trace morphism [a]∗ : S †

κ1→S †
κ1(NF ) and a pullback map [a]∗ : S †

κ1(NF )→S †
κ1 , with

the latter given by translation of the argument by a on classical modular forms.
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Definition 7.8. Let μ= (μa)a|N/NF be a tuple of elements of L∩ ι−1
p Q indexed by the divisors

of N/NF . We set ωF◦ =
∑

a|N/NF μa · [a]
∗(ωV1

)∈S †
κ1 . Set ω

c
F◦ =wN (ωF◦). We define

λF◦,c : S †
κ1
→O(V1)

to be the O(V1)-linear map sending a class δ ∈S †
κ1 to the image of [Γ1(NF ) : Γ1(N)]−1 ·∑

a|N/NF μ̄a · [a]∗wN (δ) under the map (7.1), where a bar denotes complex conjugation. This
is Hecke equivariant away from Np and Up-equivariant, where the Hecke action on the target is
given by the eigensystem for F◦,c (see [Loe18, Lemma 3.4]).

We have the following specialisation formula.

Lemma 7.9. Let x1 ∈w−1(Z≥2)∩ V1, let Fx1
denote the specialisation of the Coleman family

at x1 and let

λclF◦,c
x1

: Sk(Γ1(N)∩ Γ0(p);C)→C

denote the restriction of the specialisation of λF◦,c at x1 to the space of classical cusp forms
of weight k :=w(x1) and level Γ1(N)∩ Γ0(p) (using ιp to extend scalars to C).6 Let F◦,c

x1 =
F◦
x1
⊗ ε−1

Fx1
, where εFx1

denotes the nebentypus of Fx1
and F◦

x1
=
∑

a|N/NF μa · [a]
∗Fx1

. Then

λclF◦,c
x1

(g) =
〈F◦,c

x1 , g〉N,p

〈Fc
x1
,Fc

x1
〉N,p

,

for any g ∈ Sk(Γ1(N)∩ Γ0(p);C), where 〈·, ·〉N,p denotes the Petersson inner product of level
Γ1(N)∩ Γ0(p) as in [DR14, Eq. (35)] (which is Hermitian linear in the first variable).

Proof. The restriction of the specialisation of (7.1) at x1 to complex-valued cusp forms of weight
k and level Γ1(NF )∩ Γ0(p) defines a Hecke equivariant map Sk(Γ1(NF )∩ Γ0(p);C)→C factoring
through the eigenspace associated with Fx1

, and sending Fx1
to 1. Set M =NF . Since Fx1

is a
noble, this map must therefore be equal to

〈Fx1
,−〉M,p

〈Fx1
,Fx1

〉M,p
=
〈Fx1

,−〉M,p

〈Fc
x1
,Fc

x1
〉M,p

= [Γ1(M) : Γ1(N)]
〈Fx1

,−〉M,p

〈Fc
x1
,Fc

x1
〉N,p

.

Now one uses the fact that [a]∗ (respectively, wN ) and [a]∗ (respectively, wN ) are adjoint under
the Petersson inner product, and that it is Hermitian linear in the first variable.

7.2 Triple-product p-adic L-functions

We now construct a pairing over two copies of the eigencurve which will be used in our construc-
tion of triple-product and Rankin–Selberg p-adic L-functions. Fix a Coleman family F over the
open V1 ⊂ C(NF ) (which is isomorphic to an open U1 ⊂W via the weight map) as in § 7.1.2 and
Assumption 7.5.

Notation 7.10. Let (V1 ×C × C)+ ⊂ V1 × C × C denote the open and closed subspace defined by
the condition that, for any (x1, x2, x3)∈ V1(Qp)×C(Qp)×C(Qp), the weight

w(x1)−w(x2)−w(x3)

is even, that is, there exists u : Z×
p →Q

×
p such that w(x1)−w(x2)−w(x3) = 2u.

6Note that one has a natural map Xr →X0(p) (where the latter denotes the modular curve of level Γ1(N)∩ Γ0(p))
which induces a Hecke equivariant map from cuspforms of level Γ1(N)∩ Γ0(p) to cuspidal overconvergent modular
forms (see [BP22, § 5.4.4]).
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p-adic interpolation of Gauss–Manin connections

Let V2, V3 ⊂ C be two quasi-compact open affinoid subspaces with images U2 =w(V2),
U3 =w(V3)⊂W and such that V1 × V2 × V3 ⊆ (V1 ×C × C)+. Let ap(F) denote the coefficient of
qp in the series F =FV1

, and suppose that the p-adic Banach norm of ap(F) is less than or
equal to h, for some integer h≥ 0. By shrinking Vi (i= 1, 2, 3) if necessary we have the following
assertions.

– For i= 1, 2, 3, let κi : Z×
p →O(Ui)

× denote the universal character of Ui and κ̂i its pullback
to U =U1 ×U2 ×U3. Then we may assume that

κ̂1 − κ̂2 − κ̂3
is even, that is, there exists u : Z×

p →O(U)× such that κ̂1 − κ̂2 − κ̂3 = 2u.

– The space of nearly overconvergent modular forms N †
κ̂1

has a slope ≤ h decomposition and
hence a O(U)-linear overconvergent projector

oc,≤h∏
: N †

κ̂1
→M †,≤h

κ̂1
⊗O(U) (FU1

⊗̂O(U2)⊗̂O(U3)),

where FU1
denotes the fraction ring of U1 (see Theorems 6.21 and 6.22). Furthermore, the

space of nearly overconvergent modular forms N † over O(U) comes equipped with an
action

C la(Zp,O(U))×N †→N †,

as in Theorem 2.11, extending the Gauss–Manin connection. We denote this action by �.

Definition 7.11. With notation as above, for any φ∈ S†C(V2) and ψ ∈ S
†
C(V3), we define

Ξ(φ, ψ) =

oc,≤h1∏
((u · 1Z×

p
) � φ̂× ψ̂)∈S †,≤h

κ1
⊗̂O(V1)(FV1

⊗̂O(V2)⊗̂O(V3)),

where 1Z×
p
denotes the indicator function of Z×

p , and φ̂ and ψ̂ denote the pullback of the classes
to V1 × V2 × V3.

We have the following lemma.

Lemma 7.12. We take the notation as above.

(i) The construction Ξ(−,−) isO(V2)-linear in the first variable andO(V3)-linear in the second
variable.

(ii) If V ′
i ⊂ Vi (i= 2, 3) then Ξ(−,−) and Ξ′(−,−) are compatible under restriction, where

Ξ′(−,−) denotes the construction in Definition 7.11 over V1 × V ′
2 × V ′

3 . Furthermore, the
constructions are compatible for different choices of h.

(iii) The constructions glue to give a morphism of sheaves7 over (V1 ×C × C)+,

Ξ : OV1
�̂ S†C �̂ S

†
C→ (S †,≤h

κ1
⊗̂O(V1)KV1

) �̂OC �̂OC ,

where KV1
denotes the sheaf of meromorphic functions on V1.

Proof. Part (i) is clear and part (iii) follows from part (ii). Therefore, we just need to prove part
(ii). But this just follows from the linearity of � and Πoc,≤h, and the compatibility of the slope
≤ h projectors as h varies.

7For a pair of sheaves F , G of Banach modules on two spaces X, Y , we denote by F �̂ G the sheaf on X × Y
obtained by sheafifying the assignment U × V �→ F(U) ⊗̂ G(V ).
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We consider the following pairing.

Definition 7.13. Fix a tuple μ= (μa)a|N/NF as in Definition 7.8. Then, for any pair of opens
V2, V3 ⊂ C (not necessarily quasi-compact nor affinoid) such that V1 × V2 × V3 ⊂ (V1 × C × C)+,
we consider the following bilinear pairing:

Jμ(−,−) : S†C(V2)×S
†
C(V3)→Mer(V1 × V2 × V3),
(φ, ψ) �→ λF◦,c(Ξ(φ, ψ)),

where Mer(V1 × V2 × V3) denotes the module of meromorphic functions on V1 × V2 × V3. This
pairing glues to a bilinear pairing S†C(C)×S

†
C(C)→Mer(V1 ×C × C)+, which we continue to

denote by Jμ(−,−).

We define the universal triple-product p-adic L-function as follows.

Definition 7.14. Fix a Coleman family F over V1 satisfying Assumption 7.5 as in § 7.1.2,
and fix a tuple μ= (μa)a|N/NF as in Definition 7.8. We define Lp ∈Mer(V1 × C × C)+ to be the
meromorphic function given by

Lp := Jμ(ωC , ωC),

where ωC denotes the universal cohomology class of Proposition 7.2.

7.2.1 Interpolation property. We now describe the interpolation property for the universal
triple-product p-adic L-function. Throughout this section, fix a Coleman family F over V1 ⊂
C(NF ) as in § 7.1.2 and Assumption 7.5, and let U1 =w(V1)⊂W. Fix a tuple μ= (μa)a|N/NF as
in Definition 7.8.

Definition 7.15. We say that a point x= (x1, x2, x3)∈ V1 × C × C is unbalanced crystalline if:

– x1, x2, x3 are classical and p-regular crystalline (Definition 7.4);

– the weights (w(x1), w(x2), w(x3)) satisfy w(x1)≥w(x2) +w(x3) and the nebentypen
εf , εg, εh of the newforms (f, g, h) associated with (x1, x2, x3) satisfy εf · εg · εh = 1.8

We denote the set of unbalanced crystalline points by Σcris (which depends on the fixed choice
of F).

Given an unbalanced crystalline point x= (x1, x2, x3)∈Σcris, we can fix the following data.

– (Weights.) We set (k, �, m) = (w(x1), w(x2), w(x3)).

– (U◦
p -eigenvalues.) We let (αf , αg, αh) denote the coefficients of qp in Fx1

,Funiv
x2

,Funiv
x3

,
respectively.

– (Newforms.) We let (f, g, h) denote the newforms of levels Γ1(Nf ), Γ1(Ng), Γ1(Nh), asso-
ciated with Fx1

,Funiv
x2

,Funiv
x3

, respectively. Note that, since the point x is unbalanced
crystalline, all of the integers Nf , Ng, Nh divide N . Furthermore, by Assumption 7.5,
one has Nf =NF .

– (Test data.) We obtain a triple (f◦, g◦, h◦) of cuspidal modular forms, where: g◦ and h◦

are the unique eigenforms of level Γ1(N) such that Funiv
x2

,Funiv
x3

are the p-stabilisations of
g◦, h◦ with respect to the roots αg, αh; and we define f◦ =

∑
a|N/NF μa · [a]

∗(f). Note that
F◦
x1

is the p-stabilisation of f◦ at the root αf .

8This implies that there exists an integer t≥ 0 such that w(x1)−w(x2)−w(x3) = 2t.
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p-adic interpolation of Gauss–Manin connections

To state the interpolation property for Lp, we need to introduce several Euler factors. Let
(βf , βg, βh) denote the roots of the Hecke polynomials at p that are different from (αf , αg, αh).
Set c= (k+ �+m− 2)/2 and define:

E(f, g, h) = (1− βfαgαhp
−c)(1− βfαgβhp

−c)(1− βfβgαhp
−c)(1− βfβgβhp−c),

E0(f) = (1− β2fεf (p)−1p1−k),

E1(f) = (1− β2fεf (p)−1p−k).

For any integer j ≥ 0, let δj = (1/2πi) (d/dz + j/(z − z̄)) denote the Maass–Shimura differential
operator acting on weight j nearly holomorphic modular forms. For any t≥ 0, we set δtj =
δj+2(t−1) ◦ δj+2(t−2) ◦ · · · ◦ δj . Let 〈·, ·〉N denote the Petersson inner product of level Γ1(N) on
(complex-valued) nearly holomorphic modular forms.

Theorem 7.16. Let x= (x1, x2, x3)∈Σcris with associated newforms (f, g, h) and test data
(f◦, g◦, h◦). Then x is not a pole for Lp and the specialisation of Lp at x satisfies

Lp(x) =
E(f, g, h)
E0(f)E1(f)

· I(f
◦, g◦, h◦)

〈f, f〉N
, (7.2)

where we view the left-hand side of (7.2) in C via ιp, and I(f
◦, g◦, h◦) = 〈(f◦)∗, δt�g◦ × h◦〉N with

(f◦)∗(τ) = f◦(−τ̄).

Proof. The proof of this is very similar to [DR14] and [AI21]. Let ωα
g◦ and ωα

h◦ denote the
specialisations of ωC at x2 and x3 respectively, and recall t= (k− �−m)/2. Firstly, we note that
Lp(x) = Jμ(ωC , ωC)x is equal to

λF◦,c
x1

( oc,≤h∏
((xt · 1Z×

p
) � ωα

g◦ × ωα
h◦)

)
= λF◦,c

x1

(
ef◦,c,α

oc,≤h∏
((xt · 1Z×

p
) � ωα

g◦ × ωα
h◦)

)
.

where ef◦,c,α : S †,≤h
k �S †,≤h

k [πf∗ , U◦
p = εf (p)

−1αf ] is the projection to the eigenspace for (f◦,α)c

(for the Hecke operators away from Np and Up). Here f◦,α =F◦
x1

and πf∗ denotes the auto-

morphic representation associated with f∗ = f ⊗ ε−1
f . Set ν = (xt · 1Z×

p
) � ωα

g◦ × ωα
h◦ ∈N †

k . This
class has the same q-expansion as the class

ν ′ =∇tω
α,[p]
g◦ × ωα

h◦ ∈Filt N †
k ,

where (−)[p] is p-depletion. Any filtered piece Filb N †
k injects into the space of p-adic modular

forms (and hence the space of q-expansions), and since Πoc,≤h is U◦
p -equivariant, and αf �= 0, we

therefore see that Lp(x) is equal to

Lp(x) = λF◦,c
x1

(
ef◦,c,α

oc,≤h∏
ν ′
)
.

By the computations in the proof of [AI21, Lemmas 5.9 and 5.10], we see that

ef◦,c,α

oc,≤h∏
ν ′ =

E(f, g, h)
E1(f)

ef◦,c, α

oc,≤h∏
(∇tωg◦ × ωh◦),

where ωg◦ ∈S †
� , ωh◦ ∈S †

m denote the classes attached to g◦ and h◦. But the argument in the
right-hand side is classical: if we denote by ν ′′ = ef◦,cΠhol(δt�g

◦ × h◦) the projection to the f◦,c-
eigenspace of the holomorphic projection of δt�g

◦ × h◦, then we have

Lp(x) =
E(f, g, h)
E1(f)

λF◦,c
x1

((ν ′′)α),
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where (ν ′′)α is the p-stabilisation of ν ′′ with respect to the eigenvalue εf (p)
−1αf . By the

specialisation property in Lemma 7.9, we have

Lp(x) =
E(f, g, h)
E1(f)

λF◦,c
x1

((ν ′′)α)

=
E(f, g, h)
E1(f)

〈(f◦,c)α, (ν ′′)α〉N,p

〈(f c)α, (f c)α〉N,p

=
E(f, g, h)
E0(f)E1(f)

〈f◦,c, ν ′′〉N
〈f c, f c〉N

=
E(f, g, h)
E0(f)E1(f)

〈(f◦)∗, δt�g◦ × h◦〉N
〈f, f〉N

,

where the third equality follows from an explicit calculation (cf. [AI21, Lemma 5.12]) and we
have used the fact that (f◦)∗ = f◦,c because the conductor of εf is not divisible by p.

7.2.2 Relation to central L-values. The trilinear period in Theorem 7.16 is closely related
to central critical L-values of the Garrett–Rankin triple-product L-function. More precisely, we
have the following theorem.

Theorem 7.17 [DR14, Theorem 4.2]. There exists a constant C (defined over the num-
ber field generated by the Fourier coefficients of f, g, h and depending on f◦, g◦, h◦) such
that

|I(f◦, g◦, h◦)|2 = C

π2k
L(f, g, h, c),

where c= (k+ �+m− 2)/2 and L(f, g, h,−) is the Garrett–Rankin triple-product L-function.

Therefore, one can view Lp as a universal ‘square-root’ triple-product L-function.
Unfortunately, it does not seem possible (with the current methods) to construct a three-variable
p-adic L-function over (C × C × C)+ as we do not know if the linear functional λF◦,c globalises.
Furthermore, it can happen that the constant C is equal to zero for the test vectors (f◦, g◦, h◦)
(e.g., if NF =N and there exists a prime dividing N , but not Ng ·Nh – see [DR14, Remark 4.3]).
One has more freedom to choose test vectors so that this constant is non-zero in small opens of
C; however, we are not sure if this is possible globally.

7.3 Rankin–Selberg p-adic L-functions

We close with an application to the construction of Rankin–Selberg p-adic L-functions in
three variables. Our strategy essentially follows that in [AI21, Appendix B] circumventing
the restriction on the weight space, by replacing [AI21, Theorem 4.3] by our generalised ver-
sion Theorem 2.11 as the input into the construction. Let us give a very brief sketch of this
construction.

Fix a Coleman family F as in § 7.1.2 and Assumption 7.5, defined over a quasi-compact
affinoid open subspace U1 ⊂W. We first observe that Definition 7.13 still makes sense for non-
cuspidal forms ψ.

Definition 7.18. Fix a tuple μ as in Definition 7.8. For any open subspaces U2 ⊆W, V3 ⊆C
such that V1 ×U2 × V3 ⊆ (V1 ×W ×C)+, we define a bilinear pairing

Jμ(−,−) :M†(U2)×S†C(V3)→Mer(V1 ×U2 × V3),
(φ, ψ) �→ λF◦,c(Ξ(φ, ψ))
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in exactly the same way as in Definition 7.13, whereM† denotes the sheaf over W of overcon-
vergent modular forms. This pairing glues to a pairing M†(W)×S†C(C)→Mer(V1 ×W ×C)+
which we continue to denote by Jμ(−,−).

This bilinear pairing can be used to construct three-variable Rankin–Selberg p-adic
L-functions, by taking φ to be a p-adic family of Eisenstein series. More precisely, follow-

ing [Loe18, Lemma 3.2], there exists a p-adic family of Eisenstein series E
[p]
κ ∈M†(W) with

q-expansion

E[p]
κ (q) =

∑
n≥1

(n,p)=1

(∑
d|n

dκ−1(ζdN + (−1)κζ−d
N )

)
qn,

where κ denotes the universal character. Recall that ωC ∈ S†C(C) is the universal class over the
eigencurve.

Definition 7.19. We define the universal Rankin-Selberg p-adic L-function to be the mero-
morphic function on (V1 ×W ×C)+ given by

Lp := Jμ(E
[p]
κ , ωC).

Theorem 7.20. We have the following interpolation property: for any integer k2 ≥ 2 and
noble classical points x1 ∈ V1, x3 ∈ C(Qp) such that k1 :=w(x1) = k2 +w(x3) + 2t for some t≥ 0,
one has

Lp(x1, k2, x3) = (�) ·Limp(f, h, k1 − 1− t),

for some explicitly computable factor (�), where:

– Limp(f, h, s) denotes the imprimitive Rankin–Selberg L-function as in [Loe18,
Definition 2.1];

– f (respectively, h) is the newform associated with the specialisation of F at x1 (respectively,
the eigenform corresponding to the point x3).

Proof. As in Theorem 7.16, we can express classical specialisations of Lp as a Petersson

inner product between (f◦)∗ and δtk2
E

[p]
k2
· h◦; the interpolation formula then follows from the

calculations in [Loe18].

Remark 7.21. As in § 7.2.2, the factor (�) depends on the test data f◦ and h◦. Furthermore,
we note that this three variable p-adic L-function was essentially constructed in [Loe18], but its
construction relies on the p-adic variation of Beilinson–Flach Euler system classes in [LZ16] and
imposes an ordinarity assumption on one of the families of overconvergent cuspidal forms. Our
construction is completely independent of Euler systems.

Appendix A. Classical nearly holomorphic modular forms

In this appendix we describe the relation between (g, P )-representations and D-modules on
Shimura varieties. We note that similar constructions can be found in [Liu19].

A.1 Preliminaries on the flag variety

Let k be a field of characteristic zero. Let G be a reductive group over k and P ⊂G a parabolic
subgroup. Let FL=G/P be the corresponding partial flag variety. It carries an action of G by
left translation.
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A.1.1 G-equivariant sheaves. We let QCohG(FL) be the category of G-equivariant quasi-
coherent sheaves over FL. We let Rep(P ) be the category of algebraic representations of P on
k-vector spaces. We define a functor

F : Rep(P )→QCohG(FL),

V �→ V = F (V ),

as follows. The group G acts on itself by left and right translation. It follows that OG carries two
G-actions, denoted �l and �r, given by the rule g �l f(−) = f(g−1 · −) and g �r f(−) = f(− · g).
We consider the projection π :G �→G/P . For (V, ρ) an object of Rep(P ), we let

F (V ) = (π�OG ⊗k V )P ,

where the action of P on the tensor product is the diagonal action given by �r on the left factor
and by ρ on the right factor. The action �l provides a G-equivariant structure on F (V ).

On the other hand, consider 1 · P = 1∈FL, and let i1 : {1}→FL be the inclusion. Let
V ∈QCohG(FL). The stalk at 1∈FL, denoted i−1

1 V , is an OFL,1-module with a semi-linear
action of P . The maximal ideal mOFL,1

⊂OFL,1 is stable under the action of P and the fibre at
1∈FL, denoted i∗1V , is a k-linear representation of P . Hence, we obtain a pullback functor

i∗1 : QCohG(FL)→Rep(P ),

V �→ i∗1V .

Proposition A.1. The functors F and i∗1 are equivalences of categories, quasi-inverse of each
other.

Example A.2.

(i) If V ∈Rep(G), one can check that F (V ) =OFL ⊗k V .
(ii) Let p⊂ g be the Lie algebras of P ⊂G. We let p0 = F (p)⊆ F (g) = g0 =OFL ⊗ g. The

tangent sheaf on FL is given by TFL = F (g/p) = g0/p0.
(iii) Let DFL be the sheaf of differential operators over FL. This is an object of

QCohG(FL). There is a surjective map OFL ⊗ U(g)→DFL inducing an isomorphism
OFL ⊗ U(g)/(p0(OFL ⊗U(g))→DFL. One thus checks that DFL = F (U(g)⊗U(p) k).

A.1.2 G-equivariant DFL-modules. As above, let DFL be the sheaf of differential operators
over FL. We let DFL−ModG be the category of G-equivariant DFL-modules. Its objects are
objects of QCohG(FL) together with an action of DFL which is compatible with the G-equivariant
structure.

We let Rep((g, P )) be the category of k-vector spaces V equipped with an algebraic
representation of P , and a representation of g satisfying the following compatibility.

(i) For any v ∈ V, g ∈ g and p∈ P , we have (Ad(p)g)v= pgp−1v,
(ii) The action of P induces an action of the Lie algebra p. This action coincides with the

restriction to p of the action of g.

Lemma A.3. The functor F can be enriched to a functor

F : Rep((g, P ))→DFL−ModG

V �→ V = F (V ).

Proof. Let (V, ρ) be an object of Rep((g, P )) (where ρ stands for the action of both P and g). We
first observe that the G-equivariant structure induces an action �l of g on F (V ) by derivations.
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p-adic interpolation of Gauss–Manin connections

This action can be extended linearly to an action of g0 which extends the action by derivations
on OFL. However, it will not in general factor through an action of TFL on F (V ) and induce a
DFL-module structure.

Instead, we construct a second action of g on F (V ) by using the action ρ of g on V as follows.
Let f ∈OG ⊗ V . We let h∈ g and define h � f = [g �→ g−1hg �ρ f(g)]. We check that this descends
to an action on F (V ) as follows. For p∈ P we have

p(�r ⊗ ρ)(h � f)(g) = p(h � f)(gp)

= pp−1g−1hgpf(gp)

= h � (p(�r ⊗ ρ)f)(g).
We check that this action is G-equivariant as follows. For t in G we have

t · h � (t �l f)(g) = tht−1 � f(t−1g)

= g−1tht−1gf(t−1g)

= t �l (h � f)(g).

The � action is OFL-linear. The difference �D = �l − � defines an action by derivations of g on
F (V ) which extends the action by derivations on OFL. We claim that the action �l − � induces a
DFL-module structure on F (V ). The main step is to check that p0 acts trivially. As the restriction
of the action �D of p0 is OFL-linear and G-equivariant it suffices to check that the induced action
is trivial on i∗1. The action �l restricts to the natural action of P on V via i∗1 and induces an
action of the Lie algebra p. The action � restricts by construction to the natural action of p on
V , induced by the inclusion p ↪→ g. By the compatibility imposed on both actions, the difference
is the trivial action of p.

Lemma A.4. The functor i∗1 can be enriched to a functor

i∗1 : DFL−ModG→Rep((g, P ))

V �→ i∗1V .

Proof. Let V be an object of DFL−ModG. The action of G induces an action �l of g. The DFL-
module action induces an action �D of g. Both actions extend the action by derivations on OFL,
therefore the difference is an OFL-linear action which induces an action of g on i∗1V .

We immediately obtain the following proposition.

Proposition A.5. The categories DFL−ModG and Rep((g, P )) are equivalent via the quasi-
inverse functors i∗1 and F .

Example A.6.

(i) The forgetful functor Rep((g, P ))→Rep(P ) has a left adjoint V �→ U(g)⊗U(p) V . Similarly,
the forgetful functor DFL−ModG→QCohG(FL) has a left adjoint V �→DFL ⊗OFL

V . This
implies that for any V = F (V ) with V ∈Rep(P ), one has DFL ⊗OFL

V = F (U(g)⊗U(p) V ).
(ii) Let E, G∈Rep(P ) be finite-dimensional representations. Let E = F (E), G = F (G). Let

DiffG(E , G) be the space of G-equivariant differential operators E →G. By definition, a
G-equivariant differential operator is a global G-invariant section of F ⊗OFL

DFL ⊗OFL
E∨,

or equivalently a G-equivariant map F∨→DFL ⊗OFL
E∨. We deduce that

DiffG(E , G) =HomRep(P )(F
∨, U(g)⊗U(p) E

∨)

=HomRep((g,P ))(U(g)⊗U(p) F
∨, U(g)⊗U(p) E

∨).
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A.1.3 The case of GL2. In this subsection, we freely use the notation in § 1.1. Let n⊂ gl2
denote the lower triangular nilpotent Lie algebra, and let w0 denote the longest Weyl element of
G=GL2. We will consider certain (g, B)-representations which belong to category O. Since we
are interested in representations of the lower triangular Borel subgroup (but define the positive
roots to be those which lie in B) our conventions are slightly different from those found in the
literature. For example, our convention is that Verma modules are lowest weight modules.

Definition A.7. For any κ∈X∗(T ), the Verma module of lowest weight w0κ isMκ = U(g)⊗U(b)

w0κ. We let M∨
κ be its dual in category O.9

If κ∈X∗(T )+, let Vκ be the irreducible representation of G of highest weight κ. Then there
is an exact sequence

0→ Vκ→M∨
κ →Mw0κ−2ρ→ 0.

If κ /∈X∗(T )+ then M∨
κ =Mκ is irreducible. The character of M∨

κ is
∑

n≥0 w0κ+ 2nρ and we

have a filtrationM∨
κ =

⋃
r≥0 FilrM

∨
κ where FilrM

∨
κ =M∨

κ [n
r+1] is the subspace of elements killed

by nr+1. Moreover, there is an isomorphism of B-modules

M∨
κ [n

r+1]∼=Symr St⊗Q(w0κ+ r(1;−1)),

where St denotes the standard representation of G, and Q(w0κ+ r(1;−1)) is the one-dimensional
line on which B acts through the character w0κ+ r(1;−1).

We let OB be the space of functions on B. We equip it with an action of B via b �l f(−) =
f(b−1 · −). We can turn it into a (g, B)-module as follows. We have an open immersion
B ↪→G/U , where U denotes the upper triangular unipotent, and the left translation action
of G on G/U induces an action of g stabilising OB. We also have another action of B via
b �r f(−) = f(− · b).

We let x, t1, t2 be coordinates on B, where the universal element of B is written as(
t2 0
x t1

)
.

Using this description, we have OB = k[x, t1, t2, t
−1
1 , t−1

2 ] and the actions �r and �l of B and that
of g are easy to describe. Indeed, the infinitesimal action is given by(

0 1
0 0

)
�→ xt1t

−1
2 ∂t1 − x∂t2 ,

(
1 0
0 0

)
�→ −∂t2 ,(

0 0
0 1

)
�→ −(∂x + ∂t1),

(
0 0
1 0

)
�→ −t2∂x.

The action of the lower triangular unipotent U via �r or �l induces a filtration OB =⋃
r≥0 Filr(OB) where Filr(OB) is the submodule of vectors killed by nr+1. This is the subspace

of OB of elements with degree in x bounded by r. The action of T via �r commutes with the
actions of g and B via �l and the space OB decomposes as a sum of eigenspaces.

Lemma A.8. Via the action of T by �r, the space OB decomposes as ⊕κ∈X∗(T )(Mκ)
∨ with

(Mκ)
∨ =OB[−w0κ] := HomT (−w0κ,OB).

Let π :G→G/B be the canonical B-torsor. It is a G-equivariant torsor via the left G-action.

9Here is how duality is defined. Let M ∈O. Then M =⊕χ∈X∗(T )QMχ. We let M∨ =⊕χ∈X∗(T )QM
∨
χ ⊂Hom(M,Q).

The action on M∨ is given by gf(−) = f(tg · −).
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p-adic interpolation of Gauss–Manin connections

Proposition A.9. The B-torsor structure on G induces a decomposition

π∗OG =⊕κ∈X∗(T )OG[−w0κ] =⊕κ∈X∗(T )

⋃
r≥0

FilrOG[−w0κ],

where OG[−w0κ] = F (M∨
κ ) and FilrOG[−w0κ] = F (FilrM

∨
κ ). We have a G-equivariant connec-

tion ∇ : π∗OG→ π∗OG ⊗Ω1
FL /Q inducing a connection

∇κ :OG[−w0κ]→OG[−w0κ]⊗Ω1
FL /Q.

Moreover, we have ∇κ(FilrOG[−w0κ])⊆ Filr+1OG[−w0κ]⊗Ω1
FL /Q for all r≥ 0.

Proof. We have an isomorphism of G-equivariant sheaves π∗OG = F ((OB, �l)), where OB is
equipped with the �l-action of B. The �r-action of B corresponds to the B-torsor structure.
All the properties can be read from the properties of OB.

A.2 Shimura varieties

Let (G,X) be a Shimura datum, and let {SK}K⊆G(Af ) be the tower of Shimura varieties, defined

over the reflex field E. We let P = P std
μ be the parabolic attached to (a representative of) the

cocharacter μ of the Shimura datum and let FL=G/P be the flag variety, defined over E. We
let Z(G) be the centre of G and denote by Zs(G) the largest subtorus which is R-split but has
no subtorus split over Q. Set Gc =G/Zs(G), P

c = P/Zs(G), and define M c =M/Zs(G) where
M is the Levi of P . Note FL=Gc/P c.

Let GdR,K→ SK denote the de Rham Gc-torsor (see [Mil90, § III.3]) and PdR,K→ SK its
P c-reduction. We define MdR,K = PdR,K ×P c

M c to be the pushout of the P c-torsor PdR,K to an
M c-torsor MdR,K . We have a diagram

GdR,K

p

����
��
��
�� q

���
��

��
��

�

SK FL

characterised by the property that the pullback of the P c-torsorGc→FL via q is PdR,K→GdR,K .
We obtain a functor

VBK : QCohGc(FL)→QCoh(SK),

V →H0(Gc, p∗q
∗V).

Lemma A.10. We have VBK(Ω1
FL /E) =Ω1

SK/E and VBK(DFL) =DSK
.

Proof. The first statement VBK(Ω1
FL /E) =Ω1

SK/E follows from Kodaira–Spencer theory. Let us

recall the argument. Recall that g is the Lie algebra of G, and g0 is the associated vector bundle
with flat connection over FL. It carries a filtration n0 ⊆ p0 ⊆ g0, where m0 = p0/n0 is associated
to the Levi m and g0/p0 is the tangent sheaf. We explain how we can recover the isomorphism
g0/p0

∼−→TFL from the connection.
Passing to dual vector bundles, and using Griffiths transversality and the connection, we

obtain a map g0,∨/n0,∨→m0,∨ ⊗OFL
Ω1
FL /E or equivalently a map g0,∨/n0,∨ ⊗OFL

m0→Ω1
FL /E .

This map factors through the isomorphism g0,∨/n0,∨
∼−→Ω1

FL /E via the adjoint action of m on

g/p which induces a map g0,∨/n0,∨ ⊗OFL
m0→ g0,∨/n0,∨. The vector bundle VBK(g0,∨) carries

an integrable connection, and we thus get a map

VBK(g0,∨/n0,∨)⊗OSK
VBK(m0)→Ω1

SK/E ,

which factors through the isomorphism VBK(g0,∨/n0,∨)∼=Ω1
SK/E .
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We now turn to the identification VBK(DFL) =DSK
. We first observe that by the first point

we have a map OSK
⊕TSK

→VBK(DFL). We will show that VBK(DFL) carries an algebra struc-
ture, and is generated by OSK

and TSK
subject to the usual relations. We recall that if f : X→ Y

is an étale map of E-schemes then the pullback map f∗Ω1
Y/E→Ω1

X/E is an isomorphism.
Similarly, the natural map DX→ f∗DY is an isomorphism.

The Gc-torsor GdR,K→ SK has sections étale locally. Let U → SK be an étale map and
let s :U →GdR,K be a section. By a deformation theory argument, one can choose s so that
the map q ◦ s :U →FL is étale. We deduce that VBK(DFL /E)|U = (q ◦ s)∗DFL /E =DU/E . We
therefore obtain an algebra structure on VBK(DFL /E)|U . This algebra structure glues using the
Gc-equivariant action. Indeed, let s′ :U →GdR,K be another section. Then there exists g ∈Gc(U)
such that s′ = g ◦ s. Let act :Gc × FL→FL be the action map and let p :Gc ×FL→FL be the

projection. We have a map U
(g,q◦s)→ Gc ×FL and act((g, q ◦ s)) = q ◦ s′, while p((g, q ◦ s)) = q ◦ s.

The equivariant structure on DFL /E is an isomorphism of algebras (satisfying a certain cocy-

cle condition) act∗ DFL /E
∼−→ p∗DFL /E . We thus get an isomorphism (g, q ◦ s)∗ act∗ DFL /E

∼−→
(g, q ◦ s)∗p∗DFL /E .

We immediately obtain the following corollary.

Corollary A.11. The functor VBK induces a functor VBK : DFL−ModGc→DSK
−Mod.

Using the equivalences of categories in §A.1, we have functors (which we continue to denote
by VBK)

Rep(P c)→QCoh(SK),

Rep((gc, P c))→DSK
−Mod.

Let Stor
K,Σ be a toroidal compactification, where, as usual, Σ denotes a cone decomposition.

These functors can be extended to functors VBcan
K

Rep(P c)→QCoh(Stor
K,Σ),

Rep((gc, P c))→DStor
K,Σ
−Mod,

where DStor
K,Σ

is the sheaf of logarithmic differential operators.

A.3 Application to modular curves

We now specialise to the setting of modular curves, where (G,X) = (GL2,H) with H the upper
and lower half-plane. We change notation and let XK = Stor

K,Σ. We take a representative of P to

be the lower triangular Borel B with Levi M = T the diagonal torus.

A.3.1 Modular forms. For any κ∈X∗(T ), we let ωκ
K or simply ωκ be VBcan

K (w0κ). The
space of weight κ, level K modular forms is H0(XK , ω

κ).

Remark A.12. Let E→XK be the universal semi-abelian scheme. Let ωE be the conormal
sheaf, and Lie(E) the Lie algebra sheaf dual to ωE . We adopt similar notation for the dual
semi-abelian scheme ED. We let HE =HdR

1 (E) be the relative log-de Rham homology of the
Kuga–Sato compactification of E.

Let St be the standard representation of G. By construction VBcan
K (St) =HE equipped with

the Gauss–Manin connection. The B-filtration 0→Q((−1; 1))→ St→Q((1; 0))→ 0 gives the
Hodge filtration

0→ ωED →HE→ Lie(E)→ 0.

We deduce that ωED = ω(1;0) and ωE = ω(1;−1).
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Let π : MdR,K→XK be the T -torsor over XK . We have π∗OMdR,K
=⊕κ∈X∗(T )ω

κ, and hence
we deduce that

H0(MdR,K ,OMdR,K
) =

⊕
κ∈X∗(T )

H0(XK , ω
κ)

and that HomT (−w0κ,H
0(MdR,K ,OMdR,K

)) =H0(XK , ω
κ).

A.3.2 Nearly holomorphic modular forms. We now discuss nearly holomorphic modular
forms. For an integer r≥ 0 and κ∈X∗(T ), let Hκ,r =VBcan

K (Filr(M
∨
κ )) and Hκ =VBcan

K (M∨
κ ).

We have a connection ∇κ :Hκ→Hκ ⊗Ω1
XK/Q(logD), where D denotes the boundary divisor of

XK . This connection satisfies ∇κ(Hκ,r)⊆Hκ,r+1 ⊗Ω1
XK/Q(logD).

Remark A.13. We have Hκ,r =SymrHE ⊗ ωκ−r((1;0)). Furthermore, we also have
Ω1
XK/Q(logD)∼= ω2ρ by the Kodaira–Spencer isomorphism.

The space of nearly holomorphic modular forms of weight κ, degree r and level K is precisely
the space H0(XK ,Hκ,r). Using the Kodaira–Spencer isomorphism, we have a map

∇κ : H
0(XK ,Hκ,r)→H0(XK ,Hκ+2ρ,r+1).

It is also possible to describe nearly holomorphic modular forms as functions on the torsor PdR,K .
Let π′ : PdR,K→XK be the B-torsor over XK .

Proposition A.14. The following properties are satisfied.

(i) The sheaf π′∗OPdR,K
has an action of B and the action of the unipotent radical U yields a

filtration Filrπ
′
∗OPdR,K

= π′∗OPdR,K
[nr+1].

(ii) The action of T yields a decomposition

π′∗OPdR,K
=

⊕
κ∈X∗(T )

Hκ

compatible with the filtration.
(iii) We have a connection ∇ : π′∗OPdR,K

→ π′∗OPdR,K
⊗OXK

Ω1
XK/Q(logD) which commutes with

the action of T ,
(iv) We have HomB(2ρ, π

′
∗OPdR,K

) =Ω1
XK/Q(logD).

Proof. The (g, B)-module OB corresponds to the tautological torsorG→G/B which corresponds
to PdR,K .

We now pass to the limit over K and let PdR = limK PdR,K and X = limK XK .

Proposition A.15. The following properties are satisfied.

(i) The space H0(PdR,OPdR
) has commuting actions of B and G(Af ).

(ii) The U -action on H0(PdR,OPdR
) yields an increasing filtration

Fil•H
0(PdR,OPdR

)⊂H0(PdR,OPdR
).

(iii) For each κ∈X∗(T ), we have

HomT (−w0κ,H
0(PdR,OPdR

)) =H0(X,Hκ)

and

HomT (−w0κ, FilrH
0(PdR,OPdR

)) =H0(X,Hκ,r).
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(iv) We have a G(Af )×B-equivariant isomorphism OPdR
⊗OX

Ω1
X/Q �OPdR

{2ρ}, where the

latter means we twist the action of B by the character 2ρ.
(v) We have a T ×G(Af )-equivariant derivation

∇ : H0(PdR,OPdR
)→H0(PdR,OPdR

)⊗Q Q{2ρ},
which satisfies ∇(FilrH0(PdR,OPdR

))⊆ Filr+1H
0(PdR,OPdR

)⊗Q Q{2ρ} for all r≥ 0.

Proof. This follows immediately from Proposition A.14.

Appendix B. Glossary of notation

In the following sections, the reader will find a list of some objects appearing frequently in this
paper, together with how they are denoted in § 2 (where there is no assumption on the levels
in order to state our main result in its most general form) and in the rest of the paper (i.e., at
hyperspecial level).

B.1 Comparison of notation

The below table gives a comparison of the notation between § 2 and the rest of the paper.
Object description General level (§ 2) Hyperspecial level (§ 3, § 5, § 6)
Level subgroup at p Kp ⊂GL2(Qp) compact open Kp =GL2(Zp) (omitted from notation)
Level subgroup away from p Kp Kp (omitted from notation)
Level of ordinary locus Kp,PKp (P ′)intKp (omitted from notation)
Level of Igusa tower UKp,P

Kp U int
P ′ Kp (omitted from notation)

Torsor group of the Igusa tower MKp,P
T (Zp)

The ordinary locus IGKp,P Kp IG(P ′)intKp =Xord
GL2(Zp)Kp =Xord

The Igusa tower IGUKp,P
Kp IGU int

P ′ Kp = IG∞
The p-adic modular forms MUKp,P

M

Nearly overconvergent modular forms N †
UKp,P

N †

Continuous functions Ccont(UKp,P
(−1)∨,Zp) Ccont(Zp,Zp)

Locally analytic functions Cla(UKp,P
(−1)∨,Qp) Cla(Zp,Qp)

Atkin–Serre operator ΘUKp,P
Θ or θ

B.2 Diagram of torsors and (nearly) overconvergent forms

For s� r� 1, one has the commutative diagram

F̃r,s F̃AI
r,s P an

dR

IG∞ Fs Fr ×Xr
Xs Man

dR

Xord Xs X

and spaces

– M =H0(IG∞,OIG∞) (p-adic modular forms),
– M † = lim−→s

H0(Fs,OFs
) (overconvergent modular forms),
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p-adic interpolation of Gauss–Manin connections

– N †,AI = lim−→r,s
H0(F̃AI

r,s ,O ˜FAI
r,s
) (nearly overconvergent modular forms as in [AI21]),

– N † = lim−→r,s
H0(F̃r,s,O ˜Fr,s

) (nearly overconvergent modular forms),

– N hol =H0(P an
dR,OP an

dR
) (nearly holomorphic modular forms), and

– M hol =H0(Man
dR,OMan

dR
) (holomorphic modular forms),

fitting into the following diagram.

M † M hol

M N †,AI N hol

N †
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51 (2018), 603–655; MR 3831033.

AIS14 F. Andreatta, A. Iovita and G. Stevens, Overconvergent modular sheaves and modular
forms for GL2/F , Israel J. Math. 201 (2014), 299–359.
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Épijournal Géom. Algébrique 6 (2022), 1–35.
BP23 G. Boxer and V. Pilloni, Higher Hida theory for Siegel modular forms, Preprint (2023),

https://www.imo.universite-paris-saclay.fr/∼vincent.pilloni/higherhidaSiegel.pdf.
CS17 A. Caraiani and P. Scholze, On the generic part of the cohomology of compact unitary

Shimura varieties, Ann. of Math. (2) 186 (2017), 649–766.
Col97 R. F. Coleman, p-adic Banach spaces and families of modular forms, Invent. Math. 127

(1997), 417–479.
Col10 P. Colmez, Fonctions d’une variable p-adique, Astérisque 330 (2010), 13–59; MR
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