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ABSTRACT

In this paper, we give a new geometric definition of nearly overconvergent modular
forms and p-adically interpolate the Gauss—Manin connection on this space. This can
be seen as an ‘overconvergent’ version of the unipotent circle action on the space of
p-adic modular forms, as constructed by Gouvéa and Howe. This improves on results
of Andreatta and lovita and has applications to the construction of Rankin—Selberg
and triple-product p-adic L-functions.
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1. Introduction

One of the central tools for studying complex L-functions associated with cuspidal modular eigen-
forms (or convolutions of such forms) is the Maass—Shimura differential operator, which acts on
the space of nearly holomorphic modular forms (first introduced by Shimura to study the alge-
braicity properties of the Rankin—Selberg L-function [Shi76, Shi86]). For various applications in
number theory and arithmetic geometry, such as for the construction of p-adic L-functions,
it is often desirable to understand how this operator varies p-adically for a given prime
number p.

Since the Maass—Shimura operator is closely related with the Gauss—-Manin connection (which
makes sense in the p-adic world), one is led to understand how powers of this connection vary
p-adically on an appropriately defined space of ‘p-adic modular forms’. In the ordinary setting
(i.e., as the modular forms vary in Hida families), the situation is well understood — one can use
the ‘unit root splitting’ to construct the Atkin—Serre operator on Katz p-adic modular forms,
which is significantly easier to analyse than the full Gauss—-Manin connection (on g-expansions it
is simply the operator © = qd/dq). Since the space of Katz p-adic modular forms comes equipped
with an ordinary idempotent for the U,-operator and satisfies a classicality theorem, this is
often sufficient for the construction p-adic L-functions in the ordinary setting (see, for example,
[DR14)).
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In the non-ordinary case the situation is much more delicate.

— On the one hand, the desired space of ‘p-adic modular forms’ (which we denote by .4  and
refer to as nearly overconvergent modular forms) should have a good spectral theory for
the Up-operator (i.e., one can define < h-slope parts for any integer h > 0). This property
means that the space cannot be ‘too large’ — for example, this property is not satisfied by
the space of Katz p-adic modular forms.

— On the other hand, the space 4T should carry an action of the Gauss-Manin connection
which can be p-adically iterated, which means that 4T cannot be ‘too small’ — for example,
the space of nearly overconvergent modular forms as defined by Urban [Urb14]! has a good
spectral theory for Uy, but is too small for p-adically iterating the Gauss-Manin connection.

To put this another way, one looks for an optimal intermediate space between classical modular
forms and Katz p-adic modular forms, which has a good spectral theory for U, and on which the
Gauss—Manin connection can be p-adically iterated. If such a space exists, it is likely that the
method for constructing p-adic L-functions in the ordinary setting generalises to the finite-slope
setting.

In [AI21] the authors gave a construction of such a space of nearly overconvergent modular
forms and p-adically iterated powers of the Gauss—Manin connection. However, there is an ana-
lyticity assumption on the weight, and hence on the p-adic L-functions that they construct. We
also point out that in [HX14], the authors propose a construction of families of nearly overcon-
vergent Siegel modular forms, but they do not consider p-adic iterations of the Gauss—Manin
connection. The aim of this paper is to provide a new approach for the construction of nearly
overconvergent modular forms which is optimal in the aforementioned sense, that is, which has a
good spectral theory for the U, operator and over which we have a full p-adic interpolation of the
Gauss—Manin connection (where in particular the analyticity assumption of [AI21] is removed).
As an application, we describe how this can be applied to the construction of triple-product and
Rankin—Selberg p-adic L-functions in families of finite-slope modular forms.

1.1 The main result

Throughout the main body of this paper we will take G = GLy and P = B C G the upper trian-
gular Borel. We let T' C B denote the diagonal torus with character group X*(7T') and we identify
characters x € X*(T') with pairs (k;w) € Z? via the rule diag(t,t~'2) — t*2*. We let X*(T)* be
the cone of dominant weights given by the condition k& > 0. In particular, the sum of positive
roots, denoted 2p, corresponds to the character (2; —1). We let P =B C G denote the lower
triangular Borel subgroup.

Fix a neat compact open subgroup K? C G(A?) and let Pyr denote the B-torsor over the
modular curve X of level K = GLy(Z,)K? parameterising frames of the first de Rham homology
respecting the Hodge filtration. Then one can consider the following spaces.

— The space of nearly holomorphic modular forms .4 ! of level K, obtained as sections of the
de Rham torsor Pyr. This space carries an action of T' (through the torsor structure), and
the isotypic pieces under this action are nearly holomorphic forms of a prescribed weight.
One has an ascending filtration Fil, 4! given by nearly holomorphic modular forms
of degree less than or equal to r (see Proposition A.15). Furthermore, the Gauss—Manin
connection induces an operator V: 410l — #hol which satisfies Griffiths transversality
and shifts the weight by 2p.

'Denoted by N> in [Urbl14, §3.3].
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— The space of p-adic modular forms .# of level K, obtained as sections of the Igusa
tower ZG (which is a proétale T'(Z,)-torsor) over the ordinary locus inside the modular
curve Xg. The space .# therefore comes equipped with an action of T'(Z,) and, tak-
ing isotypic subspaces for this action, one can consider the space .# of weight « p-adic
modular forms, for any locally analytic character of T'(Z,). The Gauss-Manin connection
composed with the unit root splitting induces the Atkin—Serre differential operator

O: M— M.

There is a commutative diagram

JVhOl /A4

Vl l@ (1.1)

</Vhol /4

where the horizontal arrows are induced from restricting to the ordinary locus and applying
the unit root splitting. In addition to this, the space of p-adic modular forms comes equipped
with a Up-operator, a Frobenius operator ¢ and the diamond operator S, and, as explained
in [How20], the space .# carries an action of continuous functions Ceont(Zp, Qp) such that the
identity function acts as ©. The main result of this paper is the following overconvergent version
of this picture.

THEOREM 1. There exists a space A1 of nearly overconvergent modular forms, which is an
LB-space of compact type and which comes equipped with actions of Uy, ¢, Sp, T(Zy), locally
analytic functions Cla(Zp, Qp), and with an ascending filtration Fil, A4 . Moreover, there is a
natural map A4V — .# which is compatible with all these actions and AT satisfies the following
additional properties.

(i) The filtration is stable under Uy, Sy, ¢ and T(Zp). Moreover, if k: T(Zy) — C) is the

character given by diag(t,t~'2) s tF2%, then Fil, YAl (the rth filtered piece of nearly
overconvergent modular forms of weight k) is the space of nearly overconvergent modular
forms of weight k and degree r as constructed in [Urb14]. In particular, the composition of
the inclusion Fil, N € AT with the map AT — . induces the usual inclusion of nearly
overconvergent modular forms into p-adic modular forms.

(ii) For any locally analytic character r: T(Z,) — CJ,
forms J%j admit slope decompositions with respect to U, and the finite-slope part agrees
with the finite-slope part of | J,~ Fil, AN

(iii) The operator S, is invertible, commutes with Up, and ¢, and satisfies Uy, o =pS,.
Furthermore, for any ¢ € C'*(Z,, Q,) and t = diag(t1, t2) € T(Z,), we have

top=¢(ty' -~ t)ot, Upogs=¢(p-—)olUp, ¢od(p-—)=dop, Sop=¢oS5,
as endomorphisms of AT,
(iv) One has a T(Z,)-equivariant factorisation N1 < 4T — 4 of the horizontal map in (1.1).
In particular, the action of the identity function in C’la(Zp, Qp) extends the Gauss—Manin
connection V: A1l — 1ol “and the action of the indicator function lyx € C™(Z,,Qp) is

given by the p-depletion operator 1 — pilSpflgoUp.

the weight k nearly overconvergent

Remark 1.1. The existence of the action of C'*(Z,, Q,) in Theorem 1 allows one to p-adically
interpolate powers of the Gauss—Manin connection. Indeed, for any locally analytic character
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X: Z, — C; one can define
VXf[p] — (X'lz;)*fv fEJVT®Qp(Cpa

where % denotes the action of C'#(Z,,Q,)&C, and ¥ - 1yx: Zp — Cp, denotes the extension by
zero of the character y.

Remark 1.2. Tt is possible to prove an analogue of Theorem 1 for any level at p (see Theorem
2.11 and §2.4).

The idea for constructing A is as follows. Let Mgg = Pir xZ T denote the pushout of Pig
along the map B — T. This is a scheme whose global sections are equipped with an action of
T, and the isotypic pieces under this action are holomorphic forms of a prescribed weight and
level K. There is a natural map ZG — MJ; from the Igusa tower to the analytification of Mgr
providing a reduction of structure to a T'(Z,)-torsor over the ordinary locus. One can interpret
the space of overconvergent modular forms .#* as overconvergent functions on the closure of
ZG inside M3R (see [Pill3, AIS14]). To define .4 t, we follow a similar approach, but now we
make use of the unit root splitting. More precisely, the unit root splitting and the universal
trivialisation give rise to a natural map ZG — P extending the morphism ZG — M3, which
can be encoded in the important diagram

an
P dR

7

16 —— Mig

o

Xord — X

where X (respectively, X,;q) denotes the adic generic fibre of the p-adic formal completion
X of Xz (respectively, the ordinary locus Xorq C X). Inspired by the above interpretation of
overconvergent modular forms, we define the space of nearly overconvergent modular forms 4T
as the space of overconvergent functions on the closure of ZG inside Pjj. The existence of the
Hecke and T'(Z,) actions on 4T follows almost immediately from this description.

The main technical part of this paper is the construction of the action of locally analytic
functions Cla(Zp, Qp) on A T whose proof, occupying §§ 3-5, we now sketch. We hope that this
sketch will also serve as guide for the reader interested in the details of the proof. We first
note that V extends to a bounded linear derivation on AT, Let f € C'(Z,,Q,) be a locally
analytic function. By a classical theorem of Amice, there exists a real number € > 0 such that
the Mahler expansion f(x) =) ;-qak (7) of the function f satisfies the condition p**|ay|, — 0
as k— +oo. We will denote by C.(Zp, Qp) C Ceont(Zyp, Qp) the subspace of continuous func-
tions whose coefficients satisfy this growth condition for some fixed ¢ > 0. Then, in order to
make sense of the expression f(V)=>,-,ax (Z), it suffices to show that the norm of the
operators

pks<z>_ kav(v_l)k'(v_k+l)7 kZl,

is uniformly bounded in k, for any € > 0.
We first consider the local setting over a quasi-compact open affinoid U = Spa(4, A7) C X
arising as the adic generic fibre of an affine open subscheme Spf(A™*) C X. Set Spa(Auq, A;rr a)
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U Xx Xorda ZQA = Zg Xx Spa(A, A+) = Spa(Aord’oo, A+

ord,oo) and

JVX = colimy HO(V, Oy),

where the colimit is over all open subsets of Pjg 4 := Pjg Xx U containing the closure of ZG 4.
The strategy is to analyse the Gauss—Manin connection first over the ordinary locus, and then
on certain overconvergent neighbourhoods.
More precisely, in § 3.3 we construct, using the moduli space interpretation of the Igusa tower
ZG A, a cofinal system of strict quasi-compact open neighbourhoods {UuT n}n>1 of ZG 4 inside
dR.A,, = PiR Xx Spa(Aord, A;rrd) which (after pulling back to ZG 4) is simply a disjoint union
over A € T(Z/p"7Z) of finitely many rigid balls B = ( 1;5&?? 14pnGan ) of radius p~ ", that is, we

have
B % 5pa <A°rd’°° <Xp” : ;;’ Zp” 1> Aot <Xp” : 1;’ Zp” 1>>

We then show (Proposition 5.2) that the restriction of the Gauss—-Manin connection to each of
these balls has a very simple description modulo p™, namely, it extends the Atkin—Serre operator
(which we know is integral and extends to an action of Ceont(Zp, Zy)) and is ‘nilpotent’
in the sense that V(X) =Y, V(Y)=V(Z)=0. One can show (Propositions 4.6 and 4.10) that
any derivation satisfying these properties extends to an action of C.(Z,, Qp), for any ¢ >0,
provided that the integer n is sufficiently large. As a consequence of this, we show (Proposition
5.3) that, for any integer £ > 0 there exists some n(g) > 1 such that the Gauss—Manin connection
extends to an action

Ce(Zp, Qp) X Nty = Nttir (1.2)

for any n > n(e). Here we use the notation Az, . := Oy, (UnTn)-

We then establish an overconvergent version of this result (Proposition 5.4). For this, let
(Xr)ren,, denote the usual system of neighbourhoods of the ordinary locus defined as the loci
whose rank-one points | - |, satisfy ||, > p~ /P for any local lift h of the Hasse invariant. We set
Spa(A,, A) = X, xx Spa(A, AT). Since AT, = A (1/h), any section defined over the ordinary
locus can be approximated modulo arbitrary large powers of p by an overconvergent section. This
allows us (Proposition 3.13) to overconverge the system {Uut,}n>1 of neighbourhoods of the
Igusa tower and build a cofinal system {U, ,} of quasi-compact open strict neighbourhoods of
7G 4 inside Pj; , such that one can control the norms of the restriction maps O(Uy, ) = O(Un,s)
for s > r (see Cérollary 3.15). Since the system {Up, , } is cofinal, we can locally describe the space
of nearly overconvergent modular forms as

AT =lim OU,.,).
Combining the above key property on the norms of the restriction maps with the fact that the
Gauss—Manin connection already exists on JVJ , we obtain (Proposition 5.4) an action

Ce(Zp, Qp) x N — N

extending the Gauss—Manin connection, for any € > 0. In other words, the Gauss—Manin con-
nection on ,/Vj extends to an action of C’la(Zp, Qp). Since this action is uniquely determined by
its interpolation property, it is functorial in A and glues to the desired action in Theorem 1.
We expect that this construction will readily extend to higher-dimensional Shimura varieties (at
least when one has a non-empty ordinary locus) — for example, such a generalisation appears in
[Gra24] in the setting of unitary Shimura varieties.
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Finally, we note that Theorem 1 has immediate applications to the construction of p-adic
L-functions for the triple product of modular forms (Theorem 7.16) and for the Rankin-Selberg
product of two modular forms (Theorem 7.20). In particular, one can use Theorem 1 to construct
three-variable versions of these p-adic L-functions without the restriction on the weight appearing
in [AI21], and without appealing to the Beilinson-Flach Euler system (as in [Loel8]). We refer the
reader to §7 for the relevant statements. Theorem 1 is also a key ingredient in the construction
of p-adic L-functions for GSp, x GLy and GSp, x GLg x GLg appearing in [GR24].

1.2 Structure of the paper

The paper is organised as follows. In §2, we introduce the main objects in the paper (p-adic
modular forms, nearly overconvergent modular forms, etc.) and state the main theorem, which
is a slightly more general version of Theorem 1. We also explain why it is sufficient to prove the
main theorem at hyperspecial level at p. In §3, we describe certain ‘explicit’ neighbourhoods of
the Igusa tower in P4yg that are useful for constructing the action of Cla(Zp, Qp) on A T, which
takes place in §5 and uses the abstract theory of actions on Banach spaces developed in §4.
Finally, we describe the additional structures on nearly overconvergent modular forms (such as
the filtration and 7'(Z,) and Hecke actions) in § 6 and the application to p-adic L-functions in §7.
When discussing the action of differential operators throughout the paper, we find it helpful to
use the language of D-modules. We have therefore summarised the main constructions regarding
this in Appendix A. Furthermore, since the notation in § 2 differs from the rest of the paper, we
have provided a glossary of notation in Appendix B.

1.3 Notation and conventions

We fix the following notation and conventions throughout.

— We say a Zjy-algebra S is admissible if it is p-adically complete and separated, p-torsion-free,
and topologically of finite type over Z,.

— For any p-adic manifold X and LB-space V, we let Ceons(X, V) and C'*(X, V) denote the
spaces of continuous and locally analytic maps X — V', respectively.

— For an integer n > 0 and a partition m; + - - - +m, = n by non-negative integers, we let

< n > n!
My, -, My my!---my!

denote the associated multinomial coefficient.
— All adic spectra we consider are with respect to complete Huber pairs.
— All p-adic valuations are normalised so that |p|, =p~ .
— We let wg denote the longest Weyl element of GLs.

We note that the ‘de Rham’ torsor Py that we consider throughout the paper is a torsor
for the lower-triangular Borel subgroup P =B (so, in the language of [CS17, §2|, we take
p1: G, — GLg to be the fixed choice of Hodge cocharacter given by zi(z) = (#). On the other
hand, our convention is that the positive root for GLg lies in B (and the notion of dominant
or highest weight is with respect to this positive root). In addition to this, our weights are
characters of the standard torus inside GLo (rather than SLs), so when defining ‘weight &’
(nearly overconvergent) modular forms there is often a twist by the longest Weyl element wy.
Our conventions are arranged so that one can simply pass to the SLo-setting (as found in the
literature) by restricting weights to the torus in SLs and identifying elliptic curves with their
dual via the principal polarisation.
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2. Nearly overconvergent modular forms and the main result

To state the main result, we first introduce some notation for the space of p-adic modular forms.
We warn the reader that, in order to present the most general result possible, the notation in
this section differs slightly from that in the rest of the paper (as explained at the end of this
section, it will be enough to establish the result with hyperspecial level at p, so we will often
omit the level subgroup from the notation). We hope this does not cause any confusion; we have
provided a glossary of notation in Appendix B outlining the differences.

2.1 Infinite-level Igusa towers and p-adic modular forms

Set G = GLy and let P C G denote the upper triangular Borel subgroup with diagonal torus 7'
Fix a prime number p and a neat compact open subgroup K? C G(A?).

In this section, we will define the relevant spaces of p-adic modular forms. In order to
do this, we need to introduce the infinite-level Igusa varieties as constructed in [CS17, §4.3]
(see also [How20] and [BP23, §3.4] for some complementary details). Consider the p-divisible
group over SpfZ, given by Xopq = pip~ & Qp/Z, and define the following group schemes over
Spf Z:

X oo X

oa = Qsog() = (07 ). = Attt = (7 ),
P P

where QIsog(—) (respectively, Aut(—)) denotes the self quasi-isogenies (respectively, automorph-

isms) of a p-divisible group and fipe~ =limyy, pp is the universal cover of p,~. Recall that the

universal cover sits in an exact sequence

0= Tpp(pepee ) = fipre —> fipee — 0,
and note that Q, = Qlsog(pp=) = Qlsog(Qy/Zy) (see [SW13, §3.1]). We let

X X
A ) e R i U]
which are (locally) profinite proétale group schemes over Spa(Qy,Z,). We let Up C P! and
UBL C (P')™ denote the unipotent radicals. There is a natural map P’ < J2% := Jorq Xspa(z, 7,)
Spa(Qyp, Z,) from P’ to the adic generic fibre of Juq4, induced by Q,(1) — pp~ (but note
that J2 is a one-dimensional group scheme, and therefore much larger than P’). We
will often write @m for the p-divisible group pp,~ over SpfZ, to emphasise the fact that
@m(Spf R)=1+ R%, where R C R denotes the ideal of topologically nilpotent elements
(cf. [How20, Remark 2.1.3]).

We now recall the construction of the perfect Igusa tower J&k». Let Xqr,(z,)x» — SpecZy
denote the (compact) modular curve of level GLa(Z,)K?, and X, (z,)x» — Spf Zy its com-
pletion along the special fibre. Set J& p/ym gr ::%((’;ri(zp)l(p to be the ordinary locus. We

also let j@U}i:/t K» = IB(prymgr denote the proétale T'(Zy)-torsor parameterising trivialisations
fipe — E[p>]° and Q,/Z, — E[p™]°* of the connected and étale parts of the p-divisible group
associated with the universal (ordinary) elliptic curve (since E[p>®]°t = (E[p>]°)" the étale part
extends to a p-divisible group over the boundary). Note that there is a natural lift of Frobenius
@ on j@UIiDn/th.

DEFINITION 2.1. We define J&f» = lim, ’JQ5U;:;,K,). If Var,z,)k» — XaL,(z,)k» denotes the
good reduction locus, then IS kr Xxq1, 0 wr DL, (z,)k» Parameterises elliptic curves £ with

a KP-level structure and an isomorphism X,.q — E[p™] (see [CS17, §4.3]).
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PROPOSITION 2.2. The group Joq acts on IS k.

Proof. By [CS17, Corollary 4.3.5], the group Joq acts on I8 xk»r Xxqr, o xr DaLa(z,)K»- Indeed,
one can formulate the moduli problem for I&x» Xxq,w, 0 DGLy(z,)k» €duivalently as the
space of elliptic curves E with a KP-level structure and a quasi-isogeny Xg.q — E[p™], up
to quasi-isogeny (see [CS17, Lemma 4.3.4]). We claim that the action extends to an action
over J®g». Since we already have an action of T'(Q,), it suffices to prove that the action
of fi,~ extends. By p-adic Fourier theory, this action amounts to an action of Ceont(Qp, Zp)
on Ozs,, (see, for example, [How20, §7]). On a cusp, this action is given by ¢(>_ ang™) =
> d(n)ang™ by [How20, Theorem 7.1.1], and thus preserves the regular functions at the
cusp. O

For any compact open subgroup K, p C P’ (i.e., one which is commensurable to (P')), we

let K, p denote its schematic closure in Jorq. By [BP23, Lemma 3.4.8] the group scheme K, p
is a profinite flat group scheme over SpecZ, with generic fibre K, p. We let &k ,x» be the

flat formal scheme equal to the categorical quotient of J&g» by K, p. This is the affine formal

scheme whose ring of functions is (O5e ., )77 Similarly, for any compact open

Uk,,CUp = <1 Qp1(1)>7

we let jqﬁUKp kv be the flat formal scheme equal to the categorical quotient of J& x» by Uk, ..
If K, p is a compact open subgroup of P’ and if we set Uk, , = K}, p N Up, then there is a short
exact sequence

0—-Uk,,— Kyp— Mg, , —0.

The map J6y,  k» =IOk, .k» is a proétale torsor under the group My, ..

Remark 2.3. Let @;yd denote the p-adic completion of Qp(up~) with ring of integers Zgyd.

If we base change to Spa(Q¥®, Z&¥"), then P’ = P(Q,) (i.e., it is isomorphic to the constant
étale group scheme associated with P(Q))), and we may consider spaces J& K, pK? 25" for any

compact open K, p of P(Q,).

Recall that the space of p-adic modular forms can be defined as (isotypic parts of)
sections of the classical Katz moduli space parameterising elliptic curves (modulo prime-
to-p quasi-isogenies) equipped with a trivialisation of the connected part of its associ-

ated p-divisible group. Let Ut denote the schematic closure of U in Jyq (which is

equal to the unipotent part of Ji%). By [How20, Lemma 5.1.1], the Igusa tower J® o

O

is an fpqc U-torsor over the above Katz moduli space, which explains the following
definition.

DEFINITION 2.4. The space of p-adic modular forms? of tame level K? is defined as

M= Ho(jﬁwf v, O30

Uijgl/txp )

The following theorem summarises some of its key structures.

2The Katz Igusa tower often considered in the literature is a Zy -torsor which parameterises isomorphisms i =
E[p™]°. The version of the Igusa tower we use has better functoriality properties with respect to Hecke operators.
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P-ADIC INTERPOLATION OF GAUSS-MANIN CONNECTIONS
THEOREM 2.5. Let Ceont(Zy, Zy) denote the Zy-algebra of continuous functions Z, — Zy,.

(i) The space A% carries a Z,-algebra action of Ceont(Zy, Zy), an action of T(Z,) and the
Hecke operators

Uy = [UFF - diag(1,p") - U,
pi=[Up!-diag(p™, 1) - UB],
Sp:=[diag(p~',p™") - UBY,

and an action of the prime-to-p Hecke algebra H». The action of T(Z,) commutes with
that of Uy, ¢, S, and we have the relations

Upop=pS,, SpolU,=U,0S8, poS,=5,0¢.
(ii) Let c: Spf Z,(¢n) ([ /N]] — I&yu v be a cusp, where N is a sufficiently large integer with

(p, N) =1, which gives rise to a q-expansion map c: A+ — Z,((x)[[¢*/N]]. Then for any
¢ € Ceont(Zy, Zyp) and f € Mt one has

co-f)= > k)" wherec(f)= Y apd".
ke(1/N)Z ke(1/N)Z
(iii) Let ¢ € Ceont(Zp, Zp). Then for any t = diag(ty,t2) € T(Z,), we have t o ¢=¢(ty"  —-
t1) o t as endomorphisms of .# . Moreover, we have
Upo¢=od(p-—)oUp ¢od(p-—)=¢op, S,0¢=¢ob

as endomorphisms of .#™.

Proof. The action of the prime-to-p Hecke operators Hg» is clear. For the other opera-
tors, we note that the action of the group Joq on JBg» induces an action of T'(Z,),
(Ut diag(1,p~t) - UMY, [UW - diag(p~t, 1) - URY), [diag(p~!,p~!) - Ul on IByini v, as well as
an action of fipee /Ty (fipee) = ppee = Gyn. By Fourier theory, this action amounts to an action of
Ceont(Zp, Zp). See [How20, § 7.1]. The relations are easily determined. O

Let Tt C T(Q,) denote the submonoid of elements diag(t1, t2) such that v,(t1) > v, (t2). Then
we see that T'(Z,), U, and S, generate an action of . We let ©: .#* — .#* be the operator
corresponding to the action of the identity function Idz, € Ceont(Zp, Zp).

Remark 2.6. Let Uk, , be a compact open subgroup of Up:. Since the unipotent part of Jurq
is abelian, the action of J,q on J& g, induces an action of ju,~/Uk, . on jeﬁUvap x». Note
that g~ /Uk, . is a formal torus with cocharacter group Uk, .(—1), and p-adic Fourier theory
identifies measures on Uk, .(—1)" with functions on Uk, ,.(—1) ® Gy The action of Uk, .(-1)®
([A}m thus gives an action of Ceont(Uk, .(—1)",Z,) on sections of jQﬁUKp,P kr. As in the proof of
Theorem 2.5, we identify Ul*(—1)Y with (the constant group scheme) Z,.

Let ///Jkp,zv :HO(JQﬁUKPYPKp, Og@UKp,PKp). Using the action of diag(p™, 1) € Joq by conju-
gation, we can identify I&y, k» with 3@5U;§m xr and Z1 with ///JK . This conjugation
P, 4 P

action will transport the U,, ¢, Sp-actions and will conjugate the action of Ceont(Zyp, Lp) =
Coont (UBH(—1)Y, Zp) with Ceont(Uk, ,»(—1)V, Zp). Set My, :///JK N [1/p]. We let

@UKp,p : %UK;),P — '//UKp,p
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A. GrAHAM, V. PILLONI AND J. RODRIGUES JACINTO

denote the map induced by the action of the identity function of Q, in Ceont(Uk, ,(—1)Y,Z,) ®
Qp. Note that conjugation by diag(p", 1) sends Ouy, , top"O.

2.2 Relation to classical forms

To compare p-adic modular forms with classical modular forms (at this level of gener-

ality), we work over Spa(QY?, Z&"). We fix an isomorphism Z,=Z,(1). Therefore, we
can (and do) identify P’ and P(Qp). We let X, gue be the perfectoid modular curve

and we let Zng@;ycl =T k» X Spa( ;}’CI,ZIC)YCI)

Ing7szcl — XKP,QCyCl .

D

Let K, C G(Qp) be a compact open subgroup and let g € G(Q,). The map

. We have a natural P(Q,)-equivariant map

‘9
Ing,Q;yCI % XKP7Q;}’C1 _> XKPKP,Q;yCI

factors through an open immersion Ing,pKP,QZY“ — XKPKP,Q;Y“ where K, p = gK,g ' N P(Qp).
One can think of this open as a connected component of the ordinary locus in X} ., Qe

Remark 2.7. In general this open immersion ZG K, pK»Q0 X K, K»Q is not defined over Q,
because the way we construct the level structure is different on both sides. On the other hand,
for hyperspecial or Iwahori level and g =1, it is defined over Q,,.

Let Par i — Xk denote the right P-torsor parameterising frames of H g respecting the Hodge
filtration (see § A.3). We now consider the M, ,-torsor IgUKPTPKP,Qéy“ —IG g Ko g For

ease of notation, set K = KPK,,. Then we have a commutative diagram

an
1 gUKp,P K»,Qp P dR,K,Q5

| |

L9k, prcr gy — 7 Xy

where Pjﬁ 5ol denotes the analytification of Pyr . The top map is induced by the Hodge-Tate
map and the unit root splitting. It is M, ,-equivariant via the natural map Mg, , — T%" C P
The following proposition describes the relation between nearly holomorphic modular forms

and p-adic modular forms.

ProOPOSITION 2.8. We have a natural map
H(Par, i O 1) ®g, QY = My, ©0,Q5, (2.1)

which is equivariant for the action of the prime-to-p Hecke algebra Hx», as well as for the action
of Mg, ,, via the map Mp, , —T C P. Hence, for any x € X*(T'), we obtain a map

H(Xk, Hy) ®g, Q)Y — Homyy, | (—work, My, | )®0,Q {wor}, (2.2)

where H, = Homy(—wor, 7.Op,, ) (with 7: Pyr x — Xk the structural map), and ngd{’wofi}
means that T acts on Q¥ through the character wok.

Assume that ngg_1 has an Iwahori decomposition

ngg_l = Ungg‘1 'Tngg_l ’ Ungg_l‘

Let H}p be the subalgebra of the Hecke algebra Hp, generated by [K), - g g Ky withteT+.
Then the map (2.2) is equivariant for the morphism sending [K, - g~ 'tg- K, tot € T™.
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p-ADIC INTERPOLATION OF GAUSS—MANIN CONNECTIONS

Proof. The existence of the first map just follows from the fact that IgUK,,p Kr — Par K is
equivariant for Mg, and functorial in K? (the map is induced by restrictionj. Therefore, the
maps (2.1) and (2.2) are well defined.

Let teT". Set K'=(g7'tg)K(g 'tg) ' NK and K" = (g 'tg) 'K'(g7'tg). set Uk, , =
ngg_1 NUp and Uk, = gK/}’,g_1 N Upr. Then we have a correspondence

Xp & X B X,

(g1t
where p; is the natural map, and po is the composition X~ M) Xgr» — Xg. We also have

a diagram of correspondences (over ngd)
_ A -
Dy IPdRJ( 2 1PdR7K
PdR,K IQUK; PKp PdR,K
IgUKp~PKp IgUKp.PKp

where ¢; is the natural map induced from the inclusion Uk, CUK, > G2 18 induced from right

multiplication by ¢ via the inclusion t‘lUKé‘Pt C Uk, ,, and the map X is the action of ¢ (via

P
the torsor structure on Pyr) composed with the morphism pflPdR K — Dy lPdR7 K arising from
the G(Qp)-equivariant structure on Pyr. The claim now follows from the fact that the left-hand

square is Cartesian. Indeed, one has
(K K" = [gKpg ™" 9B = [Ugk,g- 1 tUgi, g1t NUgk,g1] = (UK, ¢ U, ]
using the Iwahori decomposition for ngg_l. O

By the results in §A.3, one has that H,=VB@"(M)) is the quasi-coherent sheaf
associated with the dual Verma module of lowest weight wgk. In particular, H, is natu-
rally a Dx,-module on Xg. By composing the induced connection H, — H, ®Q}(K(Iog D)
with the map %N®Q}(K(log D) — Hy42, induced from the Kodaira-Spencer isomorph-
ism, we obtain a Qp-linear derivation V on HO(PdRJ(,OdeYK):@%X*(T) HY(Xg, H,)
(cf. Proposition A.14(2)).

PROPOSITION 2.9. One has the following commutative diagram.

HO(Pan i, Opan o) © Q9 Vs HO(Pag ¢, Opy ) © Q3!

L J

U
cycl Kp,P cycl
%UK;?,P ® @p %UK:D,P ® Qp

Proof. This is essentially a reformulation of [How20, Theorem 5.3.1]. Alternatively, one can check
this on g-expansions. O

2.3 The main theorem

We can now introduce the space of nearly overconvergent modular forms and state the main
theorem. Let K, C G(Q,) be a compact open subgroup, g € G(Q,) and K, p = gK,g ' N P(Q,)

: an
as above. Recall that we have a morphism IgUKp,p K Qe PdR’ Koo

2391

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 02:24:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25102479


https://doi.org/10.1112/S0010437X25102479
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

A. GrAHAM, V. PILLONI AND J. RODRIGUES JACINTO

DEFINITION 2.10. We define the space of nearly overconvergent modular forms to be
M= colimy HO(U, Op),

where the colimit is over all open subsets of P(?F{K Qs which contain the closure of
IGy. K Qe (via the morphism above) with transition maps given by restriction. Similarly,
p,P 1P

we define the space of overconvergent modular forms to be

//ZZBK L= colimy H(V, Oy/),

where the colimit is over all open subsets of M gﬁ KOy = Pjﬁ Ko x P an containing the

closure of IQUK Kr Qe These are LB-spaces of compact type, and one has a natural map
p,P ’

JVUT — My, . induced from restriction.
Ky p p, P

THEOREM 2.11. The space </VUTK comes equipped with actions of Uy, ¢, Sp, Mk, , and of

locally analytic functions C'**(Ug, .(—1)V,Qp) C Ceont(Uk, »(—1)¥, Q) which are compatible

with the actions on p-adic modular forms via the map ,/V f L ///UK . Furthermore, it also

carries an action of the lower triangular nilpotent Lie a]gebra n Cgly obtamed by differentiating
=r+1

the torsor structure on Pgﬁ K providing an ascending filtration Fil, A7; f =M. f "]
p,P p,P

(the elements killed by n’"“).

The space JVJK satisfies the following additional properties.
p, P

(i) The filtration is stable under Uy, Sy, v, Mk, , and F110</VT . is the space of overconver-
gent modular forms. Furthermore, we have Uy, o ¢ = pS, and Sp commutes with both U,
and .

(ii) Let Ry be an admissible Zy-algebra, Ry= R{[1/p] and set W = Spa(Ry, R§). Suppose
that : Mg, , — R{ is a locally analytic character. Then for any x € W(@p) and heQ,
there exists a quasi-compact open affinoid nejghbourhood Q= Spa(R, R") CW containing
x such that JVT o Homyy, , (—wok, </V ®R) admits a slope < h decomposition with

respect to the operator Up. Furthermore there eX1sts an integer r > 0 such that
<h <h
JVT = (Fil, </VUTKP )<h.

P’H

(iii) The analogous relations as in Theorem 2.5(3) hold for the actions of Uy, ¢, S,, M, ., and
Ca(Ug, .(-1)V,Q,) on JVJK . In addition to this, there is a factorisation
: op

(2.1)

1 1
H°(Par, i, OPy i) @ Q5° » My, ,@0,Qp

—

T
‘/VUKP,P

which is compatible with filtrations. The operator V intertwines with the action of the
identity function in C**(Uk, ,(—1)V, Q).

We will prove this theorem when K, = GL2(Z,) and g=1 in §§5 and 6 using results from

§63 and 4. As explained in the following section, this is sufficient for proving the theorem for
general K, and g.
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p-ADIC INTERPOLATION OF GAUSS—MANIN CONNECTIONS

2.4 Reduction to hyperspecial level

We now explain why it suffices to establish Theorem 2.11 when K, = GL2(Z,) and g = 1. Recall
that we denoted Up: = (! Qpl(l) )

LEMMA 2.12. Let K, K, C G(Q,) be compact open subgroups, and let g, g' € G(Qp).

(i) Suppose that Uk, . :=gKpg~ ' NUp =g K} (¢') ' NUp =: Uk, and (¢')"'gK,g7'g' C
K,. Then the natural map Pgg, K K» — Pyr,k,k» induced from right multiplication by
g 4 g (via the G(Qp)-equivariant structure on Pyqgr) induces an isomorphism

,/VUTK, A

p,P

respecting filtrations and the M i, and Mk, ,-actions. This implies that JI/UJrK is

p, P
intrinsic to the compact open subgroup Uk, .

(i) Let n € Z and t=diag(p", 1) € T(Q,). Suppose that g=g' =1, and t 'Kt = K, (which
implies t_lUK;‘Pt = UKp,P)- Then the isomorphism PdR,K;,Kp — Par,K,k» obtained as the
composition of right translation by t (via the G(Qy)-equivariant structure) and right
translation by t (via the torsor structure) induces an isomorphism

VAN WA

’
K p,P

respecting filtrations and the My , and Mk, ,-actions.

Therefore, since any compact open subgroup of Up: is conjugate to Up, it via some diag(p™, 1),
by transporting structure it is enough to prove Theorem 2.11 when Uk, , = Ut (e.g., when
K, =GLy(Z,) and g=1).

Proof. For the first part, let U =Uk, , = Uk .. We have a commutative diagram

Par,x; kv

b

IGuk» — ParK, K»

where f denotes the map induced by right multiplication by g~'¢’, the diagonal map is induced
from right translation by ¢’ and the horizontal map is induced from right translation by g.
The map f 1s finite étale away from the cusps not lying in ZGyk», hence it induces a map
T
‘A/UK/ . — JVUK
Furthermore we can find strict neighbourhoods Vi (respectively, Vo) of ZGyk» in Pig. K, K»
(respectively, PiR - x») such that f: Vo — Vi is an isomorphism (cf. [KLO05, Proposition 2.2. 1]
the key point is that we can find a strict neighbourhood V of f~1(ZGyk») C P& 1, i, such that

the connected components of f~!(ZGyk») and V are in bijection with one another). This proves

part (i).
Part (ii) follows immediately from the fact that the isomorphism IQUK, JEKr —>IQUK K7,

induced from right translation by ¢ intertwines with the isomorphism Pyr, K/ Kk» — Par, K, Kk 10
the statement of the lemma. ]

When working at hyperspecial level, we will omit any subscript which includes the
level subgroup (e.g., AT, .#T, .# denote the spaces of (nearly) overconvergent and p-adic
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modular forms etc.). Furthermore, in this setting the morphism from the Igusa tower to Pyr
is defined over @,, so it is not necessary to base-change to @gyd. In fact, to consider fami-
lies of nearly overconvergent modular forms, we will work over Spa(R, RT) for some admissible

Z,-algebra R*.

3. A system of neighbourhoods of the Igusa tower

The purpose of this section is to define and study an explicit system of strict neighbourhoods of
the Igusa tower inside Pjf, which will be crucial for our constructions. The basic idea behind
this construction is that, after multiplying by suitable powers of the Hasse invariant, one can,
modulo large powers of p, overconverge elements defined on the ordinary locus.

3.1 The setting

Let RT be an admissible Z,-algebra and set R = R"[1/p]. Fix a neat compact open subgroup
KP C G(AI}) and let X'/ Spa(R, R") be the compact modular curve of level GLy(Z,)K? over
Spa(R, RT). We have (see [Kat73]) a system of neighbourhoods of the ordinary locus

Xopd = — X = =2 X = &

where X, denotes the (unique) quasi-compact open whose rank-one points x satisfy |h|, >
p~ /P for any local lift h of the Hasse invariant.
For any integer n > 1, let ZG,, :=ZG p k» be the Igusa tower of level

p— L+p"Zy  Zp(1)

which is a finite T(Z/p"Z)-torsor over X,q. We also use the notation ZGoo =ZGy,, (z, K-
We define He to be the canonical extension of the first relative de Rham homology of the
universal elliptic curve over the good reduction locus in &X. The formal model X defines
a (’);@-lattice ’H;{C’Hg. We similarly define wz{ng and W;D Cwgp for the Hodge bun-
dle of the universal and dual universal generalised elliptic curve and the corresponding
(’)}—lattices.

If Spa(A, AT)C X is a quasi-compact open affinoid subspace, then we let Spa(A,, Al)
(respectively, Spa(Aod, Ajrd), Spa(Aord,n AT ) denote the pullback to X, (respectively, Xj.q,

ord,n
ZG,). We warn the reader that we will often implicitly assume that Spa(Aord,A;er);é@,
otherwise most of what we say will be vacuous. Note that if wg is trivial over Spa(A4, AT)
and h€ A" is a fixed local lift of the Hasse invariant, then A’ =AT(1/h). If {e, f} is a
fixed basis of Hg over Spa(A, AT) respecting the Hodge filtration (i.e., eEw;), then we

have
(G a )
(GiMa (GR)a

and the basis {e, f} gives rise to coordinates T1,T>, U € O (P3h x x Spa(A, AT)) such that
the universal trivialisation of H} over Pk x x Spa(A, AT) takes e (respectively, f) to (0,7})
(respectively, (Ta,U)). Equivalently, if {euniv, funiv} denotes the universal basis of ”Hzf over
Pig xx Spa(A, A1) (with egniy € w;) then we have e = Tieuiv and f = Ueuniv + 1% funiv-

P8 x y Spa(A, AT) =P = (

Notation 3.1. For any 1<n<oo, we will let ¥, denote the Galois group Gal(ZG, /X,q) =
T (Z/p"Z) (ZT(Zy) if n=00).
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p-ADIC INTERPOLATION OF GAUSS—MANIN CONNECTIONS

For the rest of this section, we fix an open affinoid Spa(A4, A™) C X over which w;, ”;’-l"g|r and
waD are trivial, and fix a basis {e, f} of ”Hg respecting the Hodge filtration

0= whh = HE — (wf)Y —0.
Recall that over ZG,,, one has universal trivialisations
b (EP PP S LI, ot ED) D i,
which induce trivialisations
¢1: OFg /0" = (win /P")|z6,, 2 OFg /0" = (wi /p")" |26,

More precisely, ¢1(1) is the vector dlogo; (1) and ¢o(1) is defined to be the vector dual to
dlog o 9 (1). We set e, :=¢1(1) and define f,, to be the image of ¢2(1) under the unit root
splitting (wg /p™)¥ — M} /p". Then {en, f,} defines a basis of HZ /p" over ZG,, respecting the
Hodge filtration.

)* and B, € AT be any elements such that

ord,n

DEFINITION 3.2. Let ay,, v, € (AT

ord,n
€= anen,

mod p",
f = Bnen +Vnfn,

and o183, € AT

ord’

Remark 3.3. We can choose «a,,, By, v, in Definition 3.2 such that the last condition is satisfied
as follows. Let fUF € ’H§|Spa( Ao, AT denote the image of f under the composition

ord

+ +\V +
He lspa(amaaty) = W) Ispa(ana,at) = He lspa(Ama,at,);
where the first map arises from the Hodge filtration and the second map is the unit root splitting.
There exists an element v € AT . such that f' =wve+ f. We can then take oy, Y, € (A(;d )

ord
such that e = ane, and f" =+, f, modulo p”, and set 3, = —va,,.

Remark 3.4. Let A= (A1, \2) € T(Z/p"Z) = (Z/p"Z)* x (Z/p"Z)™, which corresponds to an
element o) € Gal(ZG,,/Xorq) such that o) (¢;) =\ 01 for i=1,2. Then oy(e,) = Al_len and
ox(fn) = /\2_1fn modulo p™. This implies that oy (o) = AMan, ox(Bn) = A1Bn, and ox(7n) = A2,
modulo p”.

Remark 3.5. The map ZGs xx Spa(A, AT) =Spa(Aord,c, Ay o) — PR X x Spa(4, AT)

induced from the universal trivialisations and the unit root splitting is described by the
point

Yoo —5an
<Boo Oéoo> epP (Aord,oo)a

that is, the morphism sending 77 — Qoo, U — Boo, and To +— Yoo

3.2 A preliminary lemma

We will first prove an elementary lemma that will be useful later for constructing strict neigh-
bourhoods of the Igusa tower over the ordinary locus. Let C™ be an admissible Z,-algebra,
C =C"[1/p], and let Y =G over Spa(C, C") with coordinate 7. Let n > 1 and suppose that
we have a collection of elements {cy € (CT)*: )€ (Z/p"Z)*} with the property that cy = Ac;
modulo p"C™* for all X € (Z/p"Z)™. Define

P(T):= J[ @T-e)ectTIcoH),
AE(Z/p2)>
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and, for every 0 <m <n, let

pn7m = p—mpn—m H |x - 1|p’

ze(Z/p"1L)*
z#1 (mod p™)

Unm ‘= _vp(pn,m)7
where v, is the p-adic valuation satisfying v,(p) = 1. Note that vy, ,, >0 and pp . =p~ "™ =
" .

LEMMA 3.6. For any 0 <m <n, we have pp m/pnm+1 = ppn*(m“) and Vp m+41 — Vnym = pn—(m+1)

Proof. We have

m—1
Upm =mp" " + k- #{1 +pa 0§a<p”*k,(a,p):1}
k=1
m—1
=mp" " + k(p _ 1)pn7(k+1)_
k=1
A simple computation shows that vy ;41 — Vpm = p”*(mﬂ) as required. O

The following lemma relates estimates of the norm of P(T') to the norm of its linear factors.

LEMMA 3.7. For any point x € ) with associated valuation |- |,, one has

|P(T)|. < |p"m|e <= 3INE(Z/P"Z)" such that |T —cyls < |p"|e-

Proof. Note that p is topologically nilpotent, so |p|; <1 and |p’|, converges to zero as i — +oo
in the value group I' U {0} of the valuation |- |; (i.e., for any v € I', there exists an integer i >0
such that |p’|, <7).

Suppose that there exists an element p € (Z/p"Z)™ such that [p"™|, <|T —c,|, <|[p'|, for
some integer i >0. Then |T'—c,|, is never equal to |c, — ¢\l =|p— g for any A# p. Let
Juiv1 C(Z/p"Z)™ be the subset of all elements \ such that A= p modulo p**, and let J¢,
denote its complement. Then we have

|P(T)|. = H |T_Cu|:r' H |)\_,U’m

AEJ it AeJS i
_ ‘T — Cu|g"*(i+1) |p—(i+1)pn—(z‘+1) ‘x|pun,i+1 |a: if 0 <ij< n,
‘T_C,Uu’m’pinycc‘pyn’n’r if i >n.

We now return to the proof of the lemma. Suppose that there exists A € (Z/p"Z)™ such that
|T — ex|le <[p™|z. Then we must have that

|P(T)]e < H p™ |z H lex —exls = [P o

NeEJrm NETS

Conversely, suppose that |P(T)|, <|p"»™|.. Suppose there exists u € (Z/p"Z)* such that
e < |T — culw < |p'|s for some integer i > 0. We may assume i <m — 1 otherwise there is
nothing to prove. Then by the above calculation, we find that

n—(i ) — (3 n—(i ) .
|P(T)|: =T — cul? + p (i+1)pn—G+1 [P o < [PV

xT-

But since [T — ¢, |z > |pi+1|m, this implies that vy, ;41 > vy, for some ¢ <m — 1. This contradicts
Lemma 3.6.
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p-ADIC INTERPOLATION OF GAUSS—MANIN CONNECTIONS

Finally, we suppose that for every y, there exists an integer i > 0 such that |1 — ¢, |, = [p'|s,
and assume that |P(T)|, < [p""™|y. Let j = max{i: |T — c)|» = |p'|, for some A}, and we assume
0 <j <m —1, otherwise there is nothing to prove. Let u be such that |T'— ¢, |, = [p’|o. Then we

see that
PDM)= [] 17—l [ lex—cula=p" "1 ] ly — 1z =[p" e
AEJ,,; AeJg ye(Z/p"Z)*
y#Zl (mod p?)
This implies that vy, ; > v, 4, which contradicts Lemma 3.6 because j <m — 1. O

We note the following corollary.

COROLLARY 3.8. Let 1<m<n and suppose that {d, € (CT)*:pe(Z/p™Z)*} is a collec-
tion of elements such that d,=cy\ modulo p™C™ whenever u=\ modulo p™. Set Q(T)=
I1,.cz/pnz)* (T — dy). Then for any point « € Y, one has

[P(T)|e < |p" | == |Q(T)]x < [p™

-
Proof. By Lemma 3.7, it is enough to show that

INE(Z/p"Z)* such that [T —cyl, <|p™|s <= 3p € (Z/p™Z)* such that [T —d,|, <|p™|s-
But this holds by construction. O

3.3 Ordinary neighbourhoods

Fix a quasi-compact open affinoid Spa(A, AT)C X as above. We now define the strict
(local) neighbourhoods of the Igusa tower over the ordinary locus. For any integer n > 1, we
define:

= Po, (T1) = Th=n ner@pzy (Tr — oalan)) € A alTil;
- Py, (T2) = H,\=(1,,\2)eT(Z/pnz) (T2 —oa(m)) € A(—)‘rrd [T2];
- Qu(Ty,U)=U —a;'B,T1 € AT [T}, U].

ord

We view all of these polynomials as global sections of O;aﬂA via the coordinates 11,15, U
dR, Agrgq
arising from the fixed basis {e, f} as above.

DEFINITION 3.9. For 1 <m <n, let Unrnm C Pig Aura be the quasi-compact open affinoid whose
points | - |, satisfy the inequalities

[ Poe,, (T < |7 |2, [Py, (T2) ] <[P |2y |@n (T, U)la < [p™a-

an

For any element © € P™"(Aga,,) and integer m <n, we let By, (z,p~™) C P’

Aord,n

ord,n

g Pan
dR,A
denote the rigid ball of radius p~™, that is, if we have z = (“ﬁf o ), then it is the quasi-
compact open affinoid subspace defined by the conditions |77 — z1| < |p™|, |U — y| < |[p™], and
[Ty — 2| <|p™].

LEmMA 3.10. Let g, = (g: o ) Then

uHT,n,m X Xora Ign = |_| Bn(g)\(gn)a me) = |_| U)\(gn) : Bn(Lpim)u
AT (Z/p™Z) AT (Z/p™Z)

where, by a slight abuse of notation, o) denotes any lift of o) €%, to an element of ¥,. In
particular, we have Ut n :=UHT nn = UHT nm for any 1 <m <n.
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Proof. This follows immediately from Lemma 3.7 and Corollary 3.8 applied to {ox(a,): A=
(A, 1) €eT(Z/p"Z)} and {oA(1n) : A= (1, o) €T(Z/p"Z)} (see Remark 3.5 for the congruence
properties of these elements) and each of the (G2') 4 , components of PiR A, O

ord

COROLLARY 3.11. The family {Unt:n>1} forms a cofinal system of strict quasi-compact
open neighbourhoods of TG, x x Spa(A, A1) inside P} Aua-

Proof. It suffices to prove this after base-change along the map Spa(Aord,oo,AJr ) —

ord, o0
Spa(Aord, A(';d), because this morphism is profinite proétale and hence closed. But

Spa(Aord,ooa Aird,oo) = |_| Boo(o')\(goo)ap_n)v
AT (Z/p™Z)

Z/{HT,TL X Sp&(Aord 7A:—rd

where o) denotes a lift to ¥, (here we are using the fact that g, = goo modulo p™). These are
clearly cofinal. O

3.4 Overconvergent neighbourhoods
Fix a quasi-compact open affinoid Spa(A4, AT) C X over which Hzf, wzf and wgrD trivialise. We
now define a cofinal system of strict neighbourhoods of ZG 4 inside gﬁ, A-

DEFINITION 3.12. Let n > 1 be an integer. We say that a quasi-compact open affinoid subspace
Uuc Pgﬁ 4 is an overconvergent extension of Uyt ,, if:

(i) one has Upr,=UN (?ﬁ,Aord;
(ii) U contains the closure of TG 4 inside P 4.

Given an overconvergent extension U, we set U, :=U N PJ; 4 for any integer » > 1. Note that
any U, is also an overconvergent extension.

PROPOSITION 3.13. For any n > 1, there exists an overconvergent extension of Uyt . Moreover,

the collection of overconvergent extensions of Uut, for varying n forms a cofinal system of
an

quasi-compact open strict neighbourhoods of ZG 4 inside P 4.
Proof. Let n > 1. Then Uxr n+1 =UHT nt1,n+1 (respectively, Uat , = UHT nt1,n) is described by
the inequalities

|P,

Qnt1

(T < [pm], Py (To) < ], |Quaa (Th, U)| < [p™
e (M) < P erm s Py (To) [ < P70 | @nad (T, U) < [p7).
Since AT = A*(1/h), there exists a sufficiently large integer N >0, and elements P, (T}) €

ord Qpp

A+[T1], P! (TQ) S A+[TQ], ;1+1 (Tl, U) € A+[T1, U] such that

Yn+1
P, (Tl) =h"P, (Tl)v Pénﬂ (TQ) = hNP’Yn+1 (T2)7 Q;1+1(T17 U) = hNQTH-l (T17 U)’

Qn 41 Q41

(respectively, | Py

modulo ptA(';d, for some fixed integer ¢ such that p~" < pp41n41.
Define V (respectively, U) to be the rational subset of P , defined by the inequalities
(T < [p7emer], | P

1P i (L) S [Pt Qi (T1, U)] < [
)| < fperel, P (To) < ] Qi (T UL [p™)).

Then ZGoo a4 CV CU. Since [pr+rm+i| < [pn+in| (Lemma 3.6) and |p" Tl < |p"], we see that
YV CU, where the closure is in dR.A- T his implies that U is an overconvergent extension of
UnT n- The rest of the proposition follows from a standard compactness argument, and the fact

that {UmT,,:n > 1} are cofinal over the ordinary locus. O

(respectively, | P,

n+1(
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Let U be an overconvergent extension of Uyt for some integer n > 1. Then we have a chain
of quasi-compact open affinoid neighbourhoods

ul DUQDDMTDDZ/{OOZZ/[HT,TU

such that Uy, is the locus in U, (:=U N P3% , ) where the Hasse invariant h € O (U;.) is invertible,
for any r > 1. On sections, this chain of inclusions is induced by maps

Bf - Bf —---— B,

where B;f = O (U,). Each B, :=O(U,) is a Banach space — denote the norm for which B is
the unit ball by |- |,. The key result of this section is to show that these morphisms are very
close to being isometries, with the failure to be an isometry measured by powers of the Hasse
invariant (whose valuation can be made arbitrarily small). This will allow us to overconverge
the Gauss—Manin connection to p-adic powers.

PROPOSITION 3.14. Let r > 1. With notation as above, there exists an integer M >0 (depending
on r) such that for any k > 1, the kernel of the map

B} /p* — BL /"
is killed by h*M.

Proof. We first establish the case k = 1. Note that BX = B, (1/h) because U, is an overconvergent
extension of Us,. This implies that (BY,/p) = (B;} /p)[1/h], and hence any element x € B, /p in
the kernel of the map B, /p — BZ /p is killed by some power of the Hasse invariant. Since B, /p
is Noetherian, the kernel of this map is a finitely generated ideal, and hence we can find a
sufficiently large integer M >0 such that AM kills the kernel.

This proves the proposition in the case k= 1. The general case now follows from a simple
induction argument using the fact that BL is p-torsion-free. O

The following corollary is a generalisation of [AI21, Proposition 4.10] and will be key for the
proof of our main result.

COROLLARY 3.15. With notation as above, for any real number 0 < § < 1 there exists an integer
s=s(0) > r such that the following assertion holds: for all k > 1, x € B, and c € Q, one has

|zloe <pF and |zl <p° =l <p0

Proof. By raising x to an integral power, it is enough to prove the statement for ¢ € Z, and by
rescaling it is enough to prove the statement for ¢ = 0. Therefore, we have an element x € B;"
whose image is in p* BL. By Proposition 3.14, there exists an M >0 such that |(p~'hM)Fz|, <
|(p~*hM)kz|, <1 for any s>r and any k>1. Since [h~!|s =11 as s — 400, taking s large
enough such that |h 1|, < p1=9/M e obtain

J]s < 1ph~")*]s <p~°*

as required. O

4. The p-adic interpolation of continuous operators

In this section we establish the general abstract results on p-adic interpolation of operators that
are used in § 5 in order to p-adically interpolate the Gauss—Manin connection. It is likely that the
results in this section can be generalised to the setting of PEL Shimura varieties — in particular,
some of the notation in this section will differ from the rest of the paper.

2399

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 02:24:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25102479


https://doi.org/10.1112/S0010437X25102479
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

A. GrAHAM, V. PILLONI AND J. RODRIGUES JACINTO

Remark 4.1. At this point it might be useful to recall the strategy we described in the intro-
duction for showing the p-adic interpolation of the Gauss—Manin connection. We make some
comments concerning how the abstract results will be used in the following section.?

(i) In §4.2 we introduce general definitions of continuous, analytic and locally analytic actions
on topological modules over R[1/p] for some admissible Z,-algebra R. Proposition 4.6 will
be helpful as we will show that the Gauss—Manin connection has locally a very simple
description modulo large powers of p (cf. Proposition 5.2).

(i) In §4.3 we will specialise to a more precise situation and the rings L, =S"((X —
1)/p™, Y/p™, (Z —1)/p™) will correspond by Proposition 5.2 to (the ring of functions of)
one of the balls whose disjoint union forms the strict quasi-compact open neighbourhoods
UnT,m of the Igusa tower over the ordinary locus of Corollary 3.11.

(iii) Finally, the sequence Vp C---CV, C ... CV, considered in §4.4 will correspond (locally)
to a collection of overconvergent extensions of the neighbourhoods U -

4.1 Function spaces

Let R be an admissible Z,-algebra and set R = R*[1/p]. Let Ceont(Zp, R), C"**(Z,, R) and
C'(Z,, R) denote the R-algebras of continuous, analytic of radius p~" (h€N), and locally
analytic functions from Z, to R, respectively. We also set Ceont(Zp, R™) to be the RT-algebra of
continuous functions from Z, to R*. We recall the following classical result.

PROPOSITION 4.2 (Amice). For k>0 set (3) = (z(x —1)--- (z — k+1))/kl. Then the following
assertions hold.

— The family (}) is an orthonormal basis of Ceont(Zy, R) (over R).
~ The family |k/p"|!(7) is an orthonormal basis of C"*"(Z,, R).
— A function f =3,y ak () € Ceont(Zp, R) is locally analytic if and only if for some & >0,

the term p*®|aj| — 0 as k — +oo, where |-| denotes the Banach norm on R with unit
ball RT.
Proof. See [Col10, Corolaire 1.2.4, Théoreme 1.4.7, Corolaire 1.4.8]. O

For any ¢ >0 we will denote by C-(Z,, R) the subspace of functions f =3, yax(;) with
p*lag| — 0 as k — +o0. Observe that C'*(Z,, R) = lim, Ch-an(7, R) = lim C:(Zyp, R).

4.2 Continuous and analytic actions

We begin with some elementary calculations. Let RT be an admissible Z,-algebra, R = R [1/p],
and let V' be a Q,-Banach vector space equipped with a topological R-module structure.

DEFINITION 4.3. Let C = Ceont(Zp, R) or C:(Zy, R) or C'*(Z,, R) and let W be a topological
R-module. If T € Endg(W) is a continuous operator, then we say that 7" extends to a contin-
uous (respectively, e-analytic, locally analytic) action if there exists a continuous R-algebra
action of Ceont(Zp, R) (respectively, C-(Zy,, R), C'®(Z,, R)), that is, a continuous R-bilinear
map

CxW-—->W

3The reader can also choose to read §5 before reading this section.
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(where the left-hand side is equipped with the product topology) that respects the algebra
structure on C' given by multiplication of functions, such that the structural map Z, — R acts
as T

LEMMA 4.4. Let T € Endgr(V) be a continuous operator and let | - | denote the operator norm

on Endg(V'). Then the following assertions hold:

(i) T extends to a continuous action if and only if the norms
‘T(T—l)---(T—k—i—l)H
k!

are uniformly bounded for all k > 0;
(ii) T extends to an e-analytic action if and only if the norms
T(T—l)---(T—k+1)H
k!

—ke

are uniformly bounded for all k > 0;
(iii) T extends to a locally analytic action if and only if for all € >0 the norms

T(T—l)---(T—kJrl)H

—ke
p !

are uniformly bounded for all k> 0.

Moreover, any such extension of T' is unique.

Proof. This is an immediate consequence of the characterisation of continuous, e-analytic and
locally analytic functions in Proposition 4.2. O

We will also need the following uniqueness property for e-analytic/locally analytic actions on
LB-spaces with injective transition maps.

LEMMA 4.5. Let {V;}ier be a (filtered) countable sequence of R-modules which are also
Qp-Banach spaces, with each transition map injective. Let V := ligiel Vi equipped with the direct
limit topology. Let € > 0 and let T; : V; — V; be continuous R-linear operators, all compatible with
each other via the transition maps. Set T = hﬂie[ T.

(i) Let j €I and C(Zy, R)P*' C C<(Zy, R) be the subalgebra of polynomial functions. There
is a natural R-algebra action of C(Zp, R)P°! on V; extending T);. Then any continuous
R-linear action

C:(Zp, R) x V; =V,
which extends this R-algebra action of C(Z,, R)P°! is unique.
(ii) Any continuous R-algebra action
Co(Zyp, R) X V =V

extending T' is unique.
(iii) Any continuous R-algebra action

C""(Zy, R)xV =V

extending T' is unique.
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Proof. In this proof we will continually use the fact that if X is a Q,-Banach space and
Y = hﬂz‘e ; Yi is a countable filtered colimit of Q-Banach spaces (with the direct limit topology)
where all the transition maps are injective, then any continuous Q,-linear map
U: X = limY; =Y,
i€l

factors through Y; for some ¢ € I (see [Sch02, Corollary 8.9]). Note that C:(Z,, R) is a Q,-Banach
space, and C'8(Z,, R) = @6>0 Ce(Zyp, R) with the direct limit topology.

For part (i), let f € Cc(Zp, R) and veVj. Then f can be written as the limit of {f;}r>1,
where fi € C(Z,, R)P°. The map

CE(ZP7R)_>V7 g—=g-v,

is continuous (by assumption), so by the above, factors though some V;. Since V; is Hausdorff,
we must have that f-v is the (unique) limit of fj - v, which are already determined.

Part (ii) is similar, using the fact that the action of polynomial functions are already
determined by T' (because it is an algebra action). Part (ii) just follows from part (ii). O

The following useful result explains how one can perturb a locally analytic action to produce
an e-analytic action for some appropriately chosen &.

PROPOSITION 4.6. Let T1,T» € Endg(V) and suppose that T) extends to a locally analytic
action and that |T| <1. Then for any ¢ >0, there exists an integer N. > 1 (depending on T}
but not on Ty) such that T} +pNETg extends to an e-analytic action.

Proof. Let N >0 and denote T =Ty + p™Ty. Let fx(X) denote the polynomial
XX-1)---(X—-k+1
) = AR R
Let A denote the set of all ordered tuples I =(—1=tg<t;<to<---<tor—1 <tor=k—1)
with r» > 1. For such an T € A and any 1<i<vr, let k; =to;_1 —to;—o and ¢; =t9; —t2;_1, and
set

2= fi (T1— (to+1)) - Ta'  fry (Tt — (t2+1)) - Tg7 - ..+ i (T1— (tor + 1)) - T3

Then we can write

(@)= M)+ Y ?<k>l<kbﬁ,kr>lzb (4.1)

TEAD£D a

where we have denoted a=3";_, k; and b=, {; so that a+b=k.
We now give a bound for the operators z;. Note that for any integer ¢ € Z, fi(X —t) is also
a polynomial in X and the Mahler expansion of fi(X —t) is of the form

k

feX =)= aifi(X)

=0
for a; € Z,, because fi(z —t) € Zj for any x € Z,, and the coefficients are just computed using the
discrete difference operator. This implies that, if € >0 and C € R+ is such that

p P () < C
for all k£ >0, then, for any t € Z and k > 0, we have
p P (T =) < C.
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p-ADIC INTERPOLATION OF GAUSS—MANIN CONNECTIONS

Hence, by the fact that |72| <1, we deduce
p~ Pl <O (4.2)

Using that for any multinomial coefficient we have Up(( @ " as)_l) > —log,(n), we get from (4.1)
and (4.2) that

p—ks "fk(T) " < maX(C', p—kep—Nb-I—b/(p—l)pQ logp(k)p(k—b)s/QCr)‘

Since b >r — 1, taking N such that p~N*t1/#=1) <=1 we deduce that p~No+0/-DC" < ¢ and
the right-hand side is bounded above by

pfks/2+2 log,, (k) C,

which is uniformly bounded in k£ as € > 0. This concludes the proof. O

4.3 Nilpotent operators

Let Rt — ST be a morphism of p-adically complete and separated, p-torsion-free Z,-algebras
with R admissible, and denote by R=R"[1/p],S=S5%[1/p] their associated Q,-Banach
algebras.

DEFINITION 4.7. Let Lo=S*(X,Y,Z) and, for any integer m >1, let L, =S"((X —
/™ Y/p™, (Z —=1)/p™). Set Vo = Lo[1/p], Vi = Lm[1/p].

We equip Vp with the norm induced by the lattice Ly, or equivalently the norm
given by | Zabcsa,b,chYbZC“ =maXgpc |Sapc|, Where the norm on the right-hand side is
the Qp—BanacKnorm of §. This allows us to view V[ as a Banach algebra with unit
ball Lg. Analogously, for m>1, we can view V,, as a Banach algebra with the norm
induced by the lattice Ly, or equivalently defined by |>_,, . Sapc(X — DYYNZ = 1)y =
maXgp,.c p—m(a+b+c) ”Sa,b,c“ .

Let 6: ST — ST be an RT-linear derivation, which can naturally be viewed as an S*-linear
functional Q}g+ IR+ St. We define Vy : V;,, — Vi, to be the unique R-linear derivation such that

it acts as 6 on S and satisfies
Vo(X) =Y, Vp(Y)=Vy(Z)=0.

In particular, we have a commutative diagram

Vip —25 Vi,

L

s L5
where the vertical maps are induced by sending X +— 1, Y +— 0, Z+ 1.

We will show next that, whenever 6 : ST — ST extends to a continuous action, the action of
Cla(Zp, R) C Ceont(Zy, R) on S extends to V, for any m > 0. We begin with some elementary
lemmas for which we introduce some notation. For any k € N5g and 0 <r <k, let 3, be the
set of subsets of {0,...,k—1} of size r. If I € ¥, ., let ki, ..., k; (with £ and the k; depending
on I) be the lengths of the largest blocks of consecutive integers in I, so that Zle k; =r. More
precisely, I can be written as

1= lijij+k-1= U I

1<j<t 1<j<t
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with no adjacent intervals, that is, i; >4;_1 + k;_1 for all 2 <j </{. For any I € ¥, ,, we denote
91(X) =[] (x =), - e
iel 1<5<e k! icl;

with the convention that gy = fp = 1. The following easy lemma will be very useful.

LEMMA 4.8. We have

min(k,a)

fe(Vo)(sXYPZ) = ) Z (kl )1<fj>1<j>f1(9)(s)X“_’"Yb+TZC.

r=0 Ie¥y,

Proof. First observe that, since everythmg is linear with respect to the variable Z, we may
assume that ¢ =0. We have

(kl,k.._.fk:g)l <k>1 () o)) = L= ',;fa =D 06)(s),

so that we need to prove the formula

min(k,a)

fk(Ve XaYb Z Z '( —r+ 1) 91(0)(8)Xa7ryb+r.

r=0 Ie€Xy i_r

We check the formula by induction. For £ =1 we need to prove that
fe(Ve)(sXV?) =0(s) XY +asXxoyb+!,

which follows from Leibniz rule. Assume the result holds for k. We calculate

(Vo —k)

frr1(Vo)(sXY?) = a1 Y 0)(sX°Y?)
min(k,a)
= (Vo—k) ) Z e (1>!_r+1)91(9)<8>X“—’“Yb+".

r=0 J€X; p_,
‘We have

(Vo —k)g1(8)(s) XY = (6 — k)gr(0)(s) X" Y + g1(8)(s)(a — r) X~ rHUYPHIHD,

and observe that (6 — k)g;7(X) = grugx) (X). The result follows by decomposing 1 ;- as those
subsets containing k and those not containing k. OJ

The following corollary implies that, if the extension of Vg to V,, extends to an e-analytic
action, then the same holds for any m’ > m.

COROLLARY 4.9. Let m’>m, s€ S, a,beN and k > 0. Then
X-1\"/Y\ [Z-1Y\° X-1\"/ v\ [Z-1\
o= (%) ) ) )] = oo () o) ) )L
p P p p p p .

In particular,
sup |f&(Vo)(@)lm = sup [fx(Vo)(2))|m,

z€L,, z€L,,

m

for all m' > m.

Proof. The first assertion follows immediately from Lemma 4.8. Indeed, calling
k—r \"'/k\"!/a
e 5 () () Qo
sy ki,...,ky T T
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which is independent of m or m’ we have, for all m’ > m,

oo () () G 1L~ 55 o) ) ()

r=0
=sup |ar(s)],
r

m/’

which is independent of m'. The last assertion follows from the first one. This finishes the
proof. ]

PROPOSITION 4.10. Assume that 6 extends to a continuous action on ST. Then the operator
V¢ extends uniquely to a locally analytic action on V,, for any m > 0.

Proof. By Corollary 4.9 and a change of coordinates, we can assume m =0. By Lemma 4.4, it
suffices to show that, for any € > 0, there exists a constant C. € Rsg such that for all £ >0 we
have

p "1 f(Ve) < Ce,
that is, for all F' € Vj, we have
P~ fe (Vo) (F)] < C| F.

It suffices to prove this for F = sX%Y?Z¢ with s € S*. By Lemma 4.8, it suffices to show that,
for each 0 <7 <min(k, a) and any I € ¥y j_,, the value

<k1,k. ._.Tk:e)_l <i>_l (i) fr(0)(s)

is uniformly bounded. But, since | f7(6)] < 1 (because 6 extends to a continuous action on S™) this
value is bounded above by p~ #2108, (k) " which is uniformly bounded in k as —ke + 2 log, (k) —
—o00 as k — +oo. This finishes the proof. O

psz-:

4.4 Overconvergence

We finish this section with the abstract results that will allow us to extend the locally analytic
action from the ordinary locus to overconvergent neighbourhoods. The setting is as follows.
Let

VoC---CVpC--- OV

be a sequence of topological R-modules which are also Q,-Banach spaces and let V: Vo — Vi
be a continuous R-linear operator stabilising each V;. Let |- |; denote the Banach norm on V;
and suppose that |z|s < |z|, for all z €V, and r < s < oo.

PROPOSITION 4.11. Assume that the following property holds: for any 0 < 0 < 1 and r € N, there
exists s = s(§) > r such that, for all c€ Q, h € N and x € V., we have

|zl <p° and |#]o < p" = z]s <p~ (4.3)

Assume that, for some € > 0, the operator V extends to an e-analytic action on V. Then, for
any r € N and v > ¢, there exists s € N (depending only on €, v and |V|,) such that, for any
r €V,

P"”I!fk(v)(m)\ls —0 ask— 4oo0.

In particular, the operator V extends to a continuous R-linear action Cy(Zy, R) x V, = V.
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Proof. Let x €V, be such that |z, <1 (and hence [z|- <1), and let C, € Q>¢ be a constant
such that V], < p®. From the inequality |V|, <p® we deduce that

[k (V) ()] < 9

On the other hand, since V extends to an e-analytic action on V., there exists C. > 0 such that

"k'fk(V)(ﬂf)”w < p—vp(k!)-i-CE—I—ka :ka’,‘—(kC’T—C’E—ke—i-vp(k!))

for all k € N. Let k be large enough such that kC, — C. — ke + vp(k!) > 0, which is always possible
as soon as C, >e. Applying (4.3) to the element k!fi(V)(x) with ¢=kC, and h=kC, — C. —
ke 4+ vp(k!) >0 (which we may assume to be an integer) we deduce that, for any 6 <1, there
exists s € N such that

k! fi (V) (@) < pFCr0UCr=Cemherun (k)

Now let v >¢. We obtain
p—lw "fk (V)(az)“s < kar—ékCr-l—éCE—&—k:da—év,,(k!)—k’y—f—vp(k!)

< pHE=1)Crt(7=02)+(0-1))+4C, (4.4)

where the last inequality follows from wv,(k!) <k. One can easily show that one can choose ¢
(which will depend on ¢, v and C,) in such a way that ((06 —1)C,+ (y—de)+ (6 —1)) >0,
which implies that (4.4) goes to 0 as k — +o00. This finishes the proof. O

Remark 4.12. Tt is not necessary that the maps Vj — Vi — - - - — V are injective, and the above
proof still holds without this assumption.

5. The p-adic interpolation of the Gauss—Manin connection

This section is devoted to the proof of the assertion of Theorem 2.11 concerning the existence
of the action of locally analytic functions on the space of nearly overconvergent modular forms.
We will establish this by first proving a local version over some affinoid Spa(4, A™) C X, and
then explain how the construction globalises. We assume throughout that Spa(A, A1) is the adic
generic fibre of an open formal subscheme Spf A" C X.

5.1 The Gauss—Manin connection

Recall from Appendix A that 7,0p,, = VB®"(O%) is naturally a Dx-module, where 7: Pjg — X
denotes the structural map and Op denotes sections of the lower-triangular Borel P C GLs.
The (g, P)-module Op carries some additional structure, namely P acts through algebra auto-
morphisms of Op and g acts through derivations O — Op. Therefore, we obtain a derivation
V:m.0p,, = mOp,, as the composition

T.Opy, = TOp,, ®0y Qx/p(log D) = mOp,,, (5.1)
where the first map is induced from the Dx-module structure, and the second is induced from
the Kodaira—Spencer isomorphism Qﬁ( / rllog D) Zwe @ wep, the adjoint map to the universal

trivialisation 7*(we ® wep) — Op,,, and the multiplication structure on m,Op,, .

Since 7 is affine, the derivation V is equivalent to a derivation V: Op,, — Op,.. We also
let V: Opa — Opan denote the corresponding derivation on the associated adic space. This
immediately induces a derivation

V: Nt AT,
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where N = colimy 7,0y is the colimit over all quasi-compact strict open neighbourhoods of
TG in Pif (with structural map m: U — X). This is compatible with the Atkin-Serre operator
via the map to p-adic modular forms.

5.1.1 Local description. We note the following local description of V: Ops — Opan, which
follows from the way the Dx-module structure is constructed in the proof of Lemma A.3.
Let Spa(A, AT) C X be a quasi-compact open affinoid subspace as above, over which Hg, we,
wep trivialise. Let {e, f} denote a basis of He respecting the Hodge filtration, and let f € wy
denote the image of f under the projection Hg — wy (we also denote this projection by @)
Via the Kodaira—Spencer isomorphism, there exists a unique differential s € Qi\ / r(log D) such
that

Vie)=f®recwy ®Q}4/R(logD).

Let D: A — A denote the derivation dual to x. Then we can write

Vp((fe)=(fe)-d,
for some 6 € g4. Let F € A[U, T}, T5, Tfl,TQ_I} C Op:n (PiR 4) be a polynomial, which we view
as an element of Op ®q, A= A[U, T\, Tp, T} L TQ_I] — here we write a general element in P as
(TU2 T ) Then the action of V is described as

V(F)(U, Ty, Ty) = (D-F(U,T1,Ty) + 6 F(U, Ty, Tz)) - Th Ty %,
where D - F(U, Ty, T5) is the application of the derivation D on the coefficients, and x; denotes

the g-action on Op. The extra factor T17T: 2_1 arises from the second map in (5.1).

Ezample 5.1. Suppose that 6= (Q §). Then the action dx — is given by the differential

UT\Ty o7, — Udr,.

5.2 The local construction

Fix a quasi-compact open affinoid Spa(4, A7) C X as in §5.1.1. Let n > 1 be an integer. In this
subsection, we will prove the local version of Theorem 2.11 using results from §§3 and 4. The
first step is to understand the derivation

V: Ovr.. = Oltisr,»

where Un,, is as in Definition 3.12. Note that, since TG, — Xoq is a proétale T'(Zy)-torsor,
this derivation extends uniquely to a derivation V: Oy, u = Oty 4., and via the
decomposition in Lemma 3.10 and the local description in §5.1.1, this decomposes as

X
V =0,e9,V": @ OB...(0(goc) ) — @ OB...(0(g0)p=")-
\eT(Z/pZ) \eT(Z/pZ)

PROPOSITION 5.2. Let n>1 be an integer and oy € 95, corresponding to A= (A1, A2) € T(Zp).
For ease of notation, set B* = Boo(0x(goo), ™).

(i) The operator V*: Op:(B*)— Op:(BY) is integral, that is, it preserves O}, (B).

Moreover, the operator V* has the following explicit description: via the Ajr doo-algebra
isomorphism
~ X-1Y Z-1
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given by sending Ti+ 0x(0so)X, Urs0x(Boo)X +0x(100)Y, Tor> 0x(7V00)ZX L, the
operator V* is an R -linear derivation such that

— VXg) =sx-0(g) (mod p") for some sy € ZX and all g € A;rrd’oo,
- VMX)=Y (mod p"), and VMY) =V*Z) =0,

—S AT

ord,00

where 0: AT

ord.co is the Atkin—Serre differential operator.
(ii) The operator V: Oy, Unarn) = Ouyy, Unar,,) is integral, that is, it preserves

OZJ;HT,,,L (Unarn)-

Proof. First recall that for A = (A1, A2) we have o) (o) = M1 Qoos A (L) = A1 800 and ox(Yeo) =
A27Yeo- Via the local description in § 5.1.1, we can calculate the Gauss—Manin connection using the
basis {)\l_leoo, )\Q_Ifoo} of He over Agrd 0. Let k € Qi‘ : /R(log D) denote the unique differential
satisfying e

v()‘l_leoo) = )‘2_1]Eoo X K,

and let D: Agrd oo — Aord,co denote the derivation dual to «. It is well known (see, for exam-
ple, [How20]) that D = s)0 for some sy € Z,’ (this factor arises from comparing the universal
trivialisations over J&, via the polarisation on &). Let § € g4 be the element such that

Vo5 foo AT eno) = (Mg foo AL teno) - 0.

We have that § = (8 (1)) The coordinates corresponding to this basis are given by X,Y, 7’
satisfying the identity

(0 n)=(r ) 0= o)

and we find that the action of § x; — on Op ®q, Aord,0 is given by YX(Z')tox — YOz (see
Example 5.1). Set Z = Z'X. Then we calculate that:

- vk(g) = (Dg) : X(Z/)_l =S\ 9(9)X2Z_1 for any g e Aord,oo;

- VMX)=YX(Z) ' X(Z2) =Y X272,

- V() =0

- VMNZ)=VMNZ'X)=(-YX(Z) WX+ 2YX'Z?2=-YX3Z ' +YX3Z1=0.

This completes the proof of part (i) of the proposition since X = Z =1 (mod p™). Part (ii) follows
from the fact that 3., — Xoq is a proétale T'(Z,)-torsor, so it is enough to check integrality of
V after base-change along this torsor. O

We are now in a position to apply the general results in §4 as we have an inte-
gral derivation V which is congruent mod p™ to a nilpotent derivation that extends
the Atkin-Serre operator. Recall that the Atkin-Serre operator 0: AT — Al extends to
a Rt-algebra action of Ceont(Zp, RT). Set Mg, = Ottyr,, Unrn). We have the following
proposition.

PROPOSITION 5.3. Let € >0. Then there exists n(e) > 0 such that for any n > n(e) there exists
a unique continuous R-algebra action

CE(ZP7 R) X L/‘{/{HT,WL — '/%/{HT,n’
extending V: Nigp . — Ny, -
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Proof. Tt is enough to check this for the operators V* introduced at the start of this section.
Indeed, the operator V =@, V* is Galois invariant and the map Nty J%,{HTW(EE Aura Aord, oo
is an isometry (as JBo — Xopq is a proétale T'(Zy)-torsor). In this case, we have that:

— by Proposition 5.2, the derivation V* is congruent modulo p™ to the operator ‘V .0 defined
in §4.3, extending the derivation s)0;
— the derivation s)0 extends to an action of Ceont(Zy, RT).

Therefore, the result follows from Propositions 4.6 and 4.10. The action is unique because Az,
is a Qp-Banach space and we can compute the action using Mahler expansions. O

We now overconverge the above proposition. For any n > 1, let U,, denote an overconvergent
extension of Uy, as in Definition 3.12, and set U, , =U, N Pig 4 . Without loss of generality,

we may assume that U, =U, 1. Set JI{}H =0uy,,(Uny), and recall from §3.4 that we have a
chain of restriction maps 7

J%{Tn — ‘/’{/{Tn:l — '/1{/}.",2 L ‘/%/11—1"1‘.7; (53)

induced from the inclusions Ut C - - - CUp2 CUp1 =U,. Recall that Corollary 3.15 holds for
this chain of maps.

PROPOSITION 5.4. Let € > 0. Then for any quasi-compact strict open neighbourhood U of G+,
in ng‘{’A, there exists a quasi-compact strict open neighbourhood V. C U of IG, 4 in Pgﬁ,A and
a unique continuous R-linear action

CeZp, R) x N} — N}

extending the action of polynomial functions in C.(Z,, R) induced from the operator V : JVJ —
,/VUT — JVJ . Moreover, these actions are all compatible if one changes ¢, U or V.

Proof. Let n>1 be such that n>n(e/2) as in Proposition 5.3 and such that & C U for some
overconvergent extension U of Upt,, (i.e., we can find a sufficiently large integer n such that
U contains an overconvergent extension of Uyt ,; this is always possible since overconvergent
extensions are cofinal by Corollary 3.11). Then, by Proposition 4.11, there exists some 7 > 0 such
that V extends to an e-analytic function on Jig . This implies the result with V' =y, ». The
last part follows from the unicity of the action. O

5.3 The global construction

We now explain how the construction in the previous subsection globalises. Let U be any
quasi-compact open strict neighbourhood of Z7G, in Pj; with structural map 7: U — &". Set
N, [T] =m.Op. Let Spa(A, AT) C X be a quasi-compact open affinoid as in the previous section. Let
Ua=U xx Spa(A, A1) C PC?PI{’ 4 and note that Uy is a quasi-compact strict open neighbourhood
of TGoo,a in P2 .. We have N (Spa(4, A1) = Oy, (Ua).

By Propositié)n 5.4 (and passing to the limit as € — 0), there exists a continuous R-linear
action

C"™(Zy, R) x Nj (Spa(A, A*)) = N (Spa(4, A1),

which is compatible with changing U. Furthermore, by the unicity property in Proposition 5.4,
this action is functorial in Spa(A, A™). Since the opens Spa(A4, AT) C X satisfying the conditions
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in the previous subsection are stable under finite intersections and cover X', we obtain an induced
action

C"™(Z,, R) x HO(X, NT) = HO(x, N'T),

extending the action of V. This action is unique on global sections because AT = H (X, N'T) =
colimgy HO(U, Opsn) as U runs over all quasi-compact open strict neighbourhoods of ZG, (the
topological space X is quasi-compact and satisfies condition (4) in [Sta22, Tag 009F]), and one
can choose a cofinal system of quasi-compact open neighbourhoods such that the transition maps
in this colimit are injective (see Proposition 6.5). One then applies Lemma 4.5. This completes
the proof of the locally analytic action in Theorem 2.11.

6. Additional structures on nearly overconvergent modular forms

In this section we study various natural structures on the space of nearly overconvergent modular
forms. We start by showing that AT is equipped with a natural action of T(Zy) and define
(nearly) overconvergent modular forms of weight x as the (—wgk)-isotypic component for this
action, where wg denotes the longest Weyl element of GLo. We then define a filtration on AT and
the Up-operator, and study how all of these operators interact with each other. We conclude with
the construction of the overconvergent projector, the relation with p-depletion, and a comparison
with the spaces of nearly overconvergent modular forms introduced in [AI21].

6.1 The group action

The definition of the T'(Zy)-action on (nearly) overconvergent modular forms is almost immediate
from the construction. Indeed, by viewing T'(Z,) as a subgroup of T*" C P*", we obtain an action
of T(Zy) on Pjy. Since ZG, is stable under this action, we see that the T'(Z,)-action on P3j
maps any (quasi-compact) strict open neighbourhood of ZG , into another (quasi-compact) strict
open neighbourhood; hence we obtain an action of T'(Z,) on N t. By exactly the same argument
for M3y, we also obtain a T'(Zj,)-action on M, and these actions are compatible via the natural
maps M’ — Nt = M. Here M :=colimy 7,0y, where the colimit runs over all strict open
neighbourhoods of ZG, in Mjg (with structural map 7: U — X).

DEFINITION 6.1. Let x: T(Z,) = R* be a locally analytic character. We define the sheaf of
nearly overconvergent modular forms of weight s as

NI = NT—wor] = Homp(z, ) (—wor, N,
that is, the (—wok)-isotypic part for the action of T'(Z,) on N'T. We define M| analogously and
we set A (respectively, M ) to be the global sections of N (respectively, ML)

We note that our space of overconvergent modular forms of a specified weight agrees with
the construction in [AIP18]. We begin with the following lemma.

LEMMA 6.2. For every integer r > 1, Mij X x X, has a reduction of structure to an étale torsor
Fr — X, for the group

Tr=ZX 1+ p VNG x 2X (1 4 pr Y PTUGH) c G x G =T,

where G} = Spa(Q,(t), Z,(t)) denotes the unit ball. Furthermore, the torsors {F,},>1 form a
cofinal system of strict quasi-compact open neighbourhoods of 1G, in MJg.

Proof. This follows directly from the results in [Pil13] and [AIS14] (see also [BP22, Proposition
5.15)). O
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This leads to the following proposition.

PROPOSITION 6.3. Let k:T(Z,) — R* be a locally analytic character. Then M} isa locally free

OL—module of rank one, where OI\, :=colim, Oy, . Moreover, it is equal to the sheaf of weight k
overconvergent modular forms as in [AIP18].%

Proof. As above, F,. — X, denotes the étale T,.-torsor providing a reduction of structure of
ME; X x X,. The proposition follows immediately from the fact that the torsors {Fr}r>1 form a
cofinal system of quasi-compact strict open neighbourhoods of ZG, in Mig. ]

We finish this subsection by describing how the locally analytic action in §5 interacts with
the group action.

LEMMA 6.4. Let ¢ € C'®(Z,, R). Then for any t = diag(t1,t2) € T(Z,), we have
tog=0¢(ty' —t1) ot

as endomorphisms of 7.

Proof. Since AT is a (topological) C'*(Z,, R)-module and polynomial functions are dense in
Cla(Zp, R), it suffices to check this with ¢ equal to the structural map Z, < R, that is, one has
toV=t, 1t1V ot as endomorphisms of A" . This amounts to checking the relation on 7, O P =
VB%"(0p). But this just follows from the description of the Dgr-module structure in Lemma
A.3. Indeed, if we identify the Dpr-module associated with 05 with 7,Oq (where 7: G — FL =
G/ P is the structural map), then the action of V corresponds to

fr(g—= (Ad(9)X % f)(9) + (X % f)(9)), femOg,

where %; (respectively, x,) denotes the g-action obtained from left translation (respectively, right

translation) of the argument and X = (8 (1]) The action of t is given by right translation of the

argument (i.e., the torsor structure), so the relation follows from Ad(t)X =t;'t; X. O]

6.2 Reductions of structure of Pygr
It turns out that we can extend the torsors in Lemma 6.2 to reductions of structure of Pjg.
More precisely, for any integer r > 1, let
Pr:=T(Zy) - {x € P:z =1 modulo prHi-i/ =y,
where P denotes the adic generic fibre of the formal p-adic completion of Pz, .

PROPOSITION 6.5. For any integer r > 1, there exist an integer s > and an étale P,-torsor
Fr s — Xs such that the following assertions hold.

(i) Here, .7?,,,3 provides a reduction of structure of Pi x x Xs (to an étale P.-torsor) and G,
provides a reduction of structure (to a proétale T (Z,)-torsor) of F.s X x. Xso. In particular,
],:_m is a quasi-compact open subset of P{; containing the closure of 7G .

(ii) The pushout .7::,«,3 xPr T, along the natural projection P, —» T, coincides with F, Xy, Xs.

Moreover, for any two étale P.-torsors .% and ¢ over Xy satisfying (i), there exists an integer
s’ > s such that we have an identification of torsors

T Xy Xy =9 x 2, Xy, (6.1)

“Note that, in [AIP18], the authors define overconvergent modular forms with weight given by a locally analytic
character on Z;, which implicitly uses the polarisation on £. However, the extension to characters of T(Z,) easily
follows from their methods.
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(viewed as open subspaces of Piy). The collection of torsors {fr,s}ns as r, s vary form a cofinal
system of quasi-compact open subsets of Pip containing the closure of 1G .

Proof. Let ZG, s denote the pushout of F, xy, Xy along the natural map 7, — T(Z/p"+°Z),
where § =0 (respectively, 6 = 1) if p=2 (respectively, p is odd). We first establish existence of
the torsors F;. 5. Note that we have a Cartesian diagram

Igr,oo — Igr,s

| |

Koy — X

where ZG,. o, — Xso denotes the Igusa cover with Galois group T(Z/p" 7). Let {Spf At®},c;
be a finite open cover of X over which Hg and weg trivialise, and let U®) = Spa(A(') At (i)) denote
the adic generic fibre of Spf AT (") Let Ug) = Spa(Agi), A;’(i)) and U,(Q = Spa(Asl?g, AJr (1)) denote
the pullbacks of U® to X, and ZG, s, respectively. For (i,j) € I x I, set

U(i’j) — U( D X U(J) = Spa(B 5 ), B;"‘;(i?j)).

Note that Ajo(.f) —A:rs (1/h) and Bfogf’]) BJr ’])<1/h> where h is a local lift of the Hasse
invariant, and the natural restriction maps A;’_ s(z) —>A+ (@) and B{f ;(m ) —>B;|,r gﬁ,” ) are injec-
tive (since all of these open subspaces arise from a cover of the formal scheme X). From the

construction of F, (see [AIP18]), we observe that F, has sections over Uﬁls) (for any s >r).
Let t;: U@ — PR 4o be a section of the torsor Pjg — X. Then a section of F,41 over

UEQLTH can be described as

u; :=1t; - g;: U(—‘zl r+1 — ]:TJrl XXT+1 Ur(—21 r+17

for some g; € Tan(Afd)rl ++1)- We can choose the sections ¢; such that we have

tilvonuw =tilvownuw - ij,
with z; ; € P( A(iJ))_ Then the image of gj_la:i’j g; under the projection P*" — T4 is contained
in 7;’+1(B7(“Z—;-]1),r+1>' Let

Uz UL o Fr xa,, UYL o PR xx U,

r+1,00 T

where the second map is given by the unit root splitting Then we can write w; =t;-g; for

some g; € P (Ag,ll ~) Whose i 1mage under the projection P* (Affll o) = Tan(Aiil ) coincides
with g;. Furthermore, we have g 9; :UmgZ € PT+1(B£-LJ1)OO)

—JHan

By using the fact that 14T+(1)Oo = A:r(lz 'r+1<1/h> we can find elements h; € P (Ag,z_)H r41) such

that g, Lh, e PTH(A?(JFLOO). Set v; j = hj xm-hi epP® (qufl) ++1)- Then we see that (because [ is
finite) we can find a sufficiently large integer s> r + 1 such thzi v j € fr(Bq(ijl)’ <) We may also
choose s such that the image of h; under the projection map P — T2 (denoted h) satisfies

9; 1h; € 7;(A1(217 ). The étale P,-torsor fr s is then defined by the collection of sections

{t:-hi: UY),  — Piel)

or alternatlvely by the transition matrices {v;;: (i,7) € I x I'}. The cocycle condition is auto-
matic, and ]-",,75 provides a reduction of structure of Pjg by construction. Clearly the pushout
of F, s along the map P, — T, is given by the sections {t; - h;}ie 1, which describe the torsor
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Fr xx. Xs (by the condition gi_lh; € ’7;(A7(2175) and the fact that F, xy AXj is the pushout of

Fr41 Xx,,, Xs along the map 7,11 — 7;). Finally, the pullback ]?r,s X x, X is described by the
orbit B
(Fr—&-l XXTH Xoo) '737" - Pgﬁ Xx Xom

where we view (F,41 X x. - Xoo) C Pip X x X via the unit root splitting. Therefore, we imme-
diately see that ZG, defines a reduction of structure of F;. s X x, Xso. This completes the proof
of existence. B
Suppose that & is an étale P,-torsor over & satisfying (i). Then it suffices to establish an
identification of the form (6.1) for # =F, ¢ (with ' >s). We will continue to use the same
notation as above for the construction of F, . We have sections
7@ .
{ch,Z UT+1,S/_> S‘E,Aﬁzl,s/ .ZGI},
whose pullback to Ufi)l,oo gives sections of ZG x T(Zy) P,41. Since ¢ satisfies (i), we see that

¢ is a strict neighbourhood of ZG, xT(Z») P41 inside Pi;. This implies that there exists a
sufficiently large integer s” > s’ such that ¢; - h; factors as
()

(@) () an
Ur—i—l,s” -9 XX, Ur-i—l,s” - PdR Xx Ur—i—l,s”’

that is, we obtain a section of ¢. This implies that ¥ xx, X = F, o Xy, Xgv as required.

Furthermore, one easily verifies that the system {fr,s}r,s is a cofinal collection of strict
neighbourhoods of Z7G . O

We consider the following representations and sheaves. Let T C T'(Q,) denote the submonoid

of diagonal matrices diag(t1, t2) satisfying v, (t1) > v,(t2). One has an isomorphism Z? x T(Z,) =

T(Qyp) given by sending (n1,n2) x t to the matrix (p”1 o2 )t. We let (-): T(Qp) = T(Zy) denote
the projection to the second component.

DEFINITION 6.6. Let r>1 and let ¥, =P, - Tt - P,.

(i) Let V; = O(P,) denote the Q,-Banach algebra of global sections P, — Al#". We view this
as a representation of ¥, via the following action:

px =) =fp" =), Aaf)=)=Ft"—tt)™), pePnteT" feV.
(ii) If k: T(Zp) — R is an r-analytic character, then we set
Vi ={f €V,OR: f(at) = (wor)(t 1) f(x) for all t € T, }.

This sub-Banach space is stable under the action of ¥,.
(iii) For any torsor 7: F, s — X as in Proposition 6.5, we let

V9s= (W*Ofrvs@)‘/;)fp”*’ = W*Oﬁ o

where the invariants are with respect to the x;-action above. This is a locally projective
Banach sheaf of Oy, -modules in the sense of [BP21, Definition 2.5.2], and comes equipped
with an action %, of P, via the torsor structure (or equivalently via the action (p %, f)(—) =
f(=-p) on V,). Similarly, we set

Vr,s,n = (F*Ofr,s ®V—71ﬁ)7>,,.7*l s
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which is also a locally projective Banach sheaf of Oy, -modules. We can view V,.s, C V; s
as the subsheaf of sections f € V, s satisfying t x, f = (wor)(t™1)f for all ¢ € T, (recall that
we are viewing X" as an adic space over Spa(R, R1)).

Remark 6.7. Note that V., and V,,,. depend on the choice of the torsor ]?T’S, but for any
two choices, one can always find an integer s’ > s such that the pullback of the sheaves to Xy
coincides (see Proposition 6.5). We will therefore omit the choice of torsor from the notation.

Remark 6.8. Let TTT CTT be the semi-group of diagonal matrices diag(t1,t2) which satisfy
vp(t1) > vp(t2). Then, for any t € T+, we have t x; V;41 ,, C V; . Since the inclusion V., — Vi1
is compact, we see that the operator tx; —: Vi1, — V41 is also compact.

Since the system of torsors {fr s}r,s is cofinal, we see that

AT =lim HO(X, Vrs) and - AT =1im HO(X, Vo),

where the transition maps are with respect to restriction and the natural inclusions V, C V4
and V., C V,41,. We also have versions of this on the level of sheaves, namely

NT=limV,, and Nf=lm V..
r,s r,8
Here we are implicitly viewing V, s and V., . as sheaves of Oyx-modules by pushing forward

along the inclusion &X; C X'. These descriptions are beneficial for the discussion of filtrations and
Hecke operators below.

6.3 Filtrations

We now define an ascending filtration on nearly overconvergent forms.

DEFINITION 6.9. Let > 1 and k: T(Z,) — R* be an r-analytic character.

(i) For an integer h >0, let Fil, V. C V. denote the sub-X,-representation consisting of global

sections f € V.,
x x =
(y Z) = fl@,y,2), <y Z) €Pr,

which are polynomial in the variable y of degree less than or equal to h. This coincides
with the subspace of elements in V, killed by the action of 7"t under ,. Similarly, we
let Fily, V;., C V. denote the subrepresentation of elements which are polynomial in the
variable y of degree less than or equal to h (or equivalently the elements killed by ﬁhH).

(ii) For an integer h >0, let Fil, V, s C V. and Filp V,. 5, CVy 5 denote the subsheaves
given by

Fily Vrs = (mOz & Fily V,)P*, Fily Vyow = (105 @ Fily, V)P

As in (i), these are the subsheaves killed by the action of a1, The sheaf Filp, Vi is a
locally free Oy -module of finite rank which is independent of r. We set

Fil, NT =1lim Fil, V., and Fil, N =lim Fil, V.,

where, as above, we are implicitly considering Fil, V. s and Fily, V, ; .. as sheaves on X' by
pushing forward along the inclusion X; C X.
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(i) We let Fil, 4T =H(X, Fil, NT) and Fil, A4 =HO(X, Fil, A}l). Equivalently, we have
Fil, 4T = lin HY (X, Fil, V»s) and  Fil, A = lim HO (X, Filp, Vrs ).

Remark 6.10. One can easily verify that Fily, V;. . = Sym” St @ R(wor + h(1; —1)), where St is
the standard representation of GLg and R(wok + h(1; —1)) denotes the one-dimensional line
given by the character wok + h(1; —1) (inflated to P,). If we view  as a pair (x; w) satisfying
k(t, st™1) = Kk/(t)w(s), then we have

Filp, Vrsx = Symh He ® (w’g;h+w Quwg "),
which agrees with the definition given in [Urbl4| (after identifying wg and wep via the

polarisation).
Similarly, we have

Filp, Vs =Sym" He @ w ! & 707« .,

where 7': F. Xy Xs — Xs denotes the structural map. One easily sees that Fily N/ = MT and
Filg N} = M.

6.3.1 Compatibility with the Gauss—Manin connection. Let U =Spa(B, B*) — X; be an
étale morphism over which the torsor 7: F. ¢ — X, trivialises. Then any section f €V, ((U) is
described as a morphism f: 7~ 1(U) — V,®B such that f(xp)=p~'% f(z) for all x € 7~1(U)
and p € P,. If we identify 7=1(U) = U x P, then the connection V on V, s(U) has the description

V() p)=(D- f(p)+d* f(p) vy,

for peU x P, and f€V,4(U), where D: B— B is some derivation and ¢ € gg. Here y €
Fily Vrs,25(U) is the element arising from the Kodaira-Spencer isomorphism. If f € Fil, V,.,(U)
then the action d x; — can increase the degree of f(p) in the unipotent variable by at most 1, so
we immediately obtain the following lemma.

LEMMA 6.11. For all h >0, one has V (Fily, V, ) C Filj 11 V; 5.

Let Gry, Vy s =Filp Vy g/ Filp—1 Vys . (with the convention Fil_; V, 4, =0). We have the
following lemma describing the connection on graded pieces.

LEMMA 6.12. Let k: T(Z,) — R* be an r-analytic character which we view as a pair (k'; w) of
r-analytic characters Z — R* such that x(t, st™') = &/(t)w(s). Let u, € R be the element such
that x/(t) = exp(uy log(t)) for t € 1 + p"Z,. Then

Vi Grp Vrske = Grigr Vesrt2p
is an isomorphism multiplied by u, — h.

Proof. By using the polarisation & = £P we can identify this map with that in [AI21, Theorem
3.18], from which the result follows. O

6.4 The Up-operator

Let » > 1. We have a correspondence
X & e B x,

where C, denotes the moduli of order p subgroups C' C £[p] which are disjoint from the canonical
subgroup H{*". The map p; is the natural one, and p2(E) = E/C is the quotient by the order
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p subgroup. Note that pp is finite flat of degree p and ps is an isomorphism. Let (£, C') denote
the universal generalised elliptic curve and order p subgroup over C,, and set & =&/C. Let
A: £ — &' denote the corresponding isogeny, and AP: (£)P — £ its dual. We have a natural
isomorphism Ay : He — Her.

DEFINITION 6.13. Let Pl; . = Pig Xx &;. Let ¢: pl_lPdaﬁ . pgngﬁ ++1 denote the isomorph-

ism given by sending a trivialisation 1: 092 = Hf to the trivialisation
1 ~
A oo ( p1>; 0% 5 Hp e,
where C' C E[p| denotes the choice of order p subgroup which is disjoint from the canonical
subgroup.

We consider the commutative diagram

an P1 —1 pan ¢ —1 pan P2 an
%
PdR,r A S PdR,r Py PdR,r+1 ’ PdR,r+1

LN,

X, < > Xt

and we set gg =p3 0 .
We have an analogue of this for Igusa towers over the ordinary locus, namely

TGoo & pr TG00 S py TG00 25 TG,

where the map ¢ sends a pair of trivialisations (11, 12) of E[p™>]° and E[p™]° respectively to
(Aopr, p~tA o). This is well defined because the canonical subgroup of E is E[p]°, and C is
étale. As above, we set go = po 0 ¢. Then we have a commutative diagram

IGoo 22— pT TG —2— 1G4
Pp1 —1 q2
Pig, ¢ 1 Pir, — Pir,1

with the left-hand square Cartesian.
If we let Z (respectively, Z’) denote the closure of ZG, (respectively, pl_llgoo) inside PR ..

(respectively, pl_ch?ﬁ ,) then we have the following commutative diagram.

Z 2 z! L,z

| ! |

an P1 —1 pan q2 an
PdR,r —— 1 Pir, — Pir,11

LEMMA 6.14. The left-hand side square above is Cartesian (i.e., p; '(2) = 2Z').

Proof. Clearly Z’Cpfl(Z). Now p; is finite flat, hence it is an open morphism. Suppose
that = € p;*(Z2) — 2'. Set U:pflpjﬁr — 2’ which is open. Then p;(U) is open and p;(x) €
p1(U)N Z. Since p1(U) is open, this means we must have p1(U) NZG # @. But this implies
that

UNnpy (ZGee) =UNpy 'IGos # 2,

which is a contradiction. O
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We now have the following construction of the Up-operator. Thanks to the above lemma,
for any quasi-compact open Z C U C Pc?l%m 41, there exists a quasi-compact open Z C U 'c Pjﬁ’r

such that ¢; 1 (U) D py H(U’). Therefore, we get maps
3 _ r _ Try,
(U> s Opflpsﬁ“m (QQ I(U)) = Opflpggyyr (p1 ! (U/)) ’ OP;;;WT (U/)a

where Tr,, denotes the trace map associated with p;. All of these maps are compatible, so we
obtain an induced map on the limit, namely the U,-operator Uy,: A" =N

OPau

dR,r+1

Remark 6.15. Exactly the same construction works for .21 and the Up-operators are compatible
under the natural map .#" — 4T

Remark 6.16. One also has similar constructions for the Frobenius operator ¢ and diamond
— —1

operator S, which are defined with respect to the action of (p ' 1 ) and (p o ), respectively.

One can easily show that U, o ¢ =pS, and S, commutes with U, and ¢. We leave the details to

the reader.

6.4.1 Compatibility with the group action. Recall that we have a cofinal system {U;} of
neighbourhoods of the closure of ZG, — PiR satisfying T'(Z,) - U; C U;. Here we are considering

the action T°" x Pig . — Pjg . through the inclusion 7T%" C P

LEMMA 6.17. The T(Z,)-action commutes with Uy, ¢ and S, on .#T and AT

Proof. For U,, we just need to show that the group action commutes with p; and go. But this
is clear (since T'(Z,) commutes with diag(1,p~1)). The proofs of the claims for ¢ and S, are
identical. O

6.4.2 Compatibility with the connection. Let r > 1 be an integer. By the construction above,
one has a map R-modules

U HO( dR T OP&“ ,.) = HO(PdR ;1 OP"”‘

dR,r+1

,) = H(P§ R Oran )-

We have the following lemma.

LEMMA 6.18. For any ¢ € C'®(Z,, R), one has:

*Qb(p’_)oUp:Upoéb;
~pop=pog(p-—);
*QbOSpZSpOQZ)

as endomorphisms of NT.

Proof. By the density of polynomial functions in C'3(Z,, R), it suffices to check this for ¢ equal
to the structural map Z, — R (i.e., for the operator V). The functoriality results in [AI21, §6.2]
imply that pVoU,=U,0oV on HO(P(?ﬁ’T, (’)p:rnw). Furthermore, U, oV and pV oU, are two
continuous R-linear morphisms AT — 4T extending U, o V =pV o U, on HO(Pgﬁjr, Opsy ) for
any r > 1. But any such extension must be unique because H° (Pgﬁ,r’ Opjﬁ’r) is dense in JVJ for
any quasi-compact strict open neighbourhood U of the Igusa tower. This proves the first bullet
point. The second and third bullet points are similar (again following from the functoriality
results in [AI21, §6.2] and a density argument). O
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6.4.3 A reinterpretation. We can also reinterpret the construction of U, using the torsors
constructed in Proposition 6.5. We begin with the following lemma.

LEMMA 6.19. Let r > 1 be an integer. Then there exists an integer s > r such that
p2_1-7:7"+1,s+1 C (z)(pl_lfr,s) C pg_lfr,s—&—la
where ¢: pl_1 R s %pgngﬁ s+1 1S the morphism in Definition 6.13.

Proof. Let s > r be an integer such that ]?m and j':r+1,s+1 exist, and recall that the map ps is
an isomorphism. Let & = qb(pfl]:r’ s), which is an étale torsor under the group

t 1Pt C Py, t:(l p1>.

Then we see that the pushout ¢ xt™ Pt P, is an étale P,-torsor which is a reduction of structure
of py ngﬁ s41- Furthermore, py '7G.o defines a reduction of structure of 4. Since ps is an iso-

morphism, we see from Proposition 6.5 that we can increase s (if necessary) so that ¢ xt™ Pt P,

g)incides With Dy 1.7:71,34_1, and ps 1.7-",1+1,s+1 is a reduction of structure of ¢ via the embedding
Pri1 Ct 1Pt O

Let : T(Zp) — (RT)* be an r-analytic character, and let s > r be a sufficiently large integer
such that the conclusion of Lemma 6.19 holds. Let
T pflfm —Cs, mo: pglfrHﬁH —Cs, 0:9—Cs,

denote the structural maps of the torsors, where ¢ is as in Lemma 6.19. Let t = ( ! ot )eTtt.
Then the morphism ¢* ® (t x; —) induces a cohomological correspondence

. _ 5 t1P otk 3 Proki _ %
Gr: pSVT,S-H,n = ((U)*O%@)V;”,N) = ((Wl)*opl—lﬁm@vfﬁ) T =1 Vrs ks

where the first equality holds because V;. ,; is a representation of P,and ¥ xt 1Pt P, = Py 1]—"7«7 s41-
The Up-operator can then be seen as the following composition:

HO (X, Vs ) = B (Xop1, Vrsian)
p_2> HO (C&p;VT,s-i-l,n)
L5 HO (Cy, Vi)
Tr,o1 0
—H (X& VT’,S,K,)7

where the first map is induced from restriction. These operators are compatible as one varies r, s,
and the resulting operator on the limit JKJ = ligrs H° (Xs, Vr.s) is precisely the U,-operator
constructed in the previous sections. For s > r + 1 sufficiently large, we have a factorisation

U,
HO (Xs+1a Vr+1,s+1,/{) *P> HO (‘XS+15 Vr+1,s+1,/~c)

T \ T (6.2)

H (X, Vrg) ——2—— HO (Xs, Vo)

because the cohomological correspondence p5Vy i1 511,k LN P1Vr+1,s,x factors through piV, . C
PiVr41,sx (see Remark 6.8).
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Remark 6.20. Using this reinterpretation, one can easily see that U, preserves the filtration
Fil, A7

6.4.4 Slope decompositions. We now discuss the spectral theory of the Up-operator on JI@T.
Let r > 1 be an integer. Let Rj be an admissible Z,-algebra, Ry = R [1/p], and consider the
affinoid adic space W := Spa(Rp, Ry ). Suppose that we have an r-analytic character k: T(Z,) —
R} . We have the following theorem.

THEOREM 6.21. Let x € W(@p) and h € Q. Then there exists an open affinoid neighbourhood
Spa(R, R) C W of x such that ;! and Fily A have slope < h decompositions with respect to
U,. Furthermore, there exists an integer k such that

(A= = (Fil A=,

Proof. Since the inclusion V., — V;11, is compact and X,y € X is a strict inclusion, the
factorisation in (6.2) (and the standard theory of slope decompositions) implies that .Z; :=
ligs HO (&, Vr.s.) admits a slope < h decomposition over a neighbourhood Spa(R, R") of z in
W. Furthermore, one can check that as k — 400, the norm of the operator

(t *] —): Gry, V}’,i — Gry, VT,K

tends to zero. Hence, there exists an integer k > 0 such that .Z=" = (Fily %T)Sh. To conclude
the proof, we note that the factorisation (6.2) implies that U, is pointwise nilpotent on WA /%,
so A admits a slope < h decomposition and (A, )Sh = L= O

6.5 Overconvergent projectors

We now have all the ingredients to define an overconvergent projector on Jl{j. As in the pre-
vious subsection, let Rj be an admissible Z,-algebra, Ry = R [1/p], and set W = Spa(Ry, Ry ).
Suppose that we have a locally analytic character x: T(Z,) — R .

THEOREM 6.22. Let x € W(@p) and h € Q. Then there exists an open affinoid neighbourhood
Spa(R, R*) C W containing x and an overconvergent projector
<h,oc

I : A = ()= @r Frac(R),

with finitely many poles, interpolating the overconvergent projectors in [Urbl4, §3.3.4] for
classical specialisations.

Proof. By Theorem 6.21, it is enough to construct an overconvergent projector for
(Filg, %T)Sh, and this follows from exactly the same arguments as in [AI21, §3.9] (using
Lemma 6.12). O

6.6 The p-depletion

In this section we discuss the relation between the action of C’la(Zp, R) and p-depletion. We
begin with the following lemma.

LEMMA 6.23. The action of 1y € Ceont(Zy, R) coincides with the operator 1 —pilSpflchp on
p-adic modular forms . .
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Proof. Without loss of generality, we may assume that R = Q. The space .# can be described
as sections of ZGg» invariant under right translation by U, Then, by p-adic Fourier theory

(see [How20, §7.1]), the action of 1,7 is given by

1 1
ra ()
CELp

for f € .4, where ( € [ip~ denotes any lift of ¢. Here (! ¢ ) is an element of Joyd( ,C,yd) acting

on a function by right translation of the argument. On the other hand, we have

S U () =~ > <p ‘f) - f.

P e, (o) /T (1)
-1
an=("" )
Hence, p_ISp_ 1g0Up coincides with the action of 1,z and the result follows. O

We now prove an overconvergent version of this lemma.

PROPOSITION 6.24. The action of 1y € C’la(Zp, R) coincides with the operator 1 — pilSpflgoUp
on nearly overconvergent modular forms AT
Proof. We first claim that the action of 125 preserves the filtration Filg A4 . This can be checked

locally on sections of overconvergent extensions of some Unr,, for n sufficiently large (see
§83.3-3.4). If U is such an overconvergent extension, then we have

Ho(ua OU) — HO(“HT,n,Aord,ooa OZ/{HT,n,A ) = @ HO(BOO(O')\(QOO), p_n)v OBw(Ux(gx)p—")):
AET(Z/p™Z)

ord,oco

respecting filtrations (it is equivariant for the action of n), so it suffices to check the claim for each
direct summand in the right-hand side. But the action of 17 on such a direct summand is given
by limy—s 0o (VA)P
Proposition 5.2 that this operator preserves the filtration (it acts as 17 on the Aorq,00-coefficients
of the power series in the coordinates X, Y, 7).

Since |, Fil, 4T is dense in AT it therefore suffices to show that the operator T :=
1-— p_lSp_lgoUp — 1y =1yz, —p‘lSp_lgoUp is zero on Fil, 41, for any integer r > 0. But for any
integer r > 0, we have a morphism

Fil, #1 - Gr, /T 4,

which is equivariant for the action of T'. Hence, Lemma 6.23 implies that T is zero on the graded
pieces of Fil, A4 — in particular, we must have 7"+t! =0 on Fil, .#T. Finally, we note that T is
idempotent. Indeed,

T? =1z, —p 'S, oUplypz, — 0 1y, S, oUp +p~ 1S, oUp =1y, — p~ 'S, MU =T

"'(P=1) and one can see from the explicit description of V* in the proof of

where we have used the fact that pilSpf LoU, is idempotent (because U, = pS,) and the relations
in Lemma 6.18. This proves that 7'=T"*! is zero on Fil, 4T as required. O

6.7 Comparison with the work of Andreatta and Iovita

We end this section by comparing the space of nearly overconvergent forms constructed in this
paper with the space constructed in [AI21]. For this, consider the group

ﬁﬁu :=T(Zy,) - {x € P:m(x) =1 modulo p TP~}
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where m: P — T denotes the projection to the torus. With notation as in Proposition 6.5,
consider the pushout ]:,,{?SI = Fps X7 ffl. Set VAl = O(ffl), which carries an action of LT =

A =A . o . .
73,,I Tt Prl by the exact same formulae as in Definition 6.6. If k: T'(Z,) — R* is an r-analytic
character, then we set

W}; := Homp(z, ) (—woxk, WAI®R).

7,8,k
X5, where 7: .7?7531 — X, denotes the structural map. Note that V&Iﬁ is independent of the choice
of r such that « is r-analytic (whereas the sheaf V, ;.. from Definition 6.6 very much depends
on 7).

Set A= Tlim HO(A,, VA

r,8,K

. —A
We let VAL = (77*(’)]:_51@‘/7}},5)7)?1 denote the corresponding locally projective Banach sheaf on

), where the colimit is over the restriction maps. This space

carries actions of U,, S, and ¢ by exactly the process as in §6.4, and AL admits slope
decompositions with respect to U, (up to possibly shrinking Spa(R, R*)). We have the following
comparison result.

PROPOSITION 6.25. Let I = [O,pb] with b# oo, and suppose that k is the universal character
of the open Wy of weight space introduced in [AI21, p.2004]. Let k = (k;w): T(Z,) — OWr)*
denote any locally analytic character extending k. Then the following assertions hold.

(i) For s sufficiently large, the sheaf V,fgﬁ is identified with the sheaf Wy, 1[1/p] of nearly
overconvergent forms over X in [AI21, § 3.3].

(i) The actions of p~'U, and S, ¢ on
AT = Ty HY (X, W 1[1/p]) (6.3

coincide with the actions of U and V constructed in [AI21, § 3.6-§ 3.7].
(iii) The Gauss—Manin connection V: AAL —h/l{i’r[;; intertwines with the connection con-
structed in [AI21, § 3.4] under the identifications in (6.3).

Proof. Let Vo(Hig(E)¥, scan) — Xs denote the adic generic fibre of the formal vector bun-
dle with marked section as constructed in [AI21, §3.3]. Here, we use the notation Qg C
H.x (E)# (respectively, sean € Qp/p" 171 P=1) in place of the notation Qg C H§ (respectively,
s € Qp/p 11/ (P=1D) used by Andreatta and Iovita in order to avoid clashes with notation
used previously in this paper. The space Vo(Hig(E)¥, scan) carries a left action of the group
T =7, (1 + pr 11/ (=D GH); since this group is abelian, we can (and do) view this as a right
action.

Over V :=Vo(Hig(E)¥, scan), one has a universal morphism p: Hjg(E)# — O which
restricts to an isomorphism Qg — (’){ﬁ mapping the marked section Scan to 1 modulo prti=1/e=1),
In particular, the kernel U of the universal morphism p induces a decomposition HéR(E)# =
Qp@®U (and U is a locally free Of-module of rank one). We let W — V' denote the (right)
G} -torsor parameterising bases {e, f} of H(liR(E)# with e € Qg, f €U, and e mapping to 1
under the universal morphism p. Here G (Spa(R, RT))=(R1)* and it acts on the basis by
rescaling the vector f by the inverse of the element in G;}. Furthermore, the map W — V' is T}!-
equivariant, where the action on the source is given by rescaling e by the inverse of the element
in 7. Finally, we equip W with an action of the group

— T!
TTNGE G
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by declaring g- {e, f} = {ae,be + cf} for 'g7* = (@ b). Note that W — X; is a f;,-torsor. By
using the fact that He = (Hig (E)#[1 /p])v and the fact that Hls (F)* has a canonical decom-
position Qg U (where U™ denotes the unit root subsheaf) over the ordinary locus, one has
morphisms

G — W — PiRQ,

with both maps defining reductions of structure. Therefore, by an argument similar to

~ AL
Proposition 6.5, one can identify W with ]-'7{7*81 xPr 73; after possibly increasing s. We conclude
that there are natural isomorphisms

PAL (ks—k) = Hom, (k3 0), mw,«Ow ) = Hom (k, 7y, Ov) = Wy 1[1/p].

TS,
Here myy: W — X and 7wy 0 V — X denote the structural maps, and we have used the fact that
—wo(k; —k) = (k;0).

The result for general k= (k;w) follows from the identification V;g,,{

~ AI o .
—VT7S’(,€;7,€) arising

from identifying £ and EP via the principal polarisation. Parts (ii) and (iii) follow from trac-

ing through the definitions and constructions in §§5.1, 6.4 and [AI21, §§3.4, 3.6-3.7] (again,

identifying F with its dual EP). O
If we set A DAL= lim HO(FAL O=,,), then we see that we have an inclusion

T‘,S’ .Ff:‘lg
N AL T (6.4)

and the inclusion %T’AI CJKJ is an isomorphism on finite-slope parts (with respect to the
action of U,). The space A t is much larger than 4 "Al though; the difference between the
two spaces in (6.4) is that A4 T incorporates ‘congruences between the subspace U in the proof
of Proposition 6.25 and the unit root subsheaf U/“*"’ — roughly speaking, when restricting to
the Igusa tower, the space .4 T locally looks like the colimit over n of a number of copies of
At (X =1)/p™,Y/p", (Z —1)/p") (see Proposition 5.2), whereas .4 141 looks like the colimit

ord,co

over n of a number of copies of AT. ((X —1)/p",Y,(Z—1)/p"). This is the key difference

ord,c0
which allows us to extend V to an action of C'*(Z,, Q).

It does not seem possible to improve the results of [A121] without incorporating such congru-
ences with the unit root subsheaf. More precisely, as indicated in [AI21, Remark 3.39], in order
to define an action of V* on JKJ’AI for a locally analytic character s of Z, it is necessary to
assume that s and s are analytic up to finite-order twist when restricted to 1+ pZ,, (in the lan-
guage of [AI21], this condition is written as us € A?S and uy, € AY). The reason for this is due to
the presence of the ‘unbounded denominators’ in the displayed equation of [AI21, Remark 3.39].
In our definition of 4T, we allow the coordinate ‘V =Y (14 pZ)~" (in Andreatta and Tovita’s
notation) to be arbitrarily divisible by p, which cancels out these problematic denominators.?

Remark 6.26. Let ./\/’flo #(N) denote the space of nearly overconvergent modular forms defined
in [Urb14, §3.3.2] (in Urban’s notation). As explained in [AI21, § B.2, p.2077], the construction
of Andreatta and Iovita corresponds to the integral structure alluded to in [Urb14, Remark 10];
in particular, one has

lm NP (V) & limg B (s, Wi, [1/p]) = AL,
p S

50One could also try to bound the action of (Z) on A4l in a similar way to this paper (by the formula in
Lemma 4.8, for example), but one runs into the same issue with ‘unbounded denominators’ (because the local
coordinate Y is not arbitrarily divisible by powers of p in the definition of .4 T4T).
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where kg denotes the universal character of i, kg is any locally analytic character of T'(Z,)
extending kg, and Wy, [1/p] denotes the restriction of Wy, ;[1/p] to 4 (for any choice of interval
I =0, p"] such that & C Wy, which always exists because il is assumed to be quasi-compact). We

therefore see that the space N””(N) is also not large enough for p-adically interpolating the
Gauss—Manin connection in the level of generality of this paper (i.e., extending V to an action
of C'*(Z,,Q,)) for the same reasons as above.

7. The p-adic L-functions

In this final section, we describe an application of our theory to the construction of triple-
product and Rankin—Selberg p-adic L-functions in families, without the restriction on the weight
imposed in [AI21]. Throughout, we let p >2 and let N >4 be an integer which is prime to p.
We take K = GL2(Z,)KP to be the compact open subgroup of all matrices which lie in the
upper-triangular unipotent modulo N Z.

We fix an isomorphism ¢;,: @p = C throughout, which gives a canonical choice of Nth root of
unity (n =1, 1(e2™/NY) (after fixing i =+/—1). Any g-expansion in this section will refer to the
g-expansion at the cusp (Tate(q), aR"), where Tate(q) is the Tate curve over Z[1/N](q)), and
a}" is the canonical level I'y (IV)-structure given by (n. Note that the map from overconvergent
modular forms to g-expansions at this cusp is injective, as can be seen by using the g-expansion
principle for p-adic modular forms ([Kat73]) and the inclusion of overconvergent modular forms
into p-adic modular forms. Furthermore, we base-change everything in this section over a finite
Galois extension L/Q, containing (y, but omit this from the notation.

CONVENTION 7.1. As is customary in the literature, our weights will be locally analytic char-
acters of Z,; and not T'(Z,). This amounts to choosing a normalisation: for any locally analytic
character k: Z, — R*, we set

M= My
where w(k) = —k/2 (respectively, w(k)=(1—k)/2) if k(—1)=1 (respectively, k(—1)=—1).
These weight spaces are stable under the action of Cla(Zp, R). We adopt similar notation for
overconvergent modular forms.
Finally, we set U, :p_lUp, which is the normalisation giving the usual description of the
Up-Hecke operator on g-expansions. All slope decompositions will be with respect to U,,.

7.1 The eigencurve

Let C denote the Buzzard—Coleman—Mazur cuspidal eigencurve (over Spa(L, Or)) of tame level
I'1(N), which comes equipped with a weight map w: C — W, where W denotes the weight space
parameterising continuous characters on Z;. Over C, we have a universal eigenform

Funiv _ Z ang" € O(C)[[CJ]]v

n>1

with a; =1 and a, € O(C)*, satisfying the following universal property: for any affinoid U
with a weight morphism x:U — W, and any family Fy of finite-slope eigenforms over U
of tame level T'1(N) and weight s, there exists a unique morphism U — C lifting s such
that JFy is the pullback of F'V (cf. the discussion just after [Loel8, Definition 3.5]).
For any quasi-compact open affinoid V CC, we let Fiy € O(V)[q] denote the pullback of
Funiv to V.
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Let &t c .#" denote the subspace of cuspidal overconvergent modular forms, that is, those
which vanish at all the cusps (not just the specific choice above). This space is stable under the
actions of T'(Z,) and U,. Over W we have a universal sheaf of cuspidal overconvergent modular
forms ST, such that for any quasi-compact open U C W, we have ST(U) = S (where k is the
universal character of U). We let Sg :=w*ST denote the pullback to C.

We have the following proposition.

PROPOSITION 7.2. Let V C C be a quasi-compact open affinoid subspace, and let U = w(V) C W
denote its image in weight space with universal character r: Z; — O(U)*. Then there exists a
‘universal cohomology class’

wy € SHV) =L &0wOV)

with g-expansion given by JFy . Moreover, the restriction of wy to Sg(V’ ) is equal to wy- for
V' C V, so these classes glue to give a universal cohomology class w¢ € Sg ().

Proof. This follows from the duality between cuspidal overconvergent forms and Hecke algebras
(cf., for instance, [Urbl4, §4.2] for trivial tame level, or [Col97, Proposition B5.6]). Observe
that, since we are working at tame level I'1(IN), here we consider the Hecke algebra generated
by the Hecke operators Ty for £ Np, U, and the diamond operators (¢) for ¢| N, and the Hecke
operator Up. O

7.1.1 The dual class. Let V CC be a quasi-compact open affinoid subspace, and let wy €
Sg(V) denote the universal cohomology class provided by Proposition 7.2. We will now explain
how to associate a ‘dual class’ to wy. As explained in [AI21, §5.2], one has an Atkin—Lehner
involution wy on X = X;(N) (as {ny € Or), which extends to involutions on Myr and ZG,
compatible with the morphism ZG., — M3y . This induces an involution wy : .Z T — " which
commutes with the T(Z,) and U, actions and preserves .7

DEFINITION 7.3. Let w{, denote the ‘dual class’ given by
wy =wn(wy) € Sg(V).

These classes are compatible for V' C V because the same is true for the Atkin-Lehner involution
wy, and we denote by w§ € Sé (C) the dual class obtained by gluing.

7.1.2 A linear functional. For any integer M|N, let C(M) denote the Buzzard—Coleman—
Mazur cuspidal eigencurve of tame level I'y (M), and we let ., (M) denote the space of cuspidal
overconvergent modular forms of weight x1 and tame level I';(M). If M = N, we omit this from
the notation and we keep the notation of the previous sections.

DEFINITION 7.4. We say that a point x € C(M) is:

— classical if w(z) € Z>9 and the specialisation F2™V of the universal eigenform F"™" over
C(M) at the point z is the g-expansion of a normalised cuspidal modular form of weight
w(zx) and level T'y (M) NTy(p"), for some integer r > 1;

— crystalline if x is classical and the newform associated with the modular form FV has
level T'; (M’) for some M'|M;

— p-regular crystalline if x is crystalline and the roots of the Hecke polynomial at p,

X% —ap(f)X +ep(p)p@1,

are distinct, where f denotes the newform associated with F'™V with nebentypus e -
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We make the following assumption.

Assumption 7.5. Let U C W be a connected quasi-compact open affinoid subspace in weight
space with universal character ki: Z; — O(Up)*. We suppose that there exists an integer
Nz dividing N and an open Vi CC(Nrx) lying over U; such that the following assertions
hold.

— The weight map w: V4 — Uj is an isomorphism.

— Every specialisation of the Coleman family F := Fy, at a classical point = € V} with w(x) €
Z>2, is noble; that is, it is the p-stabilisation of a normalised cuspidal newform of level
I'1(Nx) that is p-regular, with the additional condition that its local Galois representation
is not the sum of two characters if it is of critical slope (see [LZ16, Definition 4.6.3]).

Remark 7.6. Many such opens Vi exist by starting with a noble eigenform and taking a
sufficiently small neighbourhood of its corresponding point in the eigencurve (see [Bell2]).

The Coleman family F will constitute the first variable of the triple p-adic L-function.

LEMMA 7.7. Let wy, € S (Nr£) denote the universal class over Vi, as in Proposition 7.2. After
possibly shrinking Vi, there exists a unique O(Vj)-linear Hecke equivariant (for the Hecke
operators {T; : £{pNr} U{U,}) map

L (Nz) = O(W), (7.1)

sending the universal class wy, to 1, where the action of the Hecke algebra on O(V}) is through
the Hecke eigensystem corresponding to the Coleman family F.

Proof. If ar denotes the Hecke eigencharacter associated with the Coleman family F, then
wy, is an eigenclass for the Hecke action with eigencharacter ar. We claim that this appears
as a direct summand in 5”,.;[1 (Nx) with multiplicity one. Indeed, it suffices to show this in
y,Il(Nf)Sh for sufficiently large h € N, since the slope <h part is a direct summand of
y,jl(N;). Let Th:T(YJI(N;)Sh) denote the Hecke algebra over O(U;) (generated by the
same Hecke operators as in the proof of Proposition 7.2) acting faithfully on the module
S (NF)<Sh,

Since the weight map induces an isomorphism on V; (Assumption 7.5), there exists an idem-
potent e in T, such that eT) =0O(Vy) =2 O(U;) and eT), C Ty, is the (generalised) eigenspace
for the character ar. We note that we also have a stronger property, namely, eT) C T}, is
the (generalised) eigenspace for the action of the Hecke operators {1;:£{pNr}U{U,} with
eigencharacter ar. This is because any Coleman family over U; with the same prime-to-Nz
Hecke eigensystem as F must coincide with F (this follows from the second bullet point in
Assumption 7.5).

Finally, by the duality between overconvergent modular forms and Hecke algebras (see
the proof of Proposition 7.2), the same properties are true for y,.jl(N 7)<, namely: one has
eZ] (NF)Sh = O(Uy) and e (NF)Sh c . #1 (N£)< is the (generalised) eigenspace for the
action of the Hecke operators {1, : ¢{{pNr}U{U,} with eigencharacter ar. This completes the
proof of the lemma. O

We extend this to a linear functional on 5’,31 as follows. For any divisor a > 1 of N/Ng, we
have a finite étale morphism [a]: X;(N) — X1(Nx) as described at the start of [AI21, §5]. This
induces a trace morphism [a],: AR ) (Nr) and a pullback map [a]*: S (Nr)— S with
the latter given by translation of the argument by a on classical modular forms.
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DEFINITION 7.8. Let p1= (ta)a|n/n, De a tuple of elements of L N szl@ indexed by the divisors
of N/Nr. We set wre =3, n/n, Ha - [a]"(wy;) € F1. Set W%e =wn(wre). We define

Apoc: S5 —O(W)

to be the O(Vj)-linear map sending a class J € 4 to the image of [C1(Nz):T1(N)] 7t
2_a|N/Ny Pa  [a]xwn(6) under the map (7.1), where a bar denotes complex conjugation. This
is Hecke equivariant away from Np and Up,-equivariant, where the Hecke action on the target is
given by the eigensystem for ¢ (see [Loel8, Lemma 3.4]).

We have the following specialisation formula.

LEMMA 7.9. Let 1 € w *(Z>2) NV4, let F,, denote the specialisation of the Coleman family
at x1 and let

ACI;; ST (N)NTo(p); €) = C

denote the restriction of the specialisation of Ar..c at x1 to the space of classical cusp forms
of weight k:=w(z1) and level I'1(N)NTo(p) (using v, to extend scalars to C).5 Let Fy."=
Fo, ® 8]__—1 , where ez, denotes the nebentypus of F,, and F; = ZG‘N/NF e - [a]* Fy,. Then

1

fO,C g>N
)\Clo,c — < T1 P ’
]:7—'1 (g) <.F§1,.F£1>N7p
for any g€ Si(I'1(N)NTy(p); C), where (-,-)n, denotes the Petersson inner product of level
I''(N)NTo(p) as in [DR14, Eq. (35)] (which is Hermitian linear in the first variable).

Proof. The restriction of the specialisation of (7.1) at 21 to complex-valued cusp forms of weight
k and level I'1 (Nx) N To(p) defines a Hecke equivariant map Sk (I'1 (Nx) NTg(p); C) — C factoring
through the eigenspace associated with F,,, and sending F,, to 1. Set M = Nx. Since F,, is a
noble, this map must therefore be equal to

<'F1‘17_>M,p _ <F$1’_>M,p :[Fl(M)ZFl(N)] <'F9617_>M,p

(-7:9617]:961>M,p <}—a§1>}—§1>M,p <]:§1a~7:ac:1>N,p'

Now one uses the fact that [a]. (respectively, wy) and [a]* (respectively, wy) are adjoint under
the Petersson inner product, and that it is Hermitian linear in the first variable. O

7.2 Triple-product p-adic L-functions

We now construct a pairing over two copies of the eigencurve which will be used in our construc-
tion of triple-product and Rankin—Selberg p-adic L-functions. Fix a Coleman family F over the
open Vi C C(Nz) (which is isomorphic to an open U; C W via the weight map) as in §7.1.2 and
Assumption 7.5.

Notation 7.10. Let (V3 xCxC)t cVp xC x C denote the open and closed subspace defined by
the condition that, for any (z1, ze, x3) € V1(Q,) x C(Q,) x C(Q,), the weight

w(z1) — w(ze) — w(zws)

is even, that is, there exists u: Z) —>@; such that w(z1) —w(xg) — w(x3) =2u.

SNote that one has a natural map X, — Xy(p) (where the latter denotes the modular curve of level 'y (N) N To(p))
which induces a Hecke equivariant map from cuspforms of level I'1 (V) N T'g (p) to cuspidal overconvergent modular
forms (see [BP22, §5.4.4]).
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Let V5,V3CC be two quasi-compact open affinoid subspaces with images U =w(V3),
Us =w(V3) C W and such that V; x Vo x V3 C (V) x C x C)". Let a,(F) denote the coefficient of
¢ in the series F = Fy,, and suppose that the p-adic Banach norm of a,(F) is less than or
equal to h, for some integer h > 0. By shrinking V; (i =1, 2, 3) if necessary we have the following
assertions.

— Fori=1,2,3,let x;: Z; — O(U;)* denote the universal character of U; and #; its pullback
to U=U; x Uy x Us. Then we may assume that
R1— kg — R3
is even, that is, there exists u: Z) — O(U)* such that &1 — kg — A3 = 2u.
— The space of nearly overconvergent modular forms ,/I{;E has a slope < h decomposition and
hence a O(U)-linear overconvergent projector
oc,<h

I : 4 = 2L=" 20w, (Fuv,e0W2)&0(Us)),

where Fy, denotes the fraction ring of Uy (see Theorems 6.21 and 6.22). Furthermore, the
space of nearly overconvergent modular forms 4T over O(U) comes equipped with an
action

C*(Zy, O(U)) x NT = T,

as in Theorem 2.11, extending the Gauss—Manin connection. We denote this action by *.

DEFINITION 7.11. With notation as above, for any ¢ € Sg(Vg) and 9 € Sg(%), we define

oc,<h;

E(g, )= [] ((u-1p0) % ¢ x ) € ZH="Bo1s) (Fiy ®O(V2)2O(V3)),

where 125 denotes the indicator function of Z;, and QAS and Qﬁ denote the pullback of the classes
to V1 x Vo x V3.

We have the following lemma.

LEMMA 7.12. We take the notation as above.

(i) The construction =(—, —) is O(Va)-linear in the first variable and O(V3)-linear in the second
variable.

(i) If V/ CV; (i=2,3) then Z(—, —) and E'(—, —) are compatible under restriction, where
E/(—, —) denotes the construction in Definition 7.11 over Vi x Vj x V4. Furthermore, the
constructions are compatible for different choices of h.

(iii) The constructions glue to give a morphism of sheaves’ over (V; x C x C)T

E: Oy, KSIRS] — (£ @0m ) RO K O,
where Ky, denotes the sheaf of meromorphic functions on V.
Proof. Part (i) is clear and part (iii) follows from part (ii). Therefore, we just need to prove part

(ii). But this just follows from the linearity of x and II°>="_ and the compatibility of the slope
< h projectors as h varies. O

"For a pair of sheaves F,G of Banach modules on two spaces X,Y, we denote by FXG the sheaf on X x Y
obtained by sheafifying the assignment U x V > F(U) ® G(V).
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We consider the following pairing.

DEFINITION 7.13. Fix a tuple p1 = (a)q|n/n, as in Definition 7.8. Then, for any pair of opens
Vo, V3 CC (not necessarily quasi-compact nor affinoid) such that V3 x Vo x V3 C (V4 x C x C)™T,
we consider the following bilinear pairing:

Ju(—, =)t SL(Va) x S§(V3) — Mer(Vy x Vo x V3),
(¢7 W = )‘.FO’C<E(¢7 ¢))’

where Mer(V} x Vo x V3) denotes the module of meromorphic functions on V; x Vo x V3. This
pairing glues to a bilinear pairing Sg(C) X SE(C) — Mer(V; x C x C)*, which we continue to
denote by J,(—, —).

We define the universal triple-product p-adic L-function as follows.

DEFINITION 7.14. Fix a Coleman family F over Vj satisfying Assumption 7.5 as in §7.1.2,
and fix a tuple 1 = (f1a)q|n/n, as in Definition 7.8. We define .}, € Mer(V; x C x C)™ to be the
meromorphic function given by

Ly = Jﬁ(wc,wc),

where w¢ denotes the universal cohomology class of Proposition 7.2.

7.2.1 Interpolation property. We now describe the interpolation property for the universal
triple-product p-adic L-function. Throughout this section, fix a Coleman family F over V; C
C(Nr) as in §7.1.2 and Assumption 7.5, and let Uy = w(V1) CW. Fix a tuple p = (pta)an/n, a8
in Definition 7.8.

DEFINITION 7.15. We say that a point x = (21, z2, 23) € Vi X C x C is unbalanced crystalline if:
— x1, 9, x3 are classical and p-regular crystalline (Definition 7.4);

— the weights (w(z1), w(ze), w(x3)) satisfty w(z1)>w(x2)+w(rs) and the nebentypen
£, Eg, € of the newforms (f, g, h) associated with (21, zo, x3) satisfy e - €4 -, =1.8

We denote the set of unbalanced crystalline points by 3¢5 (which depends on the fixed choice
of F).

Given an unbalanced crystalline point x = (21, 2, 3) € Yeris, we can fix the following data.

— (Weights.) We set (k, £, m) = (w(x1), w(z2), w(zs)).

— (Up-eigenvalues.) We let (ay, oy, ap) denote the coefficients of ¢” in Fopy, Foniv Funiv,
respectively.

— (Newforms.) We let (f, g, h) denote the newforms of levels I'y (Ny), I'1(Ng), I'1(N4), asso-
ciated with fml,f;;‘i",f;;li", respectively. Note that, since the point x is unbalanced
crystalline, all of the integers Ny, Ny, N, divide N. Furthermore, by Assumption 7.5,
one has Ny = Ng.

— (Test data.) We obtain a triple (f°, ¢°, h°) of cuspidal modular forms, where: ¢° and h°
are the unique eigenforms of level I'y (V) such that F""V, F™V are the p-stabilisations of
g°, h® with respect to the roots ay, ay; and we define f© = Za|N/NF o - [a]*(f). Note that
JF, is the p-stabilisation of f° at the root ay.

8This implies that there exists an integer ¢ > 0 such that w(z1) — w(z2) — w(zs) = 2t.
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To state the interpolation property for .Z},, we need to introduce several Euler factors. Let
(Bf, By, Br) denote the roots of the Hecke polynomials at p that are different from (o, ag, ).
Set ¢= (k+{+m —2)/2 and define:

S(f, g, h) = (1 - Bfagahp_c)(l - Bfagﬁhp_c)(l - /Bfﬁgahp_c)(l - Bfﬁgﬁhp_c)a

&(f)=(1-Bfer(p)~'p' "),

E(f)= (1= Bies(p)"'p ).
For any integer j >0, let §; = (1/27i) (d/dz + j/(z — Z)) denote the Maass—Shimura differential
operator acting on weight j nearly holomorphic modular forms. For any t>0, we set 5; =
Ojta(t—1) ©0j424—2) © - -0 ;. Let (-, )y denote the Petersson inner product of level I'1(N) on
(complex-valued) nearly holomorphic modular forms.
THEOREM 7.16. Let x = (x1, 22, x3) € Xers with associated newforms (f, g, h) and test data
(f°,9°, h°). Then x is not a pole for %), and the specialisation of %), at = satisfies

_ E(fg.h) (g h0)
&Half) i
where we view the left-hand side of (7.2) in C via v, and I(f°, g°, h°) = ((f°)*, 8}9° x h°) N with

(fo)(r) = fo(=7).

Proof. The proof of this is very similar to [DR14] and [AI21]. Let wj. and wj, denote the
specialisations of we at x9 and x5 respectively, and recall ¢t = (k — ¢ —m) /2. Firstly, we note that
Zp(x) = Jyu(we, we)e is equal to

Zp(x)

(7.2)

oc,<h oc,<h

)\]_—;ic< H ((2*- 1) *x wge X w,ol‘o)> = Agoe <€fo,c7a H ((2*- L) * wgo X wﬁ%)).

where efo.c o Ylj’gh —» Yg’gh[ﬂf*, Uy = e¢(p)~tay] is the projection to the eigenspace for (f*)°
(for the Hecke operators away from Np and Up). Here f**=F7 and 7y denotes the auto-
morphic representation associated with f* = f® 6;1. Set v = (- 1 ) * W X wis € Ji{j. This
class has the same g-expansion as the class

V = Vit g, e Fil, AT

where (—)P! is p-depletion. Any filtered piece Fil, f/ifj injects into the space of p-adic modular
forms (and hence the space of g-expansions), and since II°<" is Up-equivariant, and ay # 0, we
therefore see that .Z,(x) is equal to

oc,<h

gp(l’) = )\]:;ch (efo,c7a H l//> .

By the computations in the proof of [AI21, Lemmas 5.9 and 5.10], we see that

oc,<h oc,<h
H" E(fog,h) H"
efO,c7a l// = W@fﬁ),c,a (Vtwgo X (,c)ho),

where wgo € ,5”5, Whe € 5”,72 denote the classes attached to g° and h°. But the argument in the
right-hand side is classical: if we denote by v/ = efo,cHhOI(%go x h°) the projection to the f°-
eigenspace of the holomorphic projection of (5590 X h°, then we have

Z() =SS s (),
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where (v”)* is the p-stabilisation of v with respect to the eigenvalue £¢(p) 'ays. By the
specialisation property in Lemma 7.9, we have

2() = L0 e ()
89 1) (9%, (7))
af) ) (f)* ) np
_ &(f.g.h) (fo V)N
~&(HE(S) (fe fon
g ) () dlg” X b
Eo(Ha(f) (fs FIn ’
where the third equality follows from an explicit calculation (cf. [AI21, Lemma 5.12]) and we
have used the fact that (f°)* = f*¢ because the conductor of ¢ is not divisible by p. O

7.2.2 Relation to central L-values. 'The trilinear period in Theorem 7.16 is closely related
to central critical L-values of the Garrett—Rankin triple-product L-function. More precisely, we
have the following theorem.

THEOREM 7.17 [DR14, Theorem 4.2]. There exists a constant C (defined over the num-
ber field generated by the Fourier coefficients of f, g, h and depending on f°, g°, h°®) such
that

[¢] o (¢} C
‘I(f ,g,h)]2=ﬁl}(f,g,h,c),
where c= (k+¢+m —2)/2 and L(f, g, h, —) is the Garrett—Rankin triple-product L-function.

Therefore, one can view .Z, as a universal ‘square-root’ triple-product L-function.
Unfortunately, it does not seem possible (with the current methods) to construct a three-variable
p-adic L-function over (C x C x C)* as we do not know if the linear functional Az... globalises.
Furthermore, it can happen that the constant C' is equal to zero for the test vectors (f°, ¢°, h°)
(e.g.,if Ny = N and there exists a prime dividing NV, but not N, - Nj, — see [DR14, Remark 4.3]).
One has more freedom to choose test vectors so that this constant is non-zero in small opens of
C; however, we are not sure if this is possible globally.

7.3 Rankin—Selberg p-adic L-functions

We close with an application to the construction of Rankin—Selberg p-adic L-functions in
three variables. Our strategy essentially follows that in [AI21, Appendix B] circumventing
the restriction on the weight space, by replacing [AI21, Theorem 4.3] by our generalised ver-
sion Theorem 2.11 as the input into the construction. Let us give a very brief sketch of this
construction.

Fix a Coleman family F as in §7.1.2 and Assumption 7.5, defined over a quasi-compact
affinoid open subspace U; C W. We first observe that Definition 7.13 still makes sense for non-
cuspidal forms .

DEFINITION 7.18. Fix a tuple p as in Definition 7.8. For any open subspaces Uz CW, V3 CC
such that V] x Us x V3 C (V4 x W x C)T, we define a bilinear pairing

Ju(=5 =) : MH(Us) x Sg(V},) — Mer(Vy x Uy x V3),
(¢, ¥) = AFec(E(9, )
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in exactly the same way as in Definition 7.13, where M denotes the sheaf over W of overcon-
vergent modular forms. This pairing glues to a pairing MT(W) x Sg (C) = Mer(V; x WxC)*+
which we continue to denote by Jy,(—, —).

This bilinear pairing can be used to construct three-variable Rankin—Selberg p-adic
L-functions, by taking ¢ to be a p-adic family of Eisenstein series. More precisely, follow-
ing [Loel8, Lemma 3.2], there exists a p-adic family of Eisenstein series EP e MY W) with

g-expansion
o= X (T i)
n>1 N dln
(n,p):l
where x denotes the universal character. Recall that we € S(JE (C) is the universal class over the
eigencurve.

DEFINITION 7.19. We define the universal Rankin-Selberg p-adic L-function to be the mero-
morphic function on (V3 x W x C)* given by

L= JE(E,LP],wc).

THEOREM 7.20. We have the following interpolation property: for any integer ko >2 and
noble classical points x1 € Vi, x5 € C(Q,) such that ky :=w(z1) = kg + w(xs) + 2t for some t >0,
one has

gp(l’l, kQ, .733) = (*) : lep(f, h, kl —1- t),

for some explicitly computable factor (x), where:

— L'MP(f h,s) denotes the imprimitive Rankin-Selberg L-function as in [LoelS,
Definition 2.1];

— f (respectively, h) is the newform associated with the specialisation of F at x1 (respectively,
the eigenform corresponding to the point x3).

Proof. As in Theorem 7.16, we can express classical specialisations of .Z), as a Petersson

[p]

inner product between (f°)* and (5,22Ek2 - h®; the interpolation formula then follows from the
calculations in [Loel8]. O

Remark 7.21. As in §7.2.2, the factor (x) depends on the test data f° and h°. Furthermore,
we note that this three variable p-adic L-function was essentially constructed in [Loel8], but its
construction relies on the p-adic variation of Beilinson-Flach Euler system classes in [LZ16] and
imposes an ordinarity assumption on one of the families of overconvergent cuspidal forms. Our
construction is completely independent of Euler systems.

Appendix A. Classical nearly holomorphic modular forms

In this appendix we describe the relation between (g, P)-representations and D-modules on
Shimura varieties. We note that similar constructions can be found in [Liul9].

A.1 Preliminaries on the flag variety

Let k be a field of characteristic zero. Let G be a reductive group over k and P C G a parabolic
subgroup. Let FL. = G/P be the corresponding partial flag variety. It carries an action of G by
left translation.
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A.1.1 G-equivariant sheaves. We let QCohy(FL) be the category of G-equivariant quasi-
coherent sheaves over FL. We let Rep(P) be the category of algebraic representations of P on
k-vector spaces. We define a functor

F:Rep(P) — QCohy(FL),
Ve V=F(V),
as follows. The group G acts on itself by left and right translation. It follows that O¢g carries two
G-actions, denoted *; and %, given by the rule g% f(—) = f(g~'-—) and g*, f(—) = f(—-9).
We consider the projection 7: G — G/P. For (V, p) an object of Rep(P), we let
F(V)=(mOg @ V)",

where the action of P on the tensor product is the diagonal action given by x, on the left factor
and by p on the right factor. The action %; provides a G-equivariant structure on F(V).

On the other hand, consider 1-P=1€FL, and let i;:{1} = FL be the inclusion. Let
V € QCoh(FL). The stalk at 1€ FL, denoted i; 'V, is an Opp,-module with a semi-linear
action of P. The maximal ideal mp,, , C Opr,; is stable under the action of P and the fibre at
1 € FL, denoted 77V, is a k-linear representation of P. Hence, we obtain a pullback functor

i1 : QCohg(FL) — Rep(P),

Vi il V.
ProOPOSITION A.1. The functors F' and i} are equivalences of categories, quasi-inverse of each
other.
Ezample A.2.

(i) If V € Rep(G), one can check that F(V) = Opp @i V.
(ii) Let pC g be the Lie algebras of PCG. We let p’=F(p) C F(g)=g" =Op ®g. The
tangent sheaf on FL is given by Trr, = F(g/p) = g°/p°.
(iii) Let Dpr, be the sheaf of differential operators over FL. This is an object of
QCohy(FL). There is a surjective map Opr, ® U(g) — Dpr, inducing an isomorphism
OrL ® U(g)/(p°(OrL ® U(g)) — Drr. One thus checks that Dy, = F(U(g) Qyp) k)-

A.1.2 G-equivariant Dgy,-modules. As above, let Dgr, be the sheaf of differential operators
over FL. We let Dy, —Modg be the category of G-equivariant Dpp-modules. Its objects are
objects of QCoh (FL) together with an action of Dy, which is compatible with the G-equivariant
structure.

We let Rep((g, P)) be the category of k-vector spaces V equipped with an algebraic
representation of P, and a representation of g satisfying the following compatibility.

(i) For any v€V, g€ g and p € P, we have (Ad(p)g)v=pgp~ v,
(ii) The action of P induces an action of the Lie algebra p. This action coincides with the
restriction to p of the action of g.

LEMMA A.3. The functor F' can be enriched to a functor
F: Rep((g, P)) — DFL—MOdG
Ve V=F(V).

Proof. Let (V, p) be an object of Rep((g, P)) (where p stands for the action of both P and g). We
first observe that the G-equivariant structure induces an action *; of g on F(V') by derivations.
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This action can be extended linearly to an action of g which extends the action by derivations
on Opr,. However, it will not in general factor through an action of 7%, on F(V) and induce a
Dgr,-module structure.

Instead, we construct a second action of g on F/(V') by using the action p of g on V as follows.
Let f € Og® V. Welet h € g and define hx f = [g— g~ 1hg*, f(g)]. We check that this descends
to an action on F'(V') as follows. For p € P we have

P @ p)(hx f)(g) =p(h* f)(gp)
=pp g 'hgpf(gp)
=hx(p(@p)f)(9)

We check that this action is G-equivariant as follows. For ¢ in G we have

t-hx (tx f)(g) =tht ™ % f(t1g)
=g 'tht 'gf(t"'g)
=tx (hxf)(g)

The % action is Opg-linear. The difference *p = x; — x defines an action by derivations of g on
F (V) which extends the action by derivations on Opy,. We claim that the action *; — x induces a
Drr-module structure on F(V'). The main step is to check that p° acts trivially. As the restriction
of the action %p of p¥ is Opy-linear and G-equivariant it suffices to check that the induced action
is trivial on ¢]. The action *; restricts to the natural action of P on V via 7] and induces an
action of the Lie algebra p. The action x restricts by construction to the natural action of p on
V', induced by the inclusion p < g. By the compatibility imposed on both actions, the difference
is the trivial action of p. a

LEMMA A.4. The functor i} can be enriched to a functor
i1 : Drr—Modg — Rep((g, P))
V=iV,
Proof. Let V be an object of Dpr,—Mod¢. The action of G induces an action %; of g. The Dgr,-

module action induces an action xp of g. Both actions extend the action by derivations on Opy,,
therefore the difference is an Oy -linear action which induces an action of g on i} V. O

We immediately obtain the following proposition.

PROPOSITION A.5. The categories Dr;,—Modg and Rep((g, P)) are equivalent via the quasi-
inverse functors i} and F.

Ezample A.6.

(i) The forgetful functor Rep((g, P)) — Rep(P) has a left adjoint V'~ U(g) @) V- Similarly,
the forgetful functor Dpr,—Modg — QCohy(FL) has a left adjoint V +— Dpr, ®o,, V. This
implies that for any V = F(V) with V' € Rep(P), one has Dry, @0y, V = F(U(g) Qup) V)-

(ii) Let E,G € Rep(P) be finite-dimensional representations. Let &= F(FE), G=F(G). Let
Diff¢(€,G) be the space of G-equivariant differential operators & — G. By definition, a
G-equivariant differential operator is a global G-invariant section of F ®¢,, DrL Q0,, £,
or equivalently a G-equivariant map F" — Dgr, ®o,., £¥. We deduce that

Diff (€, G) = Hompep(py (FY, U(g) Qup) EY)
= HomRep((g,p))(U(g) ®I/{(p) FV’ U(g) ®U(p) EV).
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A.1.3 The case of GLa. In this subsection, we freely use the notation in §1.1. Let n C g,
denote the lower triangular nilpotent Lie algebra, and let wy denote the longest Weyl element of

G = GLg. We will consider certain (g, B)-representations which belong to category O. Since we
are interested in representations of the lower triangular Borel subgroup (but define the positive
roots to be those which lie in B) our conventions are slightly different from those found in the
literature. For example, our convention is that Verma modules are lowest weight modules.

DEFINITION A.7. For any € X*(T'), the Verma module of lowest weight wor is My, =U(g) @)
wok. We let MY be its dual in category O."

If ke X*(T)™", let Vi be the irreducible representation of G of highest weight . Then there
is an exact sequence

0— Vi, = MY — Myyu—2, — 0.

If k¢ X*(T)* then M, = M, is irreducible. The character of M, is ) -, wor +2np and we
have a filtration M =, Fil, M, where Fil, M = M,/ [7"*"] is the subspace of elements killed
by 7"+, Moreover, there is an isomorphism of B-modules

MY [ 22 Sym” St @Q(wok + r(1; —1)),

where St denotes the standard representation of G, and Q(wok + r(1; —1)) is the one-dimensional
line on which B acts through the character wor + 7(1; —1).

We let 05 be the space of functions on B. We equip it with an action of B via bx; f(—) =
f(b™1-—=). We can turn it into a (g, B)-module as follows. We have an open immersion
B < G/U, where U denotes the upper triangular unipotent, and the left translation action
of G on G/U induces an action of g stabilising &5. We also have another action of B via
bor f(=) = f(="-b).

We let z, 1, ts be coordinates on B, where the universal element of B is written as

ta 0
z t1/)°

Using this description, we have 05 = k[z, t1, ta, tl_l, ty 1] and the actions , and %; of B and that
of g are easy to describe. Indeed, the infinitesimal action is given by

0 1 _ 1 0
<O 0> —> $t1t2 16151 — x@tw (0 0) — —atz,

0 0 0 0
<0 1> —> —(81 +8t1), <1 O) —> —tgar.

The action of the lower triangular unipotent U via %, or = induces a filtration 0% =
U, Fil(0F) where Fil,(0%) is the submodule of vectors killed by n" 1. This is the subspace
of O of elements with degree in « bounded by r. The action of T’ via %, commutes with the
actions of g and B via %; and the space 07 decomposes as a sum of eigenspaces.

LEMMA A.8. Via the action of T' by ., the space OF decomposes as @KEX*(T)(MH)V with
(M,)Y = Ogl—wok] := Homp(—wok, OF).

Let 7 : G — G/B be the canonical B-torsor. It is a G-equivariant torsor via the left G-action.

9Here is how duality is defined. Let M € O. Then M = Dyex+(T)g My We let MY = GaxEX*(T)@M;(/ C Hom(M, Q).
The action on M"Y is given by gf (=)= f(*g- —).

2434

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 02:24:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25102479


https://doi.org/10.1112/S0010437X25102479
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

p-ADIC INTERPOLATION OF GAUSS—MANIN CONNECTIONS

PROPOSITION A.9. The B-torsor structure on G induces a decomposition
.06 = Opex+ (1) Ocl—wok] = Brex-(T) U Fil, Og[—wok],
r>0
where Og|—wok] = F(M,Y) and Fil,Og|—wok] = F(Fil, M,}). We have a G-equivariant connec-
tion V : m,Og = m.0c ® Qll:L /Q inducing a connection

Vs : Og[—wok] — Og[—wok] @ Qgp. /Q-

Moreover, we have V. (Fil,Og|[—wok]) C Fil, 41 O0g[—wok] @ QIIJL /0 for all r > 0.

Proof. We have an isomorphism of G-equivariant sheaves m,Og = F((0Fg, %)), where 05 is
equipped with the xj-action of B. The %,-action of B corresponds to the B-torsor structure.
All the properties can be read from the properties of 7. O

A.2 Shimura varieties
Let (G, X) be a Shimura datum, and let {Sk }xcq(a,) be the tower of Shimura varieties, defined
over the reflex field E. We let P = Pstd be the parabolic attached to (a representative of) the
cocharacter p of the Shimura datum and let FL. = G/P be the flag variety, defined over E. We
let Z(G) be the centre of G and denote by Zs(G) the largest subtorus which is R-split but has
no subtorus split over Q. Set G°=G/Zs(G), P°= P/Zs(G), and define M°®= M/Z,(G) where
M is the Levi of P. Note FL = G¢/P°.

Let Ggr,x — Sk denote the de Rham G“torsor (see [Mil90, §1II1.3]) and Pyr x — Sk its
P¢-reduction. We define Myr x = Par,Kx xP° M€ to be the pushout of the P°-torsor Pyr k to an
M¢-torsor Mqr, . We have a diagram

Gar,K
/ \
Sk FL
characterised by the property that the pullback of the P°-torsor G — FL via q is Pqr,x — GdRr,K -
We obtain a functor
VBg: QCOhGC (FL) — QCOh(SK),
V = HY(GS, p.q*V).
LEMMA A.10. We have VBy (Qpy /) = Qg and VB (Drr,) = Ds,..

Proof. The first statement VB (QllrL / 5= QEK /B follows from Kodaira—Spencer theory. Let us
recall the argument. Recall that g is the Lie algebra of G, and g is the associated vector bundle
with flat connection over FL. It carries a filtration n® C p® C g°, where m® = p®/n® is associated
to the Levi m and g°/p° is the tangent sheaf. We explain how we can recover the isomorphism
g°/p® = Trp, from the connection.

Passing to dual vector bundles, and using Griffiths transversality and the connection, we
obtain a map g”¥/n% - m® @o,, Qf /p O equivalently a map gV /m%Y @o,, m¥ — QL /B
This map factors through the isomorphism g%V /n®V = Q%L /B via the adjoint action of m on
g/p which induces a map g%¥/n%v ®p,, m®— g»V/n%V. The vector bundle VB (g%") carries
an integrable connection, and we thus get a map

VBi(g”" /n"Y) ®o,, VBk(m®) = Qg

which factors through the isomorphism VBg (g% /n%") = Qg /B
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We now turn to the identification VB (Dyr,) = Dg,.. We first observe that by the first point
we have a map Og,. ® Ts,, — VB (Dpr,). We will show that VB (Dyy,) carries an algebra struc-
ture, and is generated by Og,. and Tg, subject to the usual relations. We recall that if f: X =Y
is an étale map of F-schemes then the pullback map f *Q%, /B Qﬁ( /E is an isomorphism.
Similarly, the natural map Dx — f*Dy is an isomorphism.

The G°torsor Ggr,x — Sk has sections étale locally. Let U — Sk be an étale map and
let s:U — Ggr,x be a section. By a deformation theory argument, one can choose s so that
the map qos:U — FL is étale. We deduce that VB (Dyr, /g)lv = (g0 8)*Dyr, /g = Dy/p- We
therefore obtain an algebra structure on VBk (Dgry, £)|v- This algebra structure glues using the
G°-equivariant action. Indeed, let s’ : U — Gag, i be another section. Then there exists g € G¢(U)

such that s’ = gos. Let act : G° x FL — FL be the action map and let p: G° x FL. — FL be the

projection. We have a map U (gﬁ(;s) G°¢ x FL and act((g,qos)) =qo s, while p((g,qos))=qos.

The equivariant structure on Dpy, /g is an isomorphism of algebras (satisfying a certain cocy-

cle condition) act* Dy, /g = p* Dy, /e~ We thus get an isomorphism (g, q o s)* act* Dyy, /g =

(9,q05)"p*Dyy, /- [
We immediately obtain the following corollary.

COROLLARY A.11. The functor VB induces a functor VB : Dp,—Modge — Dg,. —Mod.

Using the equivalences of categories in § A.1, we have functors (which we continue to denote
by VBg)
Rep(P°¢) — QCoh(Sk),
Rep((g¢, P°)) — Dg,, —Mod.
Let S}?fz be a toroidal compactification, where, as usual, > denotes a cone decomposition.
These functors can be extended to functors VBE"
Rep(P°) — QCoh(Sik),
Rep((g°, P°)) — Dgter, —Mod,

where Dgror  is the sheaf of logarithmic differential operators.

A.3 Application to modular curves

We now specialise to the setting of modular curves, where (G, X) = (GLqo, H) with H the upper
and lower half-plane. We change notation and let Xx = }(OTZ We take a representative of P to

be the lower triangular Borel B with Levi M =T the diagonal torus.

A.3.1 Modular forms. For any k€ X*(T), we let wf or simply w"® be VB@"(wor). The
space of weight , level K modular forms is HO(X g, w").

Remark A.12. Let E— Xk be the universal semi-abelian scheme. Let wg be the conormal
sheaf, and Lie(E) the Lie algebra sheaf dual to wg. We adopt similar notation for the dual
semi-abelian scheme EP. We let Hp :H‘fR(E) be the relative log-de Rham homology of the
Kuga—Sato compactification of F.

Let St be the standard representation of G. By construction VB%"(St) = Hg equipped with
the Gauss—Manin connection. The B-filtration 0 — Q((—1;1)) — St — Q((1;0)) — 0 gives the
Hodge filtration

0 — wgp — Hp — Lie(E) — 0.

We deduce that wgp =w9 and wg = w1,
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Let m: Magr,x — Xk be the T-torsor over Xx. We have m,Op,p o = Drex-(T)w", and hence
we deduce that

HO (Mg, i, OMoan i) = @ HO(X g, w")
KeEX*(T)
and that Homp(—wok, HO(Mar,x, Ona ) = HO( Xk, w").

A.3.2 Nearly holomorphic modular forms. We now discuss nearly holomorphic modular
forms. For an integer r >0 and x € X*(T), let H,, = VBE*(Fil.(M,/)) and H, = VBZ*(M)).
We have a connection V,.: H, — H, & QkK /Q(log D), where D denotes the boundary divisor of
Xk This connection satisfies Vi (Hy ) € Hipt1 @ Q;K/Q(log D).

Remark A.13. We have H,,=Sym"Hgp® wh—r((150)) Furthermore, we also have
Q&K /Q(log D) = w?" by the Kodaira—Spencer isomorphism.
The space of nearly holomorphic modular forms of weight x, degree r and level K is precisely
the space H( X[, Hy.r). Using the Kodaira—Spencer isomorphism, we have a map
Vi HO( Xk, M) = HY (X i, Hutoprt1)-

It is also possible to describe nearly holomorphic modular forms as functions on the torsor Pyr k-
Let 7’ : Pyr .k — Xk be the B-torsor over X.

PRroOPOSITION A.14. The following properties are satisfied.

(i) The sheaf 7,Op,, , has an action of B and the action of the unipotent radical U yields a
filtration Fil, 7, Op,, ,« = m.Op, [0 1].
(ii) The action of T yields a decomposition

compatible with the filtration.
(iii) We have a connection V : m,Op,; . = T,0p,, , ®0x,. Q&K/Q(log D) which commutes with
the action of T,

(iv) We have Homg(2p, m,0p,, ,.) = O}

XK/Q(log D).

Proof. The (g, B)-module 05 corresponds to the tautological torsor G — G//B which corresponds
to PdR, K- ]

We now pass to the limit over K and let Pyr =limg Pyr x and X =limy Xg.
PropoSITION A.15. The following properties are satisfied.

(i) The space H*(Pyr, Op,,) has commuting actions of B and G(Ay).
(ii) The U-action on H°(Pyr, Op,,) yields an increasing filtration

Fil,H’(Pyr, Op,,) C H*(Pygr, Op,.).
(iii) For each k € X*(T'), we have
Homy (—wok, H(Par, Op,,)) = HO(X, 1)
and

Homp(—wok, Fil, H(Pyr, Op,,)) = HY(X, He ).

2437

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 02:24:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25102479


https://doi.org/10.1112/S0010437X25102479
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

A. GrAHAM, V. PILLONI AND J. RODRIGUES JACINTO

(iv) We have a G(Af) x B-equivariant isomorphism Op,, ®0, Qﬁ(/Q ~ Op,.{2p}, where the

latter means we twist the action of B by the character 2p.
(v) We have a T x G(Ay)-equivariant derivation

V: HO(PdR7 OPdR) - HO(PdR7 OPdR) ®Q Q{Qp}7
which satisfies V(Fil,H’(Pyr, Op,.,)) C Fil, 1 1H°(Pyr, Op,,,) ®g Q{2p} for all r > 0.

Proof. This follows immediately from Proposition A.14. O

Appendix B. Glossary of notation

In the following sections, the reader will find a list of some objects appearing frequently in this
paper, together with how they are denoted in §2 (where there is no assumption on the levels
in order to state our main result in its most general form) and in the rest of the paper (i.e., at
hyperspecial level).

B.1 Comparison of notation

The below table gives a comparison of the notation between §2 and the rest of the paper.

Object description General level (§2) Hyperspecial level (§3, §5, §6)
Level subgroup at p K, C GL2(Qp) compact open K, =GL32(Zp) (omitted from notation)
Level subgroup away from p KP KP (omitted from notation)
Level of ordinary locus K, pK? (P)™* KP (omitted from notation)
Level of Igusa tower Uk, p KP UL'KP (omitted from notation)
Torsor group of the Igusa tower Mk, p T(Zyp)
The ordinary locus j@Kp’PKIJ 3@5(P/)ipr = xggz(zp)m =Xord
The Igusa tower j@UKPVPKP 3Q§U;,,th =76
The p-adic modular forms My g , M

P
Nearly overconvergent modular forms JVJK val

p,P
Continuous functions Ceont (UKp,P (—1)V,Zp) Ceont (Zp, Zp)
Locally analytic functions Cla(UKp,P (-1)V,Qp) C"*(Zp, Qp)
Atkin—Serre operator Ouy » ©or b

p

B.2 Diagram of torsors and (nearly) overconvergent forms

For s> r>>1, one has the commutative diagram

Frs \ / FAl —— pa
TG Fs Fr Xz, X an
Xord Xs > X

and spaces

— M =H°(IG o, O1¢_) (p-adic modular forms),
VA lim HO(F,, O%.) (overconvergent modular forms),
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— N HAT = lim HO(FAL O,,) (nearly overconvergent modular forms as in [AI21]),

7,8 ]-‘Tlg
- N = hﬂr,s HY (]t'm, C’)J;w) (nearly overconvergent modular forms),

— yhel — HO( PiR, Opss) (nearly holomorphic modular forms), and
— MM =H(M iR Onzn) (holomorphic modular forms),

fitting into the following diagram.

%T %hol

o l

M —— NTAT bl

NS
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