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f Abstract
v •
C We examine what can be said about a polynomial p and an entire function / given that p of is an even,
5 or an odd, function.
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1. Introduction

An entire function / is an analytic map of the complex plane C into itself, and any
^ entire function / can be expressed uniquely as the sum / = fE +fo of an even entire
*' function fE and an odd entire function / o in the usual way. The composition of two
Jl maps / and g is denoted by / o g. We shall use these notations throughout the paper.
f% In [1, page 228] the author asks for a characterization of polynomials p and entire
Jt functions / such that p o / is even, and remarks that the existence of an algebraic
f-l relation between fE and fo is a necessary, but not a sufficient, condition for p of
| j , to be even. We provide a simple characterization in Section 2, and this shows quite
J( clearly why the existence of an algebraic relation is necessary but not sufficient. In
*• [1] and [2], the authors discuss criteria that imply that if/ o g is even, where/ and

g are entire, then / or g is even. We suggest that this may not be the right question
-, to ask, and we develop this idea in Section 3. Finally, in Section 4 we show that
J [1, Example 3.1], given to illustrate [1, Theorem 3.1], is essentially the only possible
Jl example that could have been given, and we place this example in a more general
It context.
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2. The characterization

Given a polynomial p in one complex variable, we define polynomials <PP and 4>p

in two variables by

4>P(M, v) = p(u + v) - p(u- v), % ( « , V) = p(u + V) + p(u- V).

THEOREM 2.1. Let p be a nonconstant polynomial, and let f be a nonconstant
entire function. Then

(a) p of is even if and only if for all z, <t>p ( / E (z), fo(z)) = 0;

(b) pof is odd if and only if for all z, * p (f E (z), / 0 ( z ) ) = 0.

PROOF. This is trivial, for obviously

4>P(fE(z),fo(z))=p(f(z))-p(f(-z)),
%{fE(z),fo(z))=p{f(z))+p(f(-z)).

This shows that if p of is even then fE and f0 are algebraically related but, of
course, only the algebraic relation <PP — 0 (or a relation which has <t>p as a factor) will
guarantee that p o f is even. The corresponding statement holds for odd functions
and the polynomial ^ . •

Notice that Theorem 2.1 enables one to characterize, for a given polynomial p, all
entire functions / for which p o f is even, and an example will suffice to illustrate
this. Let p(z) = z3 + z- Then <£>p(u, v) = 2v(3u2 + v2 + 1) so that p of is even if
and only if either f0 = 0 (so t h a t / is even), or 3 / J + / ^ + 1 = 0. Of course, for
algebraic reasons <J>P(M, V) will always have a factor v, and this corresponds to the
analytic fact that if/ is even, then so is p of for every p.

The example / (z) = sinh z + 1 and p (z) = z2 - 2z shows that /? o / may be
even while p a n d / are not. Here, p of is even because 4>P(M, t>) = 4V(M — 1)
and f E(Z) = 1 for all z. The example / (z) = sinz + 1 and p(z) = z — 1 shows
that pof may be odd while p and / are not. In this case, p o / is odd because
% ( « , u) = 2(« - 1) and / £ ( z ) = 1 for all z.

3. Some remarks

In [2] the authors ask whether/ o g being even (where/ and g are entire) implies
that either / or g is even, and they then give the example / (z) = (z — I)2 and
g(z) = z + 1 to show this is not so. We suggest, however, that this may not be the
correct question to ask as the given data, namely the single function fog, does not
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determine/ and g uniquely. This suggests the following question: if a composition
F of two entire functions is even, can we express F as a nontrivial composition of two

Junctions at least one of which is even? Now this question has a trivial answer as any
even entire function is an entire function of z2; so, once again, we have to modify the
question. Perhaps the 'right' question is: iff and g are entire functions, and iff o g is
even, is there a linear polynomial t such that either f o / or t~x o g is evenl The choice
of the class of linear polynomials here is natural as these are the automorphisms of C.
Note that the counterexample in [1] (and given above) is not a counterexample to the
modified question for (with the same / and g as above) fog = (fot)o (t'1 o g),
and/ o t is even when t(z) = z + 1.

The authors of [1] and [2] also make frequent use of an assumption / (0) = 0 or
#(0) = 0. For example, in [2] they remark that 'the problem becomes more interesting
if one assumes that g(0) = 0' and they then prove that ifp and q are polynomials with
q(0) = 0 and p o q even, then p or q is even [2, Theorem 1]. Here, the assumption
q(0) = 0 seems arbitrary, but it appears naturally in this modified setting for now their
Theorem 1 reads as follows: if p o q is even, then there is a linear polynomial t such
that p o t or t'1 o q is even. Thus their Theorem 1 answers the question posed above
when / and g are polynomials.

4. An example

Theorem 3.1 in [1] states that: iff is entire, and iff\ +fo = 1> t^ien P °f " even,
where p (z) = z4 — 2z2, and this is then illustrated by the example/ (z) = cos z + sin z.
We shall now show that this is essentially the only example that could have been given
here. First, if p{z) = z4 — 2z2 then ^p{u, v) has a factor u2 + v2 — 1, and this is why
p of is even when / J +f2 = l.

Suppose now that the two entire functions s and t satisfy s2 + t2 = 1 throughout C.
Then (s + it)(s — it) — 1, so that neither factor vanishes, and this means that there is
an entire function h such that s + it = elh and s — it — e~'h. Thus s(z) = cos h(z)
and t(z) = sin h(z). Now suppose that, in addition, s is even and t is odd. Then as

sin hE(z) sinho(z) = —so(z) = 0,

smhE(z) cosho{z) = tE(z) = 0,

we see that sin hE(z) = 0 for all z; thus hE(z) = kn for some integer k. It follows
from this discussion that if/ is entire, and i f / | +f2 = l then, by taking/ = s + t,
we see that

fE(z) - s(z) = (-l)'cos ho(z), foiz) = t(z) = (-l)*sin ho(z).
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There are many algebraic relations for which a similar result holds, and the expla-
nation lies in the theory of uniformization of algebraic curves, and in the fact that an
algebraic relation or, equivalently, an algebraic curve, is essentially a compact Rie-
mann surface. In the example above, the algebraic curve is given by u2 + v2 — 1 = 0,
the corresponding Riemann surface is the Riemann sphere, and the algebraic curve is
uniformized by the pair of functions sin z and cos z. Not every algebraic curve arises
in this way, for Picard proved that if an algebraic curve can be uniformized by a pair of
entire functions (in our case, by f E a n d / 0 ) , then the corresponding Riemann surface
is topologically a sphere. We end with an example to illustrate this idea, and this
example will also serve as another application of Theorem 2.1.

EXAMPLE 4.1. Let P(u, v) — (8M + \)u2 - 9v2, and suppose that s and t are
nonconstant entire functions such that P(s, t) = 0, where s is even and t is odd. We
shall show that there is an odd entire function g such that

(4.1) s(z) = i{4g(z)2 - 1), t(z) = -t2{g(z)[4g(z)2 - 1]).

PROOF. We begin with the graph of P, namely

P = {(M, u) e C x C : P(u, v) = 0},

and this is embedded in projective space P2 in the usual way by using homogeneous
co-ordinates. The projective model of this graph is the set P* of projective points
(a, v, w) for which (8M + w)u2 + 9v2w = 0, and this meets the line at infinity
(ID = 0) at the single projective point (0, 1, 0). Thus P* is obtained from P (or,
strictly, a projective copy of P) by adding the single projective point (0, 1, 0), and
P* is conformally equivalent to the extended complex plane CM (for, as we shall see
below, P is uniformized by two polynomials p and q). We shall not need these facts,
but they underpin much of our argument.

Now let

p (z) = z(z + l)/2, q{z) = z(z

so that 3q(z) = (2z + l)p(z). Then

P{p(z), q(z)) = p(z)2[&p(z) + 1 - (2z + I)2] = 0,

so that the map 0 : z i-> (p(z), <?(z)) maps C into P. In fact, 6 is a bijection
of C\{0, —1} onto P\{(0, 0} because the point (M0, V0) on P, where u0 ^ 0, is the
6Mmage of exactly one point in C, namely (3v0 — MO)/(2MO).

Now suppose that s and t are entire functions with P(s,t) = 0, s even and t odd,
and let ix : C -> P be given by fi,(z) = (s(z), t(z)). Then the map h = 0~l o /x
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is defined and analytic on the set C\Z, where Z is the set of points z in C where
s(z) — t(z) = 0. Clearly, the points of Z are isolated, and if z is near a point of Z,
then h(z) is in some neighbourhood of 0 or —1; thus each point of Z is a removable
singularity of h, and so h is entire.

Next, 6 oh = ix so that p o h = s. By assumption, s is even, so, from Theorem 2.1,
®P(hE,ho) = 0. Nowasp(z) = z(z + l ) /2 , we see that 4>P(M, V) = v(2u + 1), so
that h is even or 2hE + 1 = 0 . As q o h = t, h is not even (else r is even and odd and
hence identically zero); thus 2hE + 1 = 0 and this means that h(z) + h{—z) = — 1.
We now let g = h + 1/2; then g is odd, and s = p o h = (4g2 — l ) /8 and similarly
for t. The proof is complete. •
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