EVEN AND ODD ENTIRE FUNCTIONS

A. F. BEARDON

(Received 6 July 2001; revised 11 October 2001)

Communicated by P. C. Fenton

Abstract

We examine what can be said about a polynomial p and an entire function f given that $p \circ f$ is an even, or an odd, function.

2000 Mathematics subject classification: primary 30B10, 30D05, 30D20.
Keywords and phrases: entire functions, even functions, uniformization.

1. Introduction

An entire function f is an analytic map of the complex plane \mathbb{C} into itself, and any entire function f can be expressed uniquely as the sum $f=f_{E}+f_{O}$ of an even entire function f_{E} and an odd entire function f_{O} in the usual way. The composition of two maps f and g is denoted by $f \circ g$. We shall use these notations throughout the paper.

In [1, page 228] the author asks for a characterization of polynomials p and entire functions f such that $p \circ f$ is even, and remarks that the existence of an algebraic relation between f_{E} and f_{O} is a necessary, but not a sufficient, condition for $p \circ f$ to be even. We provide a simple characterization in Section 2, and this shows quite clearly why the existence of an algebraic relation is necessary but not sufficient. In [1] and [2], the authors discuss criteria that imply that if $f \circ g$ is even, where f and g are entire, then f or g is even. We suggest that this may not be the right question to ask, and we develop this idea in Section 3. Finally, in Section 4 we show that [1, Example 3.1], given to illustrate [1, Theorem 3.1], is essentially the only possible example that could have been given, and we place this example in a more general context.

2. The characterization

Given a polynomial p in one complex variable, we define polynomials Φ_{p} and Ψ_{p} in two variables by

$$
\Phi_{p}(u, v)=p(u+v)-p(u-v), \quad \Psi_{p}(u, v)=p(u+v)+p(u-v)
$$

THEOREM 2.1. Let p be a nonconstant polynomial, and let f be a nonconstant entire function. Then
(a) $p \circ f$ is even if and only if for all $z, \Phi_{p}\left(f_{E}(z), f_{o}(z)\right)=0$;
(b) $p \circ f$ is odd if and only iffor all $z, \Psi_{p}\left(f_{E}(z), f_{o}(z)\right)=0$.

Proof. This is trivial, for obviously

$$
\begin{aligned}
& \Phi_{p}\left(f_{E}(z), f_{o}(z)\right)=p(f(z))-p(f(-z)) \\
& \Psi_{p}\left(f_{E}(z), f_{O}(z)\right)=p(f(z))+p(f(-z))
\end{aligned}
$$

This shows that if $p \circ f$ is even then f_{E} and f_{o} are algebraically related but, of course, only the algebraic relation $\Phi_{p}=0$ (or a relation which has Φ_{p} as a factor) will guarantee that $p \circ f$ is even. The corresponding statement holds for odd functions and the polynomial Ψ_{p}.

Notice that Theorem 2.1 enables one to characterize, for a given polynomial p, all entire functions f for which $p \circ f$ is even, and an example will suffice to illustrate this. Let $p(z)=z^{3}+z$. Then $\Phi_{p}(u, v)=2 v\left(3 u^{2}+v^{2}+1\right)$ so that $p \circ f$ is even if and only if either $f_{o}=0$ (so that f is even), or $3 f_{E}^{2}+f_{o}^{2}+1=0$. Of course, for algebraic reasons $\Phi_{p}(u, v)$ will always have a factor v, and this corresponds to the analytic fact that if f is even, then so is $p \circ f$ for every p.

The example $f(z)=\sinh z+1$ and $p(z)=z^{2}-2 z$ shows that $p \circ f$ may be even while p and f are not. Here, $p \circ f$ is even because $\Phi_{p}(u, v)=4 v(u-1)$ and $f_{E}(z)=1$ for all z. The example $f(z)=\sin z+1$ and $p(z)=z-1$ shows that $p \circ f$ may be odd while p and f are not. In this case, $p \circ f$ is odd because $\Psi_{p}(u, v)=2(u-1)$ and $f_{E}(z)=1$ for all z.

3. Some remarks

In [2] the authors ask whether $f \circ g$ being even (where f and g are entire) implies that either f or g is even, and they then give the example $f(z)=(z-1)^{2}$ and $g(z)=z+1$ to show this is not so. We suggest, however, that this may not be the correct question to ask as the given data, namely the single function $f \circ g$, does not
determine f and g uniquely. This suggests the following question: if a composition F of two entire functions is even, can we express F as a nontrivial composition of two functions at least one of which is even? Now this question has a trivial answer as any even entire function is an entire function of z^{2}; so, once again, we have to modify the question. Perhaps the 'right' question is: iff and g are entire functions, and iff $\circ g$ is even, is there a linear polynomial t such that either $f \circ$ or $t^{-1} \circ g$ is even? The choice of the class of linear polynomials here is natural as these are the automorphisms of \mathbb{C}. Note that the counterexample in [1] (and given above) is not a counterexample to the modified question for (with the same f and g as above) $f \circ g=(f \circ t) \circ\left(t^{-1} \circ g\right)$, and $f \circ t$ is even when $t(z)=z+1$.

The authors of [1] and [2] also make frequent use of an assumption $f(0)=0$ or $g(0)=0$. For example, in [2] they remark that 'the problem becomes more interesting if one assumes that $g(0)=0$ ' and they then prove that if p and q are polynomials with $q(0)=0$ and $p \circ q$ even, then p or q is even [2, Theorem 1]. Here, the assumption $q(0)=0$ seems arbitrary, but it appears naturally in this modified setting for now their Theorem 1 reads as follows: if $p \circ q$ is even, then there is a linear polynomial t such that $p \circ t$ or $t^{-1} \circ q$ is even. Thus their Theorem 1 answers the question posed above when f and g are polynomials.

4. An example

Theorem 3.1 in [1] states that: iff is entire, and if $f_{E}^{2}+f_{o}^{2}=1$, then $p \circ f$ is even, where $p(z)=z^{4}-2 z^{2}$, and this is then illustrated by the example $f(z)=\cos z+\sin z$. We shall now show that this is essentially the only example that could have been given here. First, if $p(z)=z^{4}-2 z^{2}$ then $\Phi_{p}(u, v)$ has a factor $u^{2}+v^{2}-1$, and this is why $p \circ f$ is even when $f_{E}^{2}+f_{O}^{2}=1$.

Suppose now that the two entire functions s and t satisfy $s^{2}+t^{2}=1$ throughout \mathbb{C}. Then $(s+i t)(s-i t)=1$, so that neither factor vanishes, and this means that there is an entire function h such that $s+i t=e^{i h}$ and $s-i t=e^{-i h}$. Thus $s(z)=\cos h(z)$ and $t(z)=\sin h(z)$. Now suppose that, in addition, s is even and t is odd. Then as

$$
\begin{aligned}
& \sin h_{E}(z) \sin h_{O}(z)=-s_{O}(z)=0 \\
& \sin h_{E}(z) \cos h_{O}(z)=t_{E}(z)=0
\end{aligned}
$$

we see that $\sin h_{E}(z)=0$ for all z; thus $h_{E}(z)=k \pi$ for some integer k. It follows from this discussion that if f is entire, and if $f_{E}^{2}+f_{o}^{2}=1$ then, by taking $f=s+t$, we see that

$$
f_{E}(z)=s(z)=(-1)^{k} \cos h_{O}(z), \quad f_{o}(z)=t(z)=(-1)^{k} \sin h_{O}(z)
$$

There are many algebraic relations for which a similar result holds, and the explanation lies in the theory of uniformization of algebraic curves, and in the fact that an algebraic relation or, equivalently, an algebraic curve, is essentially a compact Riemann surface. In the example above, the algebraic curve is given by $u^{2}+v^{2}-1=0$, the corresponding Riemann surface is the Riemann sphere, and the algebraic curve is uniformized by the pair of functions $\sin z$ and $\cos z$. Not every algebraic curve arises in this way, for Picard proved that if an algebraic curve can be uniformized by a pair of entire functions (in our case, by f_{E} and f_{o}), then the corresponding Riemann surface is topologically a sphere. We end with an example to illustrate this idea, and this example will also serve as another application of Theorem 2.1.

EXAMPLE 4.1. Let $P(u, v)=(8 u+1) u^{2}-9 v^{2}$, and suppose that s and t are nonconstant entire functions such that $P(s, t)=0$, where s is even and t is odd. We shall show that there is an odd entire function g such that

$$
\begin{equation*}
s(z)=\frac{1}{8}\left(4 g(z)^{2}-1\right), \quad t(z)=\frac{1}{12}\left(g(z)\left[4 g(z)^{2}-1\right]\right) \tag{4.1}
\end{equation*}
$$

Proof. We begin with the graph of P, namely

$$
\mathbf{P}=\{(u, v) \in \mathbb{C} \times \mathbb{C}: P(u, v)=0\}
$$

and this is embedded in projective space \mathbb{P}_{2} in the usual way by using homogeneous co-ordinates. The projective model of this graph is the set $\mathbf{P}^{\#}$ of projective points (u, v, w) for which $(8 u+w) u^{2}+9 v^{2} w=0$, and this meets the line at infinity $(w=0)$ at the single projective point $(0,1,0)$. Thus $\mathbf{P}^{\#}$ is obtained from \mathbf{P} (or, strictly, a projective copy of \mathbf{P}) by adding the single projective point $(0,1,0)$, and $\mathbf{P}^{\#}$ is conformally equivalent to the extended complex plane \mathbb{C}_{∞} (for, as we shall see below, \mathbf{P} is uniformized by two polynomials p and q). We shall not need these facts, but they underpin much of our argument.

Now let

$$
p(z)=z(z+1) / 2, \quad q(z)=z(z+1)(2 z+1) / 6
$$

so that $3 q(z)=(2 z+1) p(z)$. Then

$$
P(p(z), q(z))=p(z)^{2}\left[8 p(z)+1-(2 z+1)^{2}\right]=0
$$

so that the map $\theta: z \mapsto(p(z), q(z))$ maps \mathbb{C} into \mathbf{P}. In fact, θ is a bijection of $\mathbb{C} \backslash\{0,-1\}$ onto $\mathbf{P} \backslash\left\{(0,0\}\right.$ because the point $\left(u_{0}, v_{0}\right)$ on \mathbf{P}, where $u_{0} \neq 0$, is the θ-image of exactly one point in \mathbb{C}, namely $\left(3 v_{0}-u_{0}\right) /\left(2 u_{0}\right)$.

Now suppose that s and t are entire functions with $P(s, t)=0, s$ even and t odd, and let $\mu: \mathbb{C} \rightarrow \mathbf{P}$ be given by $\mu(z)=(s(z), t(z))$. Then the map $h=\theta^{-1} \circ \mu$
is defined and analytic on the set $\mathbb{C} \backslash Z$, where Z is the set of points z in \mathbb{C} where $s(z)=t(z)=0$. Clearly, the points of Z are isolated, and if z is near a point of Z, then $h(z)$ is in some neighbourhood of 0 or -1 ; thus each point of Z is a removable singularity of h, and so h is entire.

Next, $\theta \circ h=\mu$ so that $p \circ h=s$. By assumption, s is even, so, from Theorem 2.1, $\Phi_{p}\left(h_{E}, h_{O}\right)=0$. Now as $p(z)=z(z+1) / 2$, we see that $\Phi_{p}(u, v)=v(2 u+1)$, so that h is even or $2 h_{E}+1=0$. As $q \circ h=t, h$ is not even (else t is even and odd and hence identically zero); thus $2 h_{E}+1=0$ and this means that $h(z)+h(-z)=-1$. We now let $g=h+1 / 2$; then g is odd, and $s=p \circ h=\left(4 g^{2}-1\right) / 8$ and similarly for t. The proof is complete.

References

[1] A. L. Horwitz, 'Even compositions of entire functions and related matters', J. Austral. Math. Soc. (Ser. A) 63 (1997), 225-237.
[2] A. L. Horwitz and L. A. Rubel, 'When is the composition of two power series even?', J. Austral. Math. Soc. (Ser. A) 56 (1994), 415-420.

Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
England
e-mail: afb@dpmms.cam.ac.uk

