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Abstract

Hand, foot, andmouth disease (HFMD) is a common childhood infectious disease. The incidence
ofHFMDhas a pronounced seasonal tendency and is closely related tometeorological factors such
as temperature, rainfall, andwind speed. In this paper, we propose a combined SARIMA-XGBoost
model to improve the prediction accuracy of HFMD in 15 regions of Xinjiang, China. The
SARIMAmodel is used for seasonal trends, and theXGBoost algorithm is applied for the nonlinear
effects of meteorological factors. The geographical and temporal weighted regression model is
designed to analyze the influence ofmeteorological factors from temporal and spatial perspectives.
The analysis results show that the HFMD exhibits seasonal characteristics, peaking from May to
August each year, and the HFMD incidence has significant spatial heterogeneity. The meteoro-
logical factors affecting the spread of HFMD vary among regions. Temperature and daylight
significantly impact the transmission of the disease in most areas. Based on the verification
experiment of forecasting, the proposed SARIMA-XGBoost model is superior to other models
in accuracy, especially in regions with a high incidence of HFMD.

Introduction

Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by a group of
enteroviruses, such as Coxsackie virus A16 and Enterovirus 71 [1]. This disease is mainly
transmitted through person-to-person contact and respiratory droplets. The main manifest-
ations are fever, skin eruptions on hands and feet, and vesicles in the mouth [2]. The disease is
characterized by rapid progression. Once respiratory complications such as pulmonary oedema
and pulmonary haemorrhage occur, patients may die quickly [3]. From 2009 to 2018, more than
70000 HFMD cases were reported in Xinjiang, including 98 severe cases and 11 fatal cases
[4]. Given the severity and fatality rates, it is vital to analyze the characteristics and factors
influencing the prevention of HFMD transmission in Xinjiang.

According to the transmission mechanism of infectious diseases, meteorological conditions
may influence the incidence, the transmission range, and the susceptibility of the population to
diseases [5–7]. Various studies have shown that meteorological factors such as temperature,
rainfall, humidity, air pressure, light, and wind speed are tightly associated with HFMD [8–11]. In
addition, the meteorological factors demonstrated significant spatial and temporal variation in
HFMD incidence, and they revealed a nonlinear correlation with the incidence [12, 13]. These
works demonstrate the importance of analyzingmeteorological factors in predictingHFMD. Since
the HFMD incidence has prominent seasonal characteristics [14–16], the seasonal autoregressive
integrated moving average (SARIMA) model has been widely used in predicting seasonal
infectious diseases for its efficient forecasting ability for periodic time series. Many studies have
been conducted using the SARIMA model to predict HFMD incidence [17–20]. In practice, the
time series of HFMDoften contain linear and nonlinear patterns. However, the SARIMAmodel is
limited by its linear assumptions and cannot capture the nonlinear patterns [21]. To capture the
nonlinear correlations between patient numbers and meteorological factors, machine learning
algorithms have shown significant advantages over traditional statistical models [22]. Therefore,
manymachine learningmethods have been applied to predict the number ofHFMDcases, such as
long- and short-term memory networks [23, 24], random forest [25], recurrent neural network
[26], and support vector regression [27]. However, past studies have not considered the influence
of meteorological factors on both time and space, rendering most models non-generalizable to
specific locations or times.

From the above analysis, it is clear that machine learning models can compensate for the
shortcomings of the SARIMAmodel, specifically its inability to address nonlinearity between the
number of infected people and the influencing factors. In contrast, machine learning models,
while pursuing higher prediction accuracy, are prone to overfitting, which can undermine the
credibility of their predictions [28]. However, most current research focused only on either the
seasonal characteristics of transmission or the correlation between transmission and meteoro-
logical factors when making predictions. Consequently, a meaningful proposition is whether we
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can integrate a traditional time series model with a machine learn-
ing algorithm to build a combined model with a higher prediction
accuracy and better generalization ability.

This paper proposes a SARIMA-XGBoost combined model for
predicting HFMD time series. The SARIMA model is used to
capture the seasonal trends in the disease, while the XGBoost
(eXtreme Gradient Boosting) algorithm is applied to account for
the effects of meteorological factors on transmission. The geograph-
ically and temporally weighted regression (GTWR) model analyzes
the impact of meteorological factors from both temporal and spatial
perspectives. The effectiveness of the combined model is investi-
gated and validated. The remainder of the paper is organized as
follows. Section ‘Data source and factor analysis’ presents the data
source and factor analysis. Section ‘The SARIMA-XGBoost model’
introduces various components of the model, i.e. the SARIMA
model and the XGBoost algorithm, followed by the construction
method of the combined model. Section ‘Experiment and analysis’
presents experiments that analyze the results and compare them
with other models to validate the proposed method. Finally,
Section ‘Discussion and Conclusion’ contains the concluding
remarks and outlines future research directions.

Data source and factor analysis

Data source

Xinjiang Autonomous Region consists of five regions (Altay, Tar-
bagatay, Kashgar, Aksu, and Hotan), five autonomous prefectures
(Ili, Bortala, Changji, Kizilsu, and Bayingol), and five cities (Urumqi,
Karamay, Shihezi, Hami, and Turpan). The data on HFMD cases
from 2008 to 2018 were sourced from [10]. Themeteorological data,
including monthly average temperature, average precipitation,
barometric pressure, sunshine hours, average humidity, and wind
speed, are sourced from NASA (https://ladsweb.modaps.eosdis.na
sa.gov).

Analysis of HFMD in 15 regions

The average HFMD incidence is 38.84 per 100000 in the Xinjiang
Autonomous Region from 2008 to 2018. Hereafter, all the following
incidences are shown per 100000 population. The map in Figure 1
shows that the annual average HFMD incidence widely varied
among different regions and is generated by the software ArcGIS
10.2 from http://eol.jsc.nasa.gov/ SearchPhotos/. The top two
regions are Karamay and Urumqi, with incidence rates of 134.47
and 97.34, respectively. Hotan (0.50), Kashgar (0.67), Kizilsu (1.22),
and Aksu (4.85) have relatively lower incidences.

Based on the monthly reported data on HFMD cases, Figure 2
reflects the incidences of HFMD in 15 regions from 2008 to 2018.
Further, the prevalence of HFMD has prominent seasonal charac-
teristics in Xinjiang. It is concentrated between May and August,
reaching 77.54% of the total cases.

Analysis of meteorological factors

The monthly means ± standard error of the mean (SEM) of
precipitation, temperature, sunshine hours, relative humidity, wind
speed, and surface pressure of Xinjiang in 2008–2018 were
(13.88 ± 16.13) mm, (10.33 ± 13.41)°C, (233.55 ± 80.83) h,
(43.18 ± 16.01)%, (3.03 ± 0.73)m/s, and (89.73 ± 4.68) kPa, respect-
ively. Figure 3 reflects each region’s monthly mean distribution of

the above factors. We observe that there are regional variations of
each meteorological factor. We use Moran’s I value to analyze the
spatial autocorrelation of various meteorological factors in relation
to HFMD incidence in Xinjiang from 2008 to 2018. The weight
matrix of Moran’s I is generated by using the inverse distance
weighting method. According to Table 1, Moran’s I values are all
greater than 0. This indicates that the incidence of HFMD is
spatially positively correlated in Xinjiang during the period 2008–
2018. The p values are all less than 0.05 and statistically significant.

The GTWR model is designed to analyze the influence of
meteorological factors on HFMD transmission in time and space.
The regressionmodel is based on aweightmatrix that integrates both
temporal and spatial information [29]. Let X¼ X1,X2,…,Xnð Þ0 ,
where Xi is the number of HFMD incidences in the ith region at
time ti, and let ui,við Þ be the latitude and longitude coordinates of
the ith region. The GTWR model is as follows:

Xi ¼ β0 ui,vi, tið Þþ
Xp
k¼1

βk ui,vi, tið ÞCik þ εi, i¼ 1,2,…,n, (1)

where Cik is the value of the kth meteorological variable in the ith
region at time ti, βk ui,vi, tið Þ is the corresponding weight, β0 is the
constant term and εi is the error term.

The coefficients βk ui,vi, tið Þof meteorological factors can reflect
the relationship between the HFMD incidence and meteorological
variables. Through the weighted least square method and local
linear geographical weighted regression, the estimates of the weight
of the meteorological variables can be expressed as

β̂ ui,vi, tið Þ¼ CTWiC
� ��1

CTWiX, (2)

where Wi is the spatio-temporal weight matrix defined by spatio-
temporal distance and bandwidth, and the elements in Wi are
generated by

wij ¼exp � dSTij
hST

 !2( )

¼exp �
λ ui�uj
� �2þ vi� vj

� �2h i
þμ ti� tj
� �2

h2ST

0@ 1A8<:
9=;,

(3)

where dSTij is the spatio-temporal distance between samples iand j,
hST is the spatio-temporal bandwidth, λ, and μ are scaling factors
to determine the effects of spatial and temporal distances on the
weights. After standardizing the HFMD data, Table 2 presents the
average estimated values of the regression coefficients βk ui,vi, tið Þ.

According to Table 2, the coefficients of precipitation are gen-
erally smaller than those of all factors. Therefore, this factor does not
significantly affect the transmission of HFMD in each region. The
effects of temperature and daylight are substantial in most regions.
For different regions, other factors influencing the spread of HFMD
vary significantly. For example, surface pressure is the most influ-
ential factor in Changji, Urumqi, and Tarbagatay, while it is insig-
nificant inHami andHotan. Thus, thesemeteorological factors have
significant spatial heterogeneity. The spread of HFMD transmission
cannot be accurately described if meteorological factors are treated
equally across all regions. Based on the above analysis, we conduct
variable selection using the GTWR model. Then, the variables that
have a significant impact on each region are incorporated into the
prediction model.
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The SARIMA-XGBoost model

In this section, we propose a combined model for investigating
HFMD in Xinjiang, which integrates the SARIMA model and the
XGBoost algorithm. While the SARIMA model analyzes seasonal
disease trends, the XGBoost algorithm addresses the nonlinear
influence of meteorological factors.

SARIMA model

The SARIMA model can transform a non-stationary time series
into stationary time ones. It is effective for studying time series with
seasonal trends. To maintain the stationarity of the series, the trend
and seasonality of HFMD incidence are eliminated using differen-
cing [30]. Let Xt be the confirmed cases of HFMD at time t, and εt
is the error term. A SARIMA model is defined as

ϕ Bð ÞΦ Bsð Þ 1�Bsð ÞD 1�Bð ÞdXt ¼ θ Bð ÞΘ Bsð Þεt , (4)

where ϕ Bð Þ¼ 1�ϕ1B�⋯�ϕpB
p and θðBÞ¼ 1�θ1B�⋯�θqBq,

corresponding to the functions of the backshift operator B with

BlXt ¼Xt�l . Here, p is the autoregressive order, q is the moving
average order, and d is the number of differencing operations. To
eliminate seasonal variations, the SARIMA model uses seasonal
differentials 1�Bsð ÞXt, where s is the seasonal period of the data.
The forms of Φ Bsð Þ and Θ BS

� �
are as shown below:

ΦðBsÞ ¼ 1�Φ1Bs�⋯�ΦpBsP ,

ΘðBsÞ ¼ 1�Θ1Bs�⋯�ΘQBsQ,

where P is the seasonal autoregressive order, Q is the seasonal
moving average order, and D is the number of seasonal differen-
cing operations.We call (4) an SARIMA p,d,qð Þ× P,D,Qð Þsmodel.

After removing the trend and seasonal components, the model
fitting process includes order determination, parameter estimation,
and diagnostic validation. The range of orders is determined by the
autocorrelation function (ACF) and partial autocorrelation func-
tion (PACF). Within this range, multiple order combinations are
traversed to obtain the optimal parameters that minimize the
Akaike information criterion (AIC) and Bayesian information
criterion (BIC) [31]. The parameters of the model are then

Figure 2. The HFMD cases by the month of illness onset, standardized by the number of annual cases.

Figure 1. The HFMD incidence in various regions of Xinjiang province.
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Figure 3. Monthly average values of meteorological indicators in Xinjiang regions.

Table 1. Spatial autocorrelation analysis of HFMD in Xinjiang from 2008 to 2018

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Moran’s I 0.32 0.50 0.43 0.60 0.33 0.40 0.40 0.33 0.44 0.32 0.50

p-value 0.04 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.04 0.01
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estimated. In the diagnostic validation phase, the residuals are
tested for normality and autocorrelation using the Shapiro–Wilk
and Ljung–Box tests. The Shapiro–Wilk test, proposed by [32], is a
normality test as follows:

W ¼ ΣN
t¼1atεt

� �2
ΣN
t¼1 εt ��εð Þ2 ,

(5)

where εt is the residual of the SARIMA model, �ε is the sample
mean, and the coefficient at is the expected value of the standard
normal statistic. Ljung–Box test [33, 34] is expressed as

Q mð Þ¼T Tþ2ð Þ
Xm
i¼1

bρi2 ε2t
� �

T� i
, (6)

where T is the sample size, i.e. the number of months included in
the dataset, m is the maximum lagging order, εt is the residuals of
the SARIMAmodel, and bρi2 ε2t

� �
is the ith order of the sample ACF.

The Ljung–Box test reflects the autocorrelation of the series based
on the autocorrelation coefficient of the series lagged at order k.

XGBoost algorithm

The XGBoost algorithm is an ensemble learning algorithm that
incorporates a regularization term to controlmodel complexity and
avoid overfitting. Based on the classification and regression tree
algorithm [35], XGBoost is constructed by iteratively fitting the
negative gradient values of the loss function to form a new model.
As a result, it performs better in analyzing nonlinear data [36]. Next,
we review some basic concepts of the XGBoost algorithm
[37]. Given n observations xi,yi

� �
, i¼ 1,2,…,n;xi ∈Rd ,yi ∈R

� �
,

a tree ensemble model is established to predict the output where f k
is the kth decision tree, satisfying f k xð Þ¼ωq xð Þ for ω∈RT and

q :Rd !T , T is the number of leaf nodes in the tree, and ω is the

weight vector of leaf nodes. The regularized objective function L ϕð Þ
is composed of a loss function l yi, ŷi

� �
and a regular term Ω f k

� �
as

follows:

L ϕð Þ¼
Xn
i¼1

l yi, ŷi
� �þXK

k¼1

Ω f k
� �

:

The second term Ω f k
� �

penalizes the complexity of regression

three functions and is defined by Ω f k
� �¼ γT þ 1

2λ
PT

j¼1w
2
j , where

γ is the coefficient of the number of leaf nodes. Let ŷ tð Þ
i be the

prediction of the ith iteration. Since XGBoost uses the gradient-
boosting decision tree pattern for the training set, it follows that

ŷi ¼ ŷ t�1ð Þ
i þ f t xið Þ. Thus, we need tominimize the following object-

ives:

L tð Þ ϕð Þ¼
Xn
i¼1

l yi, ŷ
t�1ð Þ
i þ f t xið Þ

� 	
þΩ f t

� �
:

On the other hand, a second-order Taylor expansion at ŷ t�1ð Þ
i is

derived from the loss function. Therefore, the loss function is
rewritten as follows:

l yi,x
� �

≈

l yi, ŷ
t�1ð Þ
i

� 	
þ l0 yi, ŷ

t�1ð Þ
i

� 	
x� ŷ t�1ð Þ

i

� 	
þ

l00 yi, ŷ
t�1ð Þ
i

� 	
2

x� ŷ t�1ð Þ
i

� 	2
:

Denote x¼ ŷ t�1ð Þ
i þ f t xið Þ, gi ¼ l0 yi, ŷ

t�1ð Þ
i

� 	
and hi ¼

l00 yi, ŷ
t�1ð Þ
i

� 	
. The following objective can approximate the above

objective function:

L tð Þ ϕð Þ≈
Xn
i¼1

l yi, ŷ
t�1ð Þ
i

� 	
þ gif t xið Þþ1

2
hif

2
t xið Þ


 �
þ
XK
k¼1

Ω f k
� �

:

(7)

Table 2. The mean values of GTWR standardized coefficients of each meteorological variable

Region Precipitation Temperature Surface pressure Relative humidity Wind speed Daylight

Aksu 0.07 0.58 0.29 0.33 0.34 0.60

Altay 0.17 0.46 0.04 0.62 0.41 0.60

Bayingol 0.06 0.59 0.32 0.33 0.36 0.60

Bortala 0.18 0.50 0.30 0.58 0.17 0.52

Changji 0.17 0.51 0.67 0.43 0.38 0.52

Hami 0.03 0.56 0.08 0.27 0.36 0.72

Hotan 0.04 0.62 0.06 0.19 0.44 0.54

Ili 0.24 0.55 0.56 0.41 0.48 0.59

Karamay 0.10 0.53 0.90 0.41 0.69 0.54

Kashgar 0.08 0.60 0.26 0.29 0.32 0.60

Kizilsu 0.09 0.61 0.26 0.29 0.32 0.51

Shihezi 0.18 0.52 0.87 0.44 0.39 0.54

Tarbagatay 0.25 0.52 0.80 0.51 0.51 0.58

Turpan 0.01 0.65 0.67 0.23 0.43 0.56

Urumqi 0.24 0.52 0.67 0.43 0.38 0.59

Epidemiology and Infection 5

https://doi.org/10.1017/S0950268823001905 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268823001905


The combined SARIMA-XGBoost model

Through the analysis above, the SARIMA model can capture the
historical patterns of HFMD prevalence well but cannot account
for the endogenous factors affecting prevalence or capturing the
complex factors of transmission due to its linear assumptions. To
more accurately investigate the trend of HFMD cases, we intro-
duce the XGBoost algorithm to effectively capture the nonlinear
characteristics [21]. We propose a combined SARIMA-XGBoost
model to analyze both the linear and nonlinear components of
the HFMD series. First, the SARIMA model is used to analyze the
linear part of the series. Then, the residuals of the SARIMA
model are considered the nonlinear part and are analyzed using
the XGBoost model. Ignoring the effect of specific nonlinear
factors can lead to poor performance in some situations. To
address this, meteorological variables such as wind speed, relative
humidity, and surface air pressure are included in the input layer
of the XGBoost algorithm.

The flow chart of the SARIMA-XGBoost model is shown in
Figure 4. Let Lt and L̂t be the true and fitting values from the
SARIMAmodel (4) at time t, respectively. Suppose that the HFMD
series is formed by the linear and nonlinear components:

Xt ¼ Lt þEt ,

where Et denotes the nonlinear part based on the XGBoost algo-
rithm (7). The detailed process of the model is described as follows:

(i) Through the SARIMAmodel (4), we obtain the correspond-
ing residual values denoted by

et ¼Xt � L̂t : (8)

(ii) Analyze the meteorological factors for each region based on
the GTWR model (1) and select the influential factors as
meteorological variables denoted by m1, m2, …, mn.

(iii) Apply the XGBoost algorithm (7) to model the residuals (8).
With nmeteorological variables, the residual model is estab-
lished as

et ¼ f m1,m2,…,mnð Þþ εt , (9)

where f is a nonlinear function determined by the XGBoost
algorithm, and εt is the random error. Let Êt be the estimated
values of et . The estimator X̂t of Xt is

X̂t ¼ L̂t þ Êt :

To ensure a comprehensive and balanced evaluation, we employ
four indexes to assess the performance of the combined SARIMA-
XGBoost model: the root mean square error (RMSE), coefficient of
determination ( R2), mean absolute error (MAE), and symmetric
mean absolute percentage error (SMAPE). RMSE offers insights
into the forecast’s accuracy by quantifying the average discrepan-
cies between the actual and predicted values. R2, a measure of the
model’s goodness of fit, indicates the percentage of variance in the
dependent variable accounted for by the independent variables.
MAE measures the mean magnitude of errors by averaging the
absolute differences between observed and predicted values. In
addition, SMAPE provides a relative error measurement, factoring
in symmetric penalties for both overpredictions and underpredic-
tions. The model’s accuracy is considered higher as R2 approaches
1 and as RMSE,MAE, and SMAPE values decrease. The formulas to
compute these metrics are as follows:

Figure 4. The flow chart of the combined SARIMA-XGBoost model.
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RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
t¼1

ðXt � X̂iÞ2
s

,

R2 ¼ 1�
PM
i¼1

ðXi� X̂iÞ2PM
i¼1

ðXi� �XiÞ2
,

MAE¼ 1
M

XM
i¼1

jX̂i�Xij,

SMAPE¼ 100%
M

XM
i¼1

jXi� X̂ij
ðjXijþ jX̂ijÞ=2

,

where Xi is the actual observed value, �Xi is themean value of Xi, X̂i

is the predicted value, and M denotes the number of samples.

Experiment and analysis

Analysis of SARIMA-XGBoost model

In the SARIMA-XGBoost model, we first establish the SARIMA
model determined by the following steps:

• Apply the augmented Dickey–Fuller test to determine the
stationarity of the HFMD incidence series in 15 regions of
Xinjiang from 2008 to 2018. If the series is non-stationary,
use differencing to transform it into a stationary series.

• Determine six parameters p, d, q, P, D, and Qaccording to the
ACF and PACF plots.

• Based on the AIC and BIC criteria, conduct multiple order
combinations to determine the optimal parameters.

The model residuals are analyzed through the Shapiro–Wilk and
Ljung–Box tests to determine the effectiveness of the SARIMA
model. The diagnosis of the model and the test results are shown

in Table 3. All the p values exceed the significance level of 0.05,
indicating that the residual series pass the Ljung–Box test. This
suggests that the SARIMA model successfully captures the tem-
poral autocorrelation in the HFMD incidence data. However, all p
values of the Shapiro–Wilk test are less than 0.05, the residual series
do not pass the normality test. This may indicate that the SARIMA
model has not adequately captured the structure of the data, and
there could be nonlinear trends present. Using the SARIMAmodel
alone is less effective for analyzing HFMD trends in each region.

To capture the nonlinear characteristics in the residuals, based
on the SARIMA (p, d, q) × (P, D, Q)s model listed in Table 3,
meteorological variables corresponding to each region serve as
input for the XGBoost algorithm, as introduced in equation (7).
During the training of the XGBoost algorithm, the choice of
parameters significantly affects the model’s effectiveness. Thus,
parameters like the maximum number of iterations, maximum tree
depth, and random sampling ratio are carefully considered. For
instance, inUrumqi, the chosen parameters are amaximumof 4000
iterations, a maximum tree depth of 6, a learning rate of 0.1, and a
random sampling ratio of 0.5. Details on the parameter-tuning
process will follow:

• Considering the different factors, we first normalize the
meteorological data. Based on the standardized regression
coefficient (Table 2) of the GTWR model, the four important
factors are selected as input variables of the XGBoost algorithm
for each region.

• Determine the ‘booster’ to be ‘gbtree’; that is, the tree model is
regarded as the base model. The objective parameter is selected
as ‘reg:squarederror’, corresponding to a regression problem
with minimizing MSE.

• Take the learning rate to be 0.1, and then use the built-in ‘xgb.
csv’ function. The ‘xgb.csv’ function will return the optimal
maximum number of iterations.

• For the remaining parameters, the range of parameters is first
determined, and then the ‘GridSearchCV’ function is used to
traverse and search the optimal parameters.

Table 3. Diagnosis of SARIMA (p, d, q) × (P, D, Q)s model

Region Model AIC BIC Shapiro–Wilk Ljung–Box Q(6) Ljung–Box Q(12) Ljung–Box Q(24)

Aksu SARIMA(1, 0, 1) × (0, 1, 1)12 825 835 0.66(5.03E-16) 4.27(0.64) 17.40(0.14) 18.55(0.78)

Altay SARIMA(1, 0, 1) × (0, 1, 1)12 913 923 0.78(1.02E-12) 4.13(0.66) 10.32(0.59) 19.18(0.74)

Bayingol SARIMA(0, 0, 1) × (1, 1, 1)12 1090 1101 0.57(5.88E-18) 8.40(0.21) 11.87(0.37) 8.51(0.58)

Bortala SARIMA(1, 0, 1) × (0, 1, 1)12 825 835 0.76(1.71E-13) 2.47(0.87) 4.13(0.98) 8.56(1.00)

Changji SARIMA(1, 0, 1) × (1, 1, 1)12 1133 1146 0.85(2.50E-10) 5.12(0.53) 14.29(0.28) 20.49(0.67)

Hami SARIMA(0, 0, 1) × (0, 1, 1)12 1033 1041 0.48(1.13E-19) 1.10(0.98) 5.47(0.94) 20.87(0.65)

Hotan SARIMA(0, 0, 1) × (0, 1, 1)12 532 540 0.53(1.04E-18) 1.48(0.96) 4.75(0.97) 11.04(0.99)

Ili SARIMA(1, 1, 1) × (1, 1, 1)12 1277 1290 0.80(2.69E-12) 4.64(0.59) 9.18(0.69) 32.72(0.11)

Kashgar SARIMA(0, 0, 1) × (0, 1, 1)12 617 625 0.67(9.31E-16) 1.81(0.94) 8.46(0.75) 12.03(0.98)

Karamay SARIMA(1, 0, 1) × (1, 1, 1)12 1029 1039 0.69(2.08E-15) 2.48(0.87) 11.22(0.51) 24.40(0.44)

Kizilsu SARIMA(1, 1, 1) × (1, 1, 1)12 454 467 0.87(1.33E-09) 2.58(0.86) 5.10(0.95) 7.89(1.00)

Shihezi SARIMA(1, 0, 1) × (0, 1, 1)12 1069 1080 0.45(3.15E-20) 0.89(0.99) 2.01(1.00) 11.66(0.98)

Tarbagatay SARIMA(1, 1, 1) × (0, 1, 1)12 1106 1116 0.79(1.58E-12) 5.44(0.49) 11.74(0.47) 23.18(0.51)

Turpan SARIMA(1, 0, 1) × (1, 1, 1)12 1084 1097 0.81(6.17E-12) 0.33(0.99) 2.43(0.99) 8.72(0.99)

Urumqi SARIMA(1, 0, 1) × (1, 1, 1)12 1330 1343 0.53(8.03E-19) 1.29(0.97) 4.00(0.98) 9.68(1.00)
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In the implementation of the XGBoost algorithm, a tree model is
used as the basemodel.Within this treemodel, input variables serve
as split nodes and are associated with different gain values of the
objective function. A higher gain value indicates a greater influence
of the variable on the model. Therefore, the importance of each
variable can be assessed by the frequency with which it is used as a
split node. Table 4 presents the feature importance of the meteoro-
logical variables, measured by their use as split nodes during the
training of the XGBoost algorithm. This provides insights into the
impact of the selected meteorological factors on the incidence of
HFMD in each region.

Compared with other models

In this section, we compare the performance of the SARIMA-
XGBoost model to other models, such as SARIMA, XGBoost,

long-/short-term memory (LSTM) networks, and support vector
regression (SVR) models. The process for establishing the
SARIMA-XGBoost model is described in the Section ‘The
SARIMA-XGBoost model’. To provide effective information for
the rational allocation of medical resources across various regions,
we use a dataset comprising the number of HFMD patients in
15 regions of Xinjiang from 2008 to 2018. The first nine years of
data serve as the training set, while the data from 2017 to 2018 is
used as the test set. The regional incidence can also be predicted by
dividing the number of patients by the total number of people in the
area, which will help eliminate the effect of differences in popula-
tion density and make comparisons between different regions
fairer.

We use the prediction results for Urumqi as an example. Based
on the critical meteorological factors outlined in Table 4, Figures 5
and 6 show the fitting result graph for the training set and the

Table 4. The feature important and percentage of meteorological variables for each region

Region Temperature Surface pressure Relative humidity Wind speed Daylight

Aksu 3351(0.27) – 3052(0.24) 2772(0.22) 3310(0.27)

Altay 3164(0.23) – 3883(0.28) 3028(0.22) 3640(0.27)

Bayingol 4175(0.26) – 4030(0.25) 3627(0.23) 4254(0.26)

Bortala 3353(0.25) 3556(0.26) 3480(0.26) – 3232(0.24)

Changji 4619(0.26) 4162(0.24) 4193(0.24) – 4458(0.26)

Hami 3288(0.24) – 3235(0.23) 4126(0.3) 3155(0.23)

Hotan 550(0.25) – 583(0.26) 493(0.22) 583(0.26)

Ili 4195(0.25) 3915(0.24) – 3550(0.21) 4992(0.3)

Karamay 3214(0.23) 3736(0.27) – 3640(0.26) 3435(0.24)

Kashgar 1546(0.27) – 1455(0.25) 1427(0.25) 1290(0.23)

Kizilsu 380(0.32) – 275(0.23) 190(0.16) 333(0.28)

Shihezi 4020(0.25) 3927(0.24) 3960(0.25) – 4145(0.26)

Tarbagatay 3731(0.25) 4271(0.29) – 3560(0.24) 3264(0.22)

Turpan 3999(0.26) 4355(0.28) – 3526(0.23) 3711(0.24)

Urumqi 4577(0.27) 4185(0.24) 4213(0.25) – 4160(0.24)

Figure 5. The fitting result graph for the training set in Urumqi.

8 Haojie Man et al.

https://doi.org/10.1017/S0950268823001905 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268823001905


comparison of prediction in Urumqi. When comparing with other
models, we individually optimize each model to ensure predictive
accuracy. For example, given the XGBoost model’s strength in
ensemble learning, we incorporate meteorological variables into
its predictions. Numerical simulations show that the predictive
accuracy of the LSTM model decreases when incorporating
meteorological factors as input variables. Consequently, we use just
the historical HFMD cases as the input feature for the LSTMmodel.
It can be observed that the SARIMA-XGBoost model outperforms

the other models. Specifically, the RMSE values for SARIMA,
XGBoost, LSTM, and SVR are 147.51, 152.75, 129.43, and 167.01,
respectively. The proposed SARIMA-XGBoostmodel has an RMSE
of 112.51, which is significantly lower than those of the other
models. The R2 value for the SARIMA-XGBoost model is higher
by 13.3%, 16.4%, 7.5%, and 25% when compared to SARIMA,
XGBoost, LSTM, and SVR, respectively. Additionally, the
SARIMA-XGBoost model exhibits the lowest values among the
five models for both MAE and SMAPE metrics.

Figure 6. The prediction results of Urumqi in five models.

Figure 7. Evaluation results of different models for the prediction of 15 regions in Xinjiang.
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Figure 7 presents the RMSE, R2, MAE, and SMAPE values of
five models used for predicting the 15 regions in Xinjiang during
2017–2018. Considering the above four metrics, the SARIMA-
XGBoost model significantly outperforms other models in predic-
tion. For example, the R2 of the SARIMA-XGBoostmodel increases
by 58.5%, 38.3%, 54%, and 111%, compared to the SARIMAmodel,
XGBoost algorithm, LSTM, and SVR model, respectively.
In regions with higher incidence, such as Changji, Urumqi, Bortala,
Tarbagatay, and Karamay, the SARIMA-XGBoost model demon-
strates minor deviations and greater robustness than other models,
with a notable improvement in accuracy. However, for regions with
lower incidence like Kizilsu, Kashgar, and Hotan, the prediction
accuracy of the SARIMA-XGBoost model is comparatively lower.
One of the primary reasons is that both SARIMA models and
machine learning methods demand ample data to achieve accurate
predictions, which is lacking in these regions with lower incidence.
For instance, over the past decade in Hotan, around 73.5% of the
months reported zero cases, and approximately 93.2% of the
months reported fewer than five cases. This limited data poses
challenges for precise predictions. Moreover, the differences and
fluctuations of meteorological factors in regions with low incidence
are not as pronounced. Despite these challenges, the SARIMA-
XGBoost model still significantly enhances RMSE, R2, MAE, and
SMAPE values compared with other models.

Based on the above analysis, we can conclude that the proposed
SARIMA-XGBoost model can achieve better performance in
predicting HFMD.

Discussion and conclusion

In this paper, we propose a hybrid method based on the combin-
ation of the SARIMAmodel andXGBoost algorithm to improve the
prediction accuracy of the HFMD time series. The SARIMAmodel
can capture typical trends and seasonal characteristics of HFMD,
and the XGBoost analyzes the influence of meteorological factors.
Since precipitation, temperature, and relative humidity have dif-
ferent effects for each region, the GTWR model is designed to
investigate the impact of meteorological factors. The prediction
and verification experiment of Xinjiang HFMD incidence data
shows that the proposed SARIMA-XGBoost model is superior to
other models in accuracy, especially in regions with high incidence.
Based on the SARIMA-XGBoost model, we derive several conclu-
sions of practical significance: (i) The HFMD exhibits seasonal
characteristics, peaking from May to August each year; (ii) The
HFMD incidence has significant geographical aggregation. It is
highly prevalent in the northern regions of Xinjiang, such as
Urumqi and Karamay. The incidence is relatively low in southern
Xinjiang, such as Hotan, Kashgar, Kizilsu, and Aksu; and (iii) The
meteorological factors exhibit significant spatial heterogeneity. For
instance, surface pressure is a dominant factor in Changji, Urumqi,
and Tarbagatay, but it holds little significance in Hami and Hotan.

Besides the HFMD series, we observe that many time series of
other diseases, such as influenza andmalaria, are also influenced by
linear and nonlinear factors. The hybrid method of combining the
time series model with machine learning algorithms is of great
significance in fully extracting the information and improving
forecasting accuracy. Therefore, how to select the appropriate
model and design the combining method needs to be considered
in the future.

Data availability statement. The data on HFMD cases between 2008 and
2018 are from [10]. The meteorological data of monthly average temperature,

average precipitation, barometric pressure, sunshine hours, average humidity,
and wind speed are from NASA (https://ladsweb.modaps.eosdis.nasa.gov). The
datasets and software code used during this current study are available from the
corresponding authors at a reasonable request.
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