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A Bilinear Fractional Integral on
Compact Lie Groups

Jiecheng Chen and Dashan Fan

Abstract. As an analog of a well-known theorem on the bilinear fractional integral on R
n by Kenig and

Stein, we establish the similar boundedness property for a bilinear fractional integral on a compact Lie

group. Our result is also a generalization of our recent theorem about the bilinear fractional integral

on torus.

1 Introduction

Let G be a connected, simply connected, compact semisimple Lie group of dimen-

sion n. Following Stein [6, p. 58], the Riesz potential on G is defined by (see [3])

Iα( f )(x) =

∫

G

f (xy−1)Kα(y)dy, 0 < α < n

where

Kα(y) = −Γ(
α

2
)−1

∫ ∞

0

t
α
2 ∆Wt (y)dt,

and Wt is the heat kernel on G. Thus, naturally, we define the bilinear Riesz potential

Rα( f , g)(x) =

∫

G

f (xy−1)g(xy)Kα(y)dy, 0 < α < n.

Later in this paper, we will use the property of the heat kernel to show that

Kα(y) ≃ d(y, I)−n+α,

where d is a bi-invariant metric on G and I is the identity in G. Thus Bα( f , g) is

equivalent to the bilinear fractional integral

Bα( f , g)(x) =

∫

G

f (xy−1)g(xy)d(y, I)−n+αdy.

Clearly, the above formulation of Bα is analogous to the bilinear fractional integral

operator on R
n

ßα( f , g)(x) =

∫

Rn

f (x − y)g(x + y)|y|−n+αdy.
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In [6], among other things, Kenig and Stein established the boundedness of ßα( f , g)

from Lr(R
n) × Lq(R

n) to Lp(R
n) with 1/p = 1/q + 1/r − α/n > 0. This result was

also recently obtained in the n-torus Tn, by using a transference method (see [2]). As

Tn is the n-dimensional Abelian compact Lie group, it is more interesting to obtain

Kenig–Stein’s theorem on a general compact Lie group. This is the main purpose of

this paper. We will establish the following boundedness property of Rα.

Theorem 1.1 Assume that 0 < α < n, 1/p = 1/q + 1/r − α/n > 0, and

1 ≤ q, r ≤ ∞. Then

(i) if 1 < q, r, then ‖Rα( f , g)‖Lp(G) ¹ ‖ f ‖Lq(G)‖g‖Lr(G);

(ii) if 1 ≤ q, r and either q or r is one, then ‖Rα( f , g)‖Lp,∞(G) ¹ ‖ f ‖Lq(G)‖g‖Lr(G).

Notice that this theorem is exactly the same version of the result on R
n by Kenig

and Stein ([6, Theorem 2]), but we want to remark that such extension to a general

compact Lie group is not a trivial one. Checking the proof of Kenig and Stein, one

finds that the argument involving scaling plays a significant role in their proof. But,

the dilation, an important feature on R
n, is not available on a compact Lie group G.

Thus, though we will follow the idea used in [6], it becomes technically more difficult

to execute. To overcome this obstacle, we will carefully treat G locally as an Euclidean

space, then use compactness to achieve the global result. The plan of this paper is

as follows: in Section 2, we will recall some necessary notation and definitions on a

compact Lie group; we will show some basic lemmas in Section 3 and complete the

proof of the theorem in Section 4.

In this paper, we use the notation A ¹ B to mean that there is a positive constant C

independent of all essential variables such that A ≤ CB. We use the notation A ≈ B

to mean that there are two positive constants c1 and c2 independent of all essential

variables such that c1A ≤ B ≤ c2A.

2 Notations and Definitions

Let G be a connected, simply connected, compact, semisimple Lie group of dimen-

sion n. Let g be the Lie algebra of G and τ the Lie algebra of a fixed maximal

torus T in G of dimension m. Let A be a system of positive roots for (g,τ ), so that

Card(A) =
n−m

2
and let δ =

∑
α∈A α.

Let | · | be the norm of g induced by the negative of the Killing form B on gC, the

complexification of g, then | · | induces a bi-invariant metric d on G. Furthermore,

since B|τC×τC is nondegenerate, given λ ∈ homC(τC, C), there is a unique Hλ in τC

such that λ(H) = B(H, Hλ) for each H ∈ τC. We let 〈 · , · 〉 and ‖ · ‖ denote the inner

product and norm transferred from τ to homC(τ , iR) by means of this canonical

isomorphism.

Let N = {H ∈ τ , exp H = I}, where I is the identity in G. The weight lattice P

is defined by P = {λ ∈ τ : 〈λ, n〉 ∈ 2πZ for any n ∈ N} with dominant weights

defined by Λ = {λ ∈ P, 〈λ, α〉 ≥ 0 for any α ∈ A}. Λ provides a full set of parameters

for the equivalent classes of unitary irreducible representation of G: for λ ∈ Λ, the
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representation Uλ has dimension

dλ =
∏

α∈A

〈λ + δ, α〉

〈δ, α〉
,

and its associated character is

χλ(ξ) =

∑
w∈W ǫ(w)ei〈w(λ+δ),ξ〉

∑
w∈W ei〈wδ,ξ〉

,

where ξ ∈ τ ,W is the Weyl group and ǫ(w) is the signature of w ∈ W. Let

X1, X2, . . . , Xn be an orthonormal basis of g. Form the Casimer operator

∆ =

n∑

i=1

X2
i .

This is an elliptic bi-invariant operator on G that is independent of the choice of

orthonormal basis of g. The solution of the heat equation on G × R
+,

∆Φ(x, t) =
dΦ

dt
(x, t), Φ(x, 0) = f (x),

f ∈ L1(G) is given by Φ(x, t) = Wt ∗ f (x), where Wt is the Gauss–Weierstrass kernel

(heat kernel). It is well known that Wt is a central function, and one can write it as

for ξ ∈ τ and t > 0,

Wt (ξ) =

∑

λ∈Λ

e−t(‖λ+δ‖2−‖δ‖2)dλχλ(ξ)

for ξ ∈ τ and t > 0. It is easy to see that Wt satisfies the semi-group property

Wt+s = Wt ∗ Ws for any s, t > 0. Using the heat kernel, we define the bilinear Riesz

potential on G by

Rα( f , g)(x) =

∫

G

f (xy−1)g(xy)Kα(y)dy, 0 < α < n,

where

Kα(y) = −Γ

( α

2

)−1
∫ ∞

0

t
α
2 ∆Wt (y)dt.

It is easy to check that if g(x) ≡ 1, then Bα is the Riesz potential Iα studied in [4, 7].

3 Some Lemmas

For an s-multi-index J = ( j1, j2, . . . , js) , denote X J
= Π

s
k=1X jk

. Let H2,s be the

Sobolev space of functions f on G for which any X j1
, X j2

, . . . , X js
∈ g, X J f ∈ L2(G).

A norm on the subspace of central functions in H2,s is

‖ f ‖H2,s =

{∑

λ∈Λ

| fλ|
2‖λ + δ‖2sdλ

} 1
2

,

where fλ are the Fourier coefficients of f . Since the heat kernel Wt is a central func-

tion, we have the following estimate of Wt .
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Lemma 3.1 Fix a σ > 0. For any multi-index J, ‖X JWt‖L∞(G) ¹ t−N for any N > 0,

uniformly for t > σ.

Proof Using Hölder’s inequality, the semi group property of Wt , and the left invari-

ance of X J, one has

‖X JWt‖L∞(G) = ‖X JWt/2 ∗Wt/2‖L∞(G) ¹ ‖X JWt/2‖L2(G)‖Wt/2‖L2(G)

≈ ‖Wt/2‖H2,s(G)‖Wt/2‖L2(G), with s = | J|.

Thus, the lemma follows easily from the definition of Wt .

By the Poisson summation formula (see [3], or [1]), we know that

Wt (ξ) =
et‖ρ‖2

t−m/2

D(ξ)

∑

λ∈N

( ∏
α∈A

〈ξ + λ, α〉e−
‖ξ+λ‖2

4t

)
,

where

D(ξ) =

∑

w∈W

ei〈wδ,ξ〉.

Using this expression of the heat kernel, we can obtain the following estimate.

Lemma 3.2 |Kα(y)| ¹ d(y, I)−n+α.

Proof Fix a positive σ > 0. We write

|Kα(y)| ¹
∣∣∣
∫ σ

0

t
α
2 ∆Wt (y)dt

∣∣∣ +
∣∣∣
∫ ∞

σ

t
α
2 ∆Wt (y)dt

∣∣∣ .

By Lemma 3.1, the second integral above is O(1). Let U be a neighborhood of 0 in τ
such that it translates by elements of Λ are all disjoint, and let η(x) be a C∞ function

supported on U , radial and identically one on a neighborhood of 0. One defines two

modified kernels Kt and Vt by

Vt (ξ) = e2t‖ρ‖2

t−n/2
∑

λ∈N

e−
‖ξ+λ‖2

4t ,

Kt (ξ) = e2t‖ρ‖2

t−n/2
∑

λ∈N

η(ξ + λ)e−
‖ξ+λ‖2

4t .

By [3, Theorem 4], it is known that for any pair of integers s and N,

‖Vt − Kt‖H2,s(G) = O(tN ), t → 0.

Also, by [3, Theorem 2], we know that given any pair of integers s and N, there is an

integer L such that

‖∆L,tVt −Wt‖H2,s(G) = O(tN ), t → 0,
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where

∆L,t =

M∑

j=0

t jD j,L, M = L(n − m)/2,

and D j,L, j = 0, 1, . . . , M, are differential operators of order j, which are invariant

under both left and right translations. Thus, we have

∣∣∣
∫ σ

0

t
α
2 ∆Wt (y)dt

∣∣∣ ≤

∫ σ

0

t
α
2 {‖∆(Wt − ∆L,tVt )‖∞ + ‖∆{∆L,t (Vt − Kt )}‖∞}dt

+
∣∣∣
∫ σ

0

t
α
2 (∆∆L,t Kt )(y)dt

∣∣∣ .

By the Sobolev embedding theorem

∫ σ

0

t
α
2

{
‖∆(Wt − ∆L,tVt )‖∞ + ‖∆∆L,t (Vt − Kt )‖∞

}
dt

¹

∫ σ

0

t
α
2

{
‖∆(Wt − ∆L,tVt )‖H2,s(G) + ‖∆∆L,t (Vt − Kt )‖H2,s(G)

}
dt

for some s > n/2 + 3 + M. By [3, Theorems 2 and 4], we now obtain that

∣∣∣
∫ σ

0

t
α
2 ∆Wt (y)dt

∣∣∣ ¹ O(1) +
∣∣∣
∫ σ

0

t
α
2 (∆∆L,t Kt )(y)dt

∣∣∣ .

Recalling that the function Kt , considered as a function on G, is supported on a small

neighborhood VI of I, one introduces on this neighborhood the regular coordinates

(ξ1, . . . , ξn), where (ξ1, . . . , ξn) → exp(
∑n

j=1 ξ jX j) = y. In these coordinates,

Kt (y) = e2t‖ρ‖2

t−n/2η(ξ)e−
‖ξ‖2

4t , ‖ξ‖ ≃ d(y, I).

By the proof of [3, Lemma 5], it is easy to see that

|∆∆L,t Kt (ξ)| ¹ t−n/2−2‖ξ‖2e−
‖ξ‖2

4t .

Thus,

∣∣∣
∫ σ

0

t
α
2 (∆∆L,t Kt )(y)dt

∣∣∣ ¹
∣∣∣
∫ σ

0

t
α
2 t−n/2−2‖ξ‖2e−

‖ξ‖2

4t dt
∣∣∣

¹ ‖ξ‖−n+α

∫ ∞

0

un/2+2− α
2 e−udu ≃ d(y, I)−n+α.

Notice (∆∆L,t Kt )(y) ≡ 0 if y /∈ VI . We obtain

|Kα(y)| ¹ d(y, I)−n+α + O(1).

Since we may assume diam(G) = 1, the lemma is proved.
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Now we fix a sufficiently larger integer k0 > 0 that is to be determined later. Let

r > 0 be a fixed small positive number and Φ be a C∞-diffeomorphism from the

neighborhood VI(r) = { y ∈ G : d(y, I) < r} to a neighborhood Ñ of the origin in

R
n, which satisfies d(u, v) ≈ |Φ(u) −Φ(v)|, for all u, v ∈ VI(r), where |Φ(u) −Φ(v)|

is the Euclidean distance between Φ(u) and Φ(v). Recall that d(u, v) ≈ |Φ(u)−Φ(v)|
means that there are positive constants c1 and c2 such that

c1|Φ(u) − Φ(v)| ≤ d(u, v) ≤ c2|Φ(u) − Φ(v)|

for all u, v ∈ VI(r). Without loss of generality, we may assume c1 = 1/2 and c2 = 2.
For each x ∈ G, let

Vx(r) = {xu ∈ G : u ∈ VI}.

Let Φx be defined on Vx(r) by Φx(y)=Φ(x−1 y) for y ∈ Vx(r). Clearly, Vx(r) is a

neighborhood of x and Φx is a C∞-diffeomorphism from Vx(r)onto Ñ. In addition,

for any ξ, η ∈ Vx(r), there are u, v ∈ VI(r) such that xu = ξ, xv = η. Thus

d(ξ, η) = d(u, v) ≃ |Φ(u) − Φ(v)| = |Φx(ξ) − Φx(η)|.

For this r, we fix a large integer k0 for which 2−k0 < r
64

. From the open cover {
Vx( r

16
) : x ∈ G} of G,we pick a finite subcover {V j(

r
16

) = Vx j
( r

16
), j = 1, 2, . . . , N}.

Lemma 3.3 For any x ∈ V j(
r

16
), and d(y, I) ≤ 2−k0 (I is the identity of G), we have

xy−1, xy ∈ V j(
r
8
).

Proof d(xy−1, x j) ≤ d(xy−1, x) + d(x, x j) ≤ 2−k0 + r
16

< r
8
.

Lemma 3.4 Let k ≥ 0, and

Bk( f , g)(x) =

∫

d(y,I)≃2−k

f (xy−1)g(xy)

d(y, I)n
dy.

Then one has

‖Bk( f , g)‖
L

1
2 (G)

≤ C‖ f ‖L1(G)‖g‖L1(G),

where the constant C is independent of f , g, and k.

Proof By Fubini’s Theorem, clearly we may assume k > k0. Also, it is sufficient to

show that for each j = 1, 2, . . . , N,

‖Bk( f , g)‖
L

1
2 (V j (

r
16

))
¹ ‖ f ‖L1(G)‖g‖L1(G).

Fix a j, let x j be the center of V j(
r

16
), and let f j and g j be defined by f j(x) = f (x jx).

Then

‖ f ‖L1(G) = ‖ f j‖L1(G), ‖g‖L1(G) = ‖g j‖L1(G).

Thus, by a group translation, it suffices to show

‖Bk( f , g)‖
L

1
2 (VI ( r

16
))
¹ ‖ f ‖L1(G)‖g‖L1(G).
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Without loss of generality, we may assume that both f and g are Schwartz functions

of nonnegative values. Recall that Φ(VI(
r

16
) ) is a neighborhood of the origin in R

n.

Let {Qi} be the family of disjoint dyadic cubes of R
n with sidelength 2−k and let

Ai = Φ
−1(Qi ∩ Φ(VI(

r
16

)) = Φ
−1(Qi) ∩VI(

r
16

), i = 1, 2, . . . , where we assume that

Φ
−1(Qi) is the empty set if Qi ∩Φ(VI(

r
4
)) is empty. Clearly, all these Ais are mutually

disjoint, and

VI

(
r

16

)
=

⋃
i

Φ
−1(Qi ∩ Φ

(
VI

(
r

16

))
.

Thus,

‖Bk( f , g)‖
1
2

L
1
2 (VI ( r

16
))

=

∑

i

∫

Φ−1(Qi∩Φ(VI ( r
16

))

|Bk( f , g)(x)|
1
2 dx.

By Hölder’s inequality, we have

∫

Φ−1(Qi∩Φ(VI ( r
16

))

|Bk( f , g)(x)|
1
2 dx

≤
{

Vol

(
Φ

−1
(

Qi ∩ Φ
(

VI

(
r

16

)))) ∫

Φ−1(Qi )∩VI ( r
16

)

|Bk( f , g)(x)|dx
} 1

2

.

Notice that we can view Φ as an isometry. It is easy to check that the volume of(
Φ

−1
(

Qi ∩ Φ(VI(
r

16
))

))
satisfies

Vol

(
Φ

−1
(

Qi ∩ Φ
(

VI(
r

16
)
)))

¹ 2−nk.

In addition, by Lemma 3.3,

∫

Φ−1

(
Qi∩Φ(VI ( r

16
))
) |Bk( f , g)(x)|dx

=

∫

Φ−1

(
Qi∩Φ(VI ( r

16
))
)

∫

d(y,I)≃2−k

f (xy−1)g(xy)

d(y, I)n
dydx

¹ 2nk

∫

Φ−1(4Qi )∩(VI ( r
8

)

f (x)dx

∫

Φ−1(4Qi )∩VI ( r
8

)

g(x)dx.

Thus

‖Bk( f , g)‖
1
2

L
1
2 (VI ( r

8
))
¹

∑

i

(∫

Φ−1(4Qi )∩VI ( r
8

)

f (x)dx
) 1

2
(∫

Φ−1(4Qi )∩VI ( r
8

)

g(x)dx
) 1

2

¹
(∑

i

∫

Φ−1(4Qi )∩VI ( r
8

)

f (x)dx
) 1

2
(∑

i

∫

Φ−1(4Qi )∩VI ( r
8

)

g(x)dx
) 1

2

¹ (‖ f ‖L1(G)‖g‖L1(G))
1
2 .

The lemma is proved.
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4 Proof of the Theorem

Now the proof follows the idea of Kenig–Stein in [6]. For completeness, we outline

the proof. Without loss of generality, we assume that both f and g are nonnegative

valued functions. By Lemma 3.1, it suffices to show the theorem for the operator

Bα( f , g). Using a standard method we write

Bα( f , g)(x) ≃
∞∑

k=0

2−kα

∫

d(y,I)≃2−k

f (xy−1)g(xy)

d(y, I)n
dy.

Thus we further write Bα( f , g)(x) = D1 + D2, where

D1 =

∑

k≤K0

2−kα

∫

d(y,I)≃2−k

f (xy−1)g(xy)

d(y, I)n
dy,

D2 =

∑

k>K0

2−kα

∫

d(y,I)≃2−k

f (xy−1)g(xy)

d(y, I)n
dy,

and K0 is to be chosen. Applying Fubini’s theorem on D1 and Lemma 3.4 on D2, we

obtain

‖D1‖L1(G) ¹ 2K0(n−α)‖ f ‖L1(G)‖g‖L1(G).

‖D2‖
1
2

L
1
2 (G)

¹ 2−K0α/2‖ f ‖
1
2

L1(G)
‖g‖

1
2

L1(G)
.

Fix a sufficiently large λ0 > 0. For any λ > λ0, we let

K0 =
log2 λ

2n − α
.

Then

|{x ∈ G : Bα( f , g)(x) > λ}| ≤ |{x ∈ G : D1 > λ/2}| + |{x ∈ G : D2 > λ/2}|

¹
2K0(n−α)

λ
‖ f ‖L1(G)‖g‖L1(G) +

2−K0α/2

λ
1
2

‖ f ‖
1
2

L1(G)
‖g‖

1
2

L1(G)
.

We may assume that ‖ f ‖L1(G) = ‖g‖L1(G) = 1. By the choice of λ, one easily sees

|{x ∈ G : Bα( f , g)(x) > λ}| ¹ λ−p with 1
p

= 2 − α
n
.

This shows

‖Bα( f , g)‖Lp,∞ ¹ ‖ f ‖L1(G)‖g‖L1(G), with 1
p

= 2 − α
n
.
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On the other hand, we have

|Bα( f , g)(x)| ¹ ‖g‖L∞(G)

∫

G

f (xy−1)d(y, I)−n+αdy = ‖g‖L∞(G)Iα( f )(x),

|Bα( f , g)(x)| ¹ ‖ f ‖L∞(G)

∫

G

g(xy)d(y, I)−n+αdy = ‖ f ‖L∞(G) Jα( f )(x).

The boundedness of these two fractional integrals Jα and Iα are well known on G,
and they have exactly the same boundedness as their Euclidean analogs. Actually,

one can prove this fact by following exactly the same argument as the proof in the

Euclidean case (see also [4, 8]). By the known boundedness of Iα, we have

‖Bα( f , g)‖Lp(G) ¹ ‖g‖L∞(G)‖Iα( f )‖
Lp (G)

¹ ‖g‖L∞(G)‖ f ‖
Lq(G)

with 1
p

=
1
q
− α

n
.

Similarly, one has

‖Bα( f , g)‖Lp(G) ¹ ‖ f ‖L∞(G)‖g‖
Lr (G)

with 1
p

=
1
r
− α

n
.

Now the theorem follows by a multilinear interpolation theorem by Janson [5].

5 Extension

We can study a more general fractional integral Fα defined by

Fα( f , g)(x) =

∫

G

f (x(ym)−1)g(xyµ)Kα(y)dy, 0 < α < n,

where y
µ

= y y · · · y, is the µ-product of y. Noting that d(ym, I) ≤ md(y, I) for any

y ∈ G, and by checking the proof of Theorem 1.1, it is not difficult see that the results

in Theorem 1.1 are also available for the operator Fα( f , g).
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