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Abstract

Among systems for creating slide presentations, the dominant ones offer essentially no

abstraction capability. Slideshow represents our effort over the last several years to build an

abstraction-friendly slide system with PLT Scheme. We show how functional programming

is well suited to the task of slide creation, we report on the programming contructs that we

have developed for slides, and we describe our solutions to practical problems in rendering

slides. We also describe experimental extensions to DrScheme that support a mixture of

programmatic and WYSIWYG slide creation.

Capsule Review

Readers familiar with Henderson’s classic functional language for describing fractal pictures

will already be aware that functional languages are nicely suited to tasks concerned with

the description of images. The authors take this fundamental concept and develop it into

a practical, industrial-strength tool: Slideshow, a Scheme-based system that allows one to

use Scheme’s abstraction facilities to design slide-based presentations. It is interesting to see

how the fine points of Scheme influence the design of Slideshow. For example, although

Slideshow’s language of picture combinators is purely functional, the authors nonetheless

manage to exploit object identity and Scheme’s eq? primitive to define Slideshow’s facility for

deconstructing or structurally querying an image. It is also interesting to see how, where and

why the authors judiciously employ side effects in their primarily pure system. Given these

kinds of design elements, it’s hard not to wonder how such a system would be designed given

a different underlying language, such as Haskell.

The paper operates at multiple levels, discussing the design of (1) slides, (2) talks composed

of slides, and (3) a language for describing #1 and #2. The authors spend a significant portion

of their time discussing not simply the design of Slideshow, but the subtler design principles

behind using it to construct a presentation. These are codified in a “design recipe,” and a

detailed example is developed to illustrate the recipe in action.

1 Abstraction-friendly applications

Strand a computer scientist at an airport, and the poor soul would probably survive

for days with only a network-connected computer and five applications: an e-mail

client, a web browser, a general-purpose text editor, a typesetting system, and a
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slide-presentation application. More specifically, while most any mail client or

browser would satisfy the stranded scientist, probably only Emacs or vi would do for

editing, LATEX for typesetting, and Microsoft PowerPointTM for preparing slides.

The typical business traveler would more likely insist on Microsoft WordTM for

both text editing and typesetting. Computer scientists may prefer Emacs and LATEX

because text editing has little to do with typesetting, and these different tasks are best

handled by different, specialized applications. More importantly, though, tools such

as Emacs, vi, and LATEX are programmable. Through the power of programming

abstractions, a skilled user of these tools becomes even more efficient and effective.

Shockingly, many computer scientists give up the power of abstraction when

faced with the task of preparing slides for a talk. PowerPoint is famously easy to

learn and use, it produces results that are aesthetically pleasing to most audience

members, and it enables users to produce generic slides in minutes. Like most GUI-/

WYSIWYG-oriented applications, however, PowerPoint does not lend itself easily

to extension and abstraction. PowerPoint provides certain pre-defined parameters –

the background, the default font and color, etc. – but no ability to create new

abstractions.

Among those who refuse to work without abstraction, many retreat to a web

browser (because HTML is easy to generate programmatically) or the various

extension of TEX (plus a DVI/PostScript/PDF viewer). Usually, the results are not as

aesthetically pleasing as PowerPoint slides, and not as finely tuned to the problems of

projecting images onto a screen. Moreover, novice users of TEX-based systems tend to

produce slides with far too many words and far too few pictures, due to the text bias

of their tool. Meanwhile, as a programming language, TEX leaves much to be desired.

Slideshow , a part of the PLT Scheme application suite (PLT, 2005), fills the

gap left by abstraction-poor slide presentation systems. Foremost, Slideshow is an

embedded DSL for picture generation, but it also provides direct support for step-

wise animation, bullet-style text, slide navigation, image scaling (to fit different

display and projector types), cross-platform consistency (Windows, Mac OS, and

Unix/X), and PostScript output.

Functional programming naturally supports the definition of picture combinators,

and it enables slide creators to define new abstractions that meet their specific needs.

Even better, the Slideshow programming language supports a design recipe to help

slide creators build and maintain animation sequences. Our design recipe guides the

programmer from a storyboard sketch to an organized implementation, and it also

suggests how changes in the sketch translate into changes in the implementation.

Even with the best of programming languages, some slide sequences can benefit

from a dose of WYSIWYG construction. WYSIWYG tools should be part of the

slide language’s programming environment – analogous to GUI builders for desktop

applications. We have implemented extensions of the DrScheme programming

environment (Findler et al., 2002) that support interactive slide construction in

combination with language-based abstraction.

In this paper – a revised and expanded version of our ICFP paper (Findler &

Flatt, 2004) – we report on the Slideshow presentation system. Section 2 is a tour

of Slideshow’s most useful constructs. Section 3 presents the Slideshow design recipe
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for picture sequences. Section 4 describes Slideshow’s implementation and addresses

practical issues in rendering slides on different media and operating systems.

Section 5 describes our prototype extension of DrScheme. Section 6 discusses some

of our design decisions and compares to related work.

2 A tour of slideshow

A pict is the basic building block for pictures in Slideshow. Each pict consists of

three parts:

• A drawing procedure, which takes a primitive PLT Scheme drawing context

and a location to draw the pict.

• A bounding box. A pict’s bounding box does not necessarily enclose all of

the pict’s image, but usually it does. Besides a width and height, the bounding

box includes upper and lower text baselines. When a pict contains a single

line of text, the baselines typically coincide. When a pict contains no text, the

baselines typically match the bottom edge of the bounding box.

• The identity and location of sub-picts (if any) that were used to compose the

pict.

Slideshow includes a pre-defined set of pict constructors whose drawing procedures

are implemented directly, and most other picts are created by combining them.

Slideshow’s pre-defined constructors include lines, boxes, circles, text, arrows, clouds,

balloons, fish, and bitmap images in a variety of formats (including PNG, GIF, and

JPEG).

A PLT Scheme drawing context produces output to either the screen, a bitmap,

a printer, or a PostScript file. For this paper, we render example picts to embedded

PostScript, and we scale the drawing context so that one drawing unit equals

one point (=1/72 of an inch) when printed. For a presentation, one drawing unit

equals one projector pixel on a standard-size projector (but we discuss this more in

section 4.2).

The remainder of this section demonstrates how to use Slideshow functions to

generate images like the following, which might appear in a presentation about how

fish gain weight when they eat other fish.

7 lbs 10 lbs

Yikes!

2.1 Generating picts

The pre-defined pict constructor filled-rectangle takes a height and a width and

produces a pict:

(filled-rectangle 20 10)
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Similarly, the text function takes a string, a font class, and a font size, and produces

a pict:

(text "10 lbs" ’(bold . swiss) 9) 10 lbs

The standard-fish function takes a height, width, direction symbol, color string,

eye-color string, and boolean to indicate whether the fish’s mouth is open:

(standard-fish 30 20 ’left "darkgray" "black" #t)

The standard-fish function’s many arguments make it flexible. If we need many

fish that differ only in color and in mouth position, we can define our own fish

function that accepts only two arguments:

;; fish : str[color] bool -> pict

(define (fish color open?)

(standard-fish 30 20 ’left color "black" open?))

(define big-fish (fish "darkgray" #f))

(define big-aaah-fish (fish "darkgray" #f))

2.2 Adjusting picts

If we need fish of different sizes after all, instead of adding arguments to fish, we

can simply use Slideshow’s scale function:

(define little-fish (scale (fish "dimgray" #f) 0.7))

We certainly want to place our fish into an aquarium, which we can draw as a

light rectangle behind the fish. The filled-rectangle function does not accept a

color argument; instead, it generates a rectangle that uses the default color, and the

colorize function lets us adjust the default color for a pict.1 Thus, we can create

our rectangle as follows:

(colorize (filled-rectangle 20 10) "lightgray")

2.3 Combining Picts

To create a pict with two fish, one way is to use ht-append:

(ht-append 10 little-fish big-aaah-fish)

1 A fish is drawn with multiple colors – the eye color, the body color, and intermediate shades – so its
colors must be supplied to fish.
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The first argument to ht-append is an amount of space to put between the picts. It is

optional, and it defaults to 0. The ht part of the name ht-append indicates that the

picts are horizontally stacked and top-aligned. Analogously, the hb-append function

bottom-aligns picts. If we want to center-align picts, we can use hc-append:

(define two-fish

(hc-append 10 little-fish big-aaah-fish))

Now we are ready to place the fish in an aquarium. Our old aquarium,

(colorize (filled-rectangle 20 10) "lightgray")

is not large enough to hold the two fish. We could choose a fixed size for the

aquarium, but if we later change the size constants in the fish function, then the

aquarium might not be the right size. We could scale the image, but a simpler

strategy is to create a function aq that takes a pict and makes an aquarium for the

pict:

;; aq : pict -> pict

(define (aq p)

(colorize (filled-rectangle (pict-width p)

(pict-height p))

"lightgray"))

(aq two-fish)

The pict-width and pict-height functions take a pict and produce its width and

height, respectively. This aquarium is large enough to hold the fish, but it’s tight.

We can give the fish more room by adding space around two-fish with Slideshow’s

inset function, and then generate an aquarium pict. Finally, we put the fish and

aquarium together using Slideshow’s cc-superimpose function:

;; in-aq : pict -> pict

(define (in-aq p)

(cc-superimpose (aq (inset p 10)) p))

(in-aq two-fish)

The leftmost argument to cc-superimpose is placed bottommost in the drawing,

so the fish end up on top of the aquarium rectangle.

The cc part of the name cc-superimpose indicates that the picts are centered

horizontally and vertically as they are stacked on top of each other. Slideshow

provides a -superimpose function for each combination of l, c, or r (left, center,

or right) with t, c, or b (top, center, or bottom).

One additional mode of alignment is useful for text. When combining text of

different fonts into a single line of text, then neither ht-append nor hb-append

produces the right result in general, because different fonts have different shapes.

Slideshow provides hbl-append for stacking picts so that their baselines match.
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;; lbs : num -> pict

(define (lbs amt)

(hbl-append (text (number->string amt) ’(bold . swiss) 9)

(text " lbs" ’swiss 8)))

(define 10lbs (lbs 10))

(define 7lbs (lbs 7))

(define 17lbs (lbs 17))

10 lbs

7 lbs

17 lbs

For multi-line text, hbl-append matches baselines for the bottommost lines. Slide-

show provides htl-append to make baselines match for topmost lines. Naturally,

Slideshow provides variants of -superimpose with tl and bl, as well.

Finally, Slideshow provides vl-append, vc-append, and vr-append to stack picts

vertically with left-, center-, and right-alignment. To add the labels to our aquarium

pict, we can use vl-append to first stack the aquarium on the “10 lbs” label, and

then use rbl-superimpose to add the “7 lbs” label to the bottom-right corner of

the pict:

(define two-fish+sizes

(rbl-superimpose

(vl-append 5

(in-aq two-fish)

7lbs)

10lbs)) 7 lbs 10 lbs

2.4 Finding picts

Pict objects are immutable. A particular pict, such as little-fish, can be used in

multiple independent contexts. Functions that adjust a pict, such as scale, do not

change the given pict, but instead generate a new pict based on the given one. For

example, we can combine two-fish and a scaled version of two-fish in a single

pict:

(hc-append 10 two-fish (scale two-fish 0.5))

Picts nevertheless have an identity, in the sense of Scheme’s eq?, and each use of a

Slideshow function generates a pict object that is distinct from all other pict objects.

This identity is useful for finding the location of picts within other picts.

For example, to add an arrow from “7 lbs” to the little fish, we could insert an

arrow pict into the vl-append sequence (with negative space separating the stacked

pict), but then adding an arrow from “10 lbs” to the big fish would be more difficult.

Instead, Slideshow provides a way to add an arrow to the pict based on the relative

location of the little-fish and “7 lbs” sub-picts.
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To locate a sub-pict within an aggregate pict, Slideshow provides a family of

operations ending with -find. The prefix of a -find operation indicates which

corner or edge of the sub-pict to find; it is a combination of l, c, or r (left,

center, or right) with t, tl, c, bl, or b (top, top baseline, center, bottom baseline,

or bottom). The results of a -find operation are the coordinates of the found

corner/edge relative to the aggregate pict, where the aggregate pict’s top-left corner

is the origin, and x and y-coordinates increase going right and down.

A -find operation is often combined with pin-over, which takes a pict,

coordinates, and a pict to place on top of the first pict. For example, we can create

a connecting arrow with pip-arrow-line (which takes horizontal and vertical

displacements, plus the size of the arrowhead) and place it onto two-fish+sizes:

(define-values (ax ay) (ct-find two-fish+sizes 7lbs))

(define-values (bx by) (cb-find two-fish+sizes little-fish))

(pin-over two-fish+sizes

ax ay

(pip-arrow-line (- bx ax) (- by ay) 6)) 7 lbs 10 lbs

Since we need multiple arrows, we abstract this pattern into a function:

;; connect : pict pict pict -> pict

(define (connect main from to)

(define-values (ax ay) (ct-find main from))

(define-values (bx by) (cb-find main to))

(pin-over main

ax ay

(pip-arrow-line (- bx ax) (- by ay) 6)))

(define labeled-two-fish

(connect (connect two-fish+sizes

7lbs little-fish)

10lbs big-aaah-fish)) 7 lbs 10 lbs

Slideshow provides a function that is like connect called pin-arrow-line. In

addition to the arguments of connect, pin-arrow-line accepts the -find functions

for each sub-pict. Thus, connect can be implemented more simply as

;; connect : pict pict pict -> pict

(define (connect main from to)

(pin-arrow-line 6 main from ct-find to cb-find))

Slideshow provides other libraries work well with finding picts. For example, the

library "balloon.ss" provides pip-wrap-balloon for wrapping a pict with a
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cartoon balloon:

(define yikes

(pip-wrap-balloon

(text "Yikes!" ’(bold . roman) 9)

’s 0 10)) ; spike direction and displacement

;; panic : pict -> pict

(define (panic p)

(define-values (x y) (ct-find p little-fish))

(pin-over p x y yikes))

(panic two-fish)

Yikes!

Yikes!

Each pin- operation preserves the bounding box of the first argument, instead of

extending it to include the placed pict. This behavior is useful for adding arrows

and balloons such that further compositions are unaffected by the addition. For

example, we can still put the fish into an aquarium after adding the panic balloon.

(in-aq (panic two-fish))

Yikes!

2.5 Ghosts and laundry

We eventually want a slide sequence with variants of the aquarium pict. One variant

should have the little and big fish together in the aquarium, as before:

(define both-fish

(hc-append 10 little-fish big-fish))

(in-aq both-fish)

Another variant should have just the big fish – now even bigger, since it has eaten

the little fish. If we generate the pict as

(define bigger-fish

(scale big-fish 1.7))

(in-aq bigger-fish)

then our slides will not look right, because the aquarium changes shape from the

first pict to the second.

We can avoid this problem by constructing a large enough aquarium for the first

pict. Conceptually, we’d like to stack the large-fish pict on top of the pict with the

https://doi.org/10.1017/S0956796806006010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006010


Slideshow: functional presentations 591

two fish together, and then put the combined pict in the aquarium (so that it is large

enough to fit both picts in both dimensions), and then hide the large-fish pict.

To hide a pict, the ghost function takes a pict and generates a pict with the same

bounding box and sub-picts as the given one, but with no visible drawing. Thus, we

can create the right initial pict as follows:

(define all-fish-1

(in-aq (cc-superimpose

both-fish

(ghost bigger-fish))))

We can create the last slide by ghosting both-fish instead of bigger-fish:

(define all-fish-2

(in-aq (cc-superimpose

(ghost both-fish)

bigger-fish)))

Since both all-fish-1 and all-fish-2 contain all three fish, they are guaranteed

to be the same size.

If we try to add a label and arrow for the big fish, however, something goes

wrong:

;; add-big-label : pict pict -> pict

(define (add-big-label all-fish wt)

(let ([labeled (vr-append 5 all-fish wt)])

(connect labeled wt big-fish)))

10 lbs

17 lbs

(add-big-label all-fish-1 10lbs)

(add-big-label all-fish-2 17lbs)

The problem is that bigger-fish is a scaled version of big-fish, and even though

bigger-fish is ghosted in all-fish-1, ghost merely replaces the big-fish

drawing procedure, but not its sub-picts. Specifically, big-fish exists twice in

each all-fish- pict, and add-big-label finds the wrong one in all-fish-1.

To hide a sub-pict’s identity, Slideshow provides launder2 as a complement to

ghost. The launder function takes a pict and produces a pict with the same

2 We use “launder” in the sense of “to launder money,” which is to obscure the source of money without
changing its face value.
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dimensions and drawing, but with a new identity and without sub-picts. To ensure

that add-big-label finds the right big-fish, we can both ghost and launder the

pict to hide.

(define all-fish-1

(in-aq (cc-superimpose

both-fish

(launder (ghost bigger-fish)))))

(add-big-label all-fish-1 10lbs)

(define all-fish-2

(in-aq (cc-superimpose

(launder (ghost both-fish))

bigger-fish)))

(add-big-label all-fish-2 17lbs)

10 lbs

17 lbs

2.6 From pictures to slides

Pict-construction primitives are only half of Slideshow’s library. The other half

defines pict operations that support common slide tasks and that cooperate with

a slide-display system. Common tasks include creating a slide with a title, creating

text with a default font, breaking lines of text, bulletizing lists, and staging bullet

lines. Cooperating with the display includes correlating titles with a slide-selection

dialog and enabling clickable elements within interactive slides.

Ultimately, a slide is represented as a single pict to be drawn on the screen. The

screen’s drawing context is scaled so that the slide fits when it is 1024 units wide

and 768 units high, which means that each drawing unit for a slide is one pixel on

a typical projector.

2.7 Registering slides

Since a slide presentation is a sequence of picts, a presentation could be represented

as a list, and a Slideshow program could be any program that generates a list of

picts. We have opted instead for a more imperative design at the slide level: a

Slideshow program calls a slide function (or variants of slide) to register each

individual slide’s content:3

(slide

(scale big-fish 10))

3 We illustrate the effect of slide by showing a framed, scaled version of the resulting slide’s pict.
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We choose imperative registration through slide because a slide presentation

is most easily written as a sequence of interleaved definitions and expressions

(invocations of slide), much like the examples in section 2, and much like any

other Scheme program. To make the interface more functional, we might require a

Slideshow program to produce a list of slides, but threading this list through the

top-level sequence of definitions is awkward to read and maintain. The picts that

are registered for slides remain purely functional (i.e., they cannot be mutated),

so a small amount of imperative programming causes little problem in practice. A

drawback of imperative registration is that Slideshow programs are less easily reused

in other programs; so far, we have been content to manually refactor programs to

support reuse.

The slide/title function is similar to slide, except that it takes an extra string

argument. The string is used as the slide’s name (for selecting the slide in an outline),

and it is also used to generate a title pict that is placed above the supplied content

picts. The title pict uses a standard (configurable) font and is separated from the

slide content by a standard amount.

(slide/title "Big Fish"

(scale big-fish 10))

Big Fish

In principle, the slide and slide/title functions simply register slides, and

programmers could build more elaborate slide functions in terms of these functions.

In practice, programmers will prefer to use the more elaborate functions, and part

of Slideshow’s job is to provide useful elaborations. Thus, Slideshow allocates the

relatively short names slide, slide/title, etc. to functions that accept multiple

picts.

When multiple picts are provided to the slide function, slide combines the

picts with vc-append using a separation of gap-size (which is 24). The slide

function then ct-superimposes the appended picts with a blank pict representing

the screen (minus a small border). The slide/center function is like slide, except

that it centers the slide content with respect to the screen. The slide/title/center

function accepts a title and also centers the slide.

(slide/title/center "Big Fish"

(scale big-fish 10)

(text "Mmmm... fish" ’swiss 32))

Big Fish

Mmmm... fish
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The set of pre-defined slide layouts includes only the layouts that we have found

to be most useful. Programmers can easily create other layouts by implementing

functions that call slide.

2.8 Managing text

In the spirit of providing short names for particularly useful functions, Slideshow

provides the function t for creating a text pict with a standard font and size (which

default to a sans-serif font and 32 units, respectively). Thus, the label in the preceding

example could have been implemented as (t "Mmmm... fish") instead of (text

"Mmmm... fish" ’swiss 32). The bt function is similar to t, except that it makes

the text bold, and it makes text italic.

For typesetting an entire sentence, which might be too long to fit on a single line

and might require multiple fonts, Slideshow provides a para function. The para

function takes a width and a sequence of strings and picts, and it arranges the text

and picts as a paragraph that is bounded by the given width. In the process, para

may break strings on word boundaries (it does not hyphenate words). The width

argument to para is often based on the client-w constant, which is defined as the

width of the entire slide minus a small margin.

(slide/title/center "Just One Fish"

(scale big-fish 10)

(para (* 1/2 client-w)

"Give a man a fish, and"

"he’ll put it on a slide"))

Just One Fish

Give a man a fish, and he'll put it
on a slide

The page-para function is like para, but with client-w as the implicit first width.

Slideshow accomodates bulleted lists with the item function. It is similar to para,

except that it adds a bullet to the left of the paragraph. In parallel to page-para

and para, the page-item function is like item, but with client-w built in.

(slide/title/center "Fish Story"

(page-item "One Fish")

(scale big-fish 6)

(page-item "Two Fish")

(scale (hc-append 10

little-fish

big-fish)

6))

Fish Story

One Fish

Two Fish

Naturally, item is easily implemented in terms of para and a bullet pict:

;; item : num pict ... -> pict

(define (item w . picts)
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(htl-append (/ gap-size 2)

bullet

(apply para

(- w

(pict-width bullet)

(/ gap-size 2))

picts)))

Just as Slideshow provides many slide variants, it also provides many para and

item variants, including variants for right-justified or centered paragraphs and

bulleted sub-lists. The para* function, for example, typesets a paragraph like para,

but it allows the result to be narrower than the given width (in case no individual

line fills exactly the given width).

2.9 Staging slides

One way to stage a sequence of slides is to put one pict for each slide in a list, and

then apply a slide-generating function to each element of a list of picts:

;; aq-slide : pict -> void

(define (aq-slide all-fish)

(slide/title/center "Food Chain"

(scale all-fish 6)))

(for-each aq-slide (list all-fish-1 all-fish-2))

Food Chain Food Chain

Interesting presentations usually build on this idea, and we discuss it more in

section 3.

Much like text and hbl-append for typesetting paragraphs, however, this strategy

is awkward for merely staging bullets or lines of text on a slide. For example, when

posing a question to students, an answer may be revealed only after the students

have a chance to think about the question.

To support this simple kind of staging, the slide function (and each of its variants)

treats the symbol ’next specially when it appears in the argument sequence. All of

the picts before ’next are first used to generate a slide, and then the picts before

’next plus the arguments after ’next are used to generate more slides.
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(slide/title "Food Chain"

(scale all-fish-1 6)

(t "How many fish in the aquarium?")

’next

(bt "Two"))

Food Chain

How many fish in the aquarium?

Food Chain

How many fish in the aquarium?

Two

The ’next symbol simplifies linear staging of slide content. The slide function

also supports tree-like staging of content through the ’alts symbol. The argument

following ’alts must be a list of lists, instead of a single pict. Each of the lists is

individually combined with the preceding picts to generate a set of slides. The final

list is further combined with the remaining arguments (after the list of lists). The

’next and ’alts symbols can be mixed freely to generate sub-steps and sub-trees.

(slide/title "Food Chain"

(scale all-fish-1 6)

’alts

(list (list (t "What if the big fish eats the little one?")

’next

(t "It will become 17 pounds"))

(list (t "What if the little fish eats the big one?")

’next

(t "It will become 17 pounds")))

’next

(t "But the little fish can’t eat the big one..."))

Food Chain

What if the big fish eats the little one?

Food Chain

What if the big fish eats the little one?

It will become 17 pounds

Food Chain

What if the little fish eats the big one?

Food Chain

What if the little fish eats the big one?

It will become 17 pounds

Food Chain

What if the little fish eats the big one?

It will become 17 pounds

But the little fish can't eat the big one...
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Fig. 1. Storyboard for the example talk.

With slide, page-item, ’next, ’alts, etc., a programmer can build a text-oriented

presentation in Slideshow almost as easily as in PowerPoint. Our overall goal,

however, is not to encourage bullet-point presentations (Tufte, 2003), but instead

to simplify the creation of interesting, graphical presentations. So, we now turn our

attention to the design of slide presentations.

3 How to design slide presentations

The strength of functional programming is that it supports and encourages sys-

tematic program design. We believe that Slideshow supports and encourages good

presentation design, not only because it is based on functional programming, but

because it directly supports a design recipe (Felleisen et al., 2001) for image sequences.

Often, an image sequence resembles a scene in a play, where actors move together

to illustrate some point in a presentation. Simple scenes can be implemented easily

through ad-hoc parameterization of a pict expression, but assembling a complex

scene requires more careful planning. The design recipe presented in this section

distills our past success in building complex scenes. To demonstrate the recipe, we

animate the scene from Section 2 showing conservation of mass in an aquarium:

when one fish eats another, the total mass of the aquarium content does not change.

The first step in designing a scene is to create a storyboard. A storyboard sketches

the sequence of individual frames, each of which corresponds to a slide. Our example

storyboard is shown in figure 1.

Once we have a storyboard, we must identify the main characters – that is, the

elements of the picture that define the overall layout across frames. We call the rest

of the frame elements the supporting cast; they will be layered on the basic frame

as determined by the main characters.

In this case, the fish are the main characters, because the layout of the fish

determines the overall shape of each frame in the sequence. The water, weights, and

arrows are the supporting cast, because we can draw the aquarium under the frame

shaped by the fish, and we can draw the arrows and weight labels on top.

The programming task is to convert a scene and the characters into expressions

that generate picts for the frames. We proceed in four steps:

1. Define an expression that produces the pict for each main character. A

particular character may change shape over multiple frames, so design one

expression per view of each character.
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In this case, we have three characters, which are the three fish in the first

frame. The first two fish have only a single view each. The last fish has five:

small with its mouth open and closed, medium-sized with its mouth open and

closed, and large with its mouth closed.

2. Define a single pict expression that includes all of the views of the main

characters from all frames in the scene. This ensemble pict may include a

character in multiple places if the character appears in different places in

different frames. To generate a particular frame, we parameterize the ensemble

pict expression to hide characters that do not appear in the frame.

In our running example, we must generate a pict that has the three fish in a

line, plus different views of the last fish on top of those fish. For example, the

largest fish will be on top of the first fish with their left edges touching.

3. Define pict expressions for the supporting cast. Unlike the main cast, each

supporting cast pict should have the same dimensions as the entire frame,

so it can be superimposed on its corresponding frame. Each supporting cast

member is placed into an appropriately sized blank pict at a position that is

determined by its location in the complete frame.

In our example, we design overlays for the arrows and for the weights. Each

weight will be centered below its corresponding fish, and the arrows point

from the top of the weight to the bottom of the fish.

4. Define an expression that, for each frame, combines the main-character pict

and the supporting-cast picts.

Each of the following sections implements one step in the recipe for our example

scene.

3.1 Main characters

Our expressions for main-character picts can re-use the fish function from section 2:

(define lunch-fish

(fish "dimgray" #f))

(define dinner-fish

(launder lunch-fish))

(define small-fish

(fish "darkgray" #f))

(define small-aaah-fish

(fish "darkgray" #t))

(define medium-fish

(launder (scale small-fish (sqrt 2))))
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(define medium-aaah-fish

(launder (scale small-aaah-fish (sqrt 2))))

(define large-fish

(launder (scale small-fish (sqrt 3))))

In general, each of the main characters in our scene must have a separate identity

from each of the others and must not contain any of the others as sub-picts, so we

launder all of the picts. Otherwise, the overlays we build in step 3 might find the

wrong main character.

3.2 Frames

The first frame in our scene has three fish lined up in a row, so we begin by

combining our fish with hc-append. We add space between the fish using a blank

pict, instead of an initial number to hc-append, to make the space explicit:

(define spacer (blank 10 0))

(hc-append dinner-fish spacer

lunch-fish spacer

small-fish)

Next, we add the eating fish: small-aaah-fish through large-fish. The position

of each eating fish is determined by one of the three initial fish. Since the nose of

each eating fish, such as medium-fish, should line up with the nose of an existing

fish, such as lunch-fish, we might try to add the eating fish into the scene with

lc-superimpose:

(hc-append (lc-superimpose

large-fish

dinner-fish)

spacer

(lc-superimpose

medium-fish

medium-aaah-fish

lunch-fish)

spacer

(lc-superimpose

small-aaah-fish

small-fish))

On close examination of the spacing, however, we can see that the medium and large

fish have stretched the space between the original picts. In fact, the space between

the dinner and lunch fish is no longer the same as the space between the lunch and

small fish. To see the spacing problem clearly, we can ghost out the medium and
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large fish and compare it with the original pict that shows just the first frame:

(hc-append (lc-superimpose

(ghost large-fish)

dinner-fish)

spacer

(lc-superimpose

(ghost medium-fish)

(ghost medium-aaah-fish)

lunch-fish)

spacer

(lc-superimpose

small-aaah-fish

small-fish))

We fix this problem by moving calls to hc-append inside calls to lc-superimpose:

(lc-superimpose

large-fish

(hc-append dinner-fish

spacer

(lc-superimpose

medium-fish

medium-aaah-fish

(hc-append lunch-fish

spacer

(lc-superimpose

small-aaah-fish

small-fish)))))

Now, the large fish and the medium fish overlap with the fish to the right, but the

storyboard shows that the overlapping fish will never appear together in a single

frame. Meanwhile, this pict preserves the original spacing of the dinner, lunch, and

small fish.

Once we have the basic layout designed, the design recipe tells us to parameterize

it so we can hide certain fish. In this case, we parameterize the scene with a list of

the fish that we want to show, and we define an on helper function to either show

or hide each character in the scene:

;; main-characters : (listof pict[main-char]) -> pict[frame]

(define (main-characters active)

(lc-superimpose

(on active large-fish)

(hc-append (on active dinner-fish)

spacer

(lc-superimpose

(on active medium-fish)
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(on active medium-aaah-fish)

(hc-append (on active lunch-fish)

spacer

(lc-superimpose

(on active small-aaah-fish)

(on active small-fish)))))))

;; on : (listof pict[main-char]) pict[main-char] -> pict

(define (on set pict) (if (memq pict set) pict (ghost pict)))

To assemble the main characters for each frame, we simply apply main-characters

to a list of fish to show:

(define main1

(main-characters (list dinner-fish

lunch-fish

small-fish)))

3.3 Supporting cast

For the supporting cast, we start with the fish’s weights. Typically, a supporting cast

member’s position depends on one or more main characters. As it happens, we can go

even further for the weights by generating the label pict based on the area of a fish:

;; weight : pict[main-char] -> num

(define (weight fish)

(inexact->exact (round (* (pict-width fish)

(pict-height fish)

1/60))))

(define small-lbs (lbs (weight small-fish))) 10 lbs

To place the weight of the fish directly below the fish, we first compute the position

of the fish. Then, we can use pin-over to combine a frame with the weight. The

second argument to pin-over is the horizontal position of the left edge of the

weight, and we compute a position to center the weight below the fish. The third

argument to pin-over is the vertical position, and we compute a position for the

weight just below the aquarium.

(define-values (fx fy) (cc-find main1 small-fish))

(define main1/weight

(pin-over main1

(- fx

(/ (pict-width small-lbs)

2))

(+ (pict-height main1) 6)

small-lbs)) 10 lbs
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Combining the weight and the original scene in this manner helps us test our

computation of the weight’s coordinates, but the design recipe tells us to build an

overlay pict that contains only the weight. Building the overlay as a separate pict

enables us to add or remove it without disturbing the rest of the scene.

We can obtain a separate pict for the weight overlay by simply ghosting the input

frame:4

;; weight-overlay : pict[frame] pict[main-char] pict[wt] -> pict

(define (weight-overlay frame fish weight)

(define-values (fx fy) (cc-find frame fish))

(pin-over (ghost frame)

(- fx (/ (pict-width weight) 2))

(+ (pict-height frame) 6)

weight))

(add-bbox

(weight-overlay main1

small-fish

(lbs (weight small-fish)))) 10 lbs

The other supporting cast members are the arrows. We use pin-arrow-line to

draw an arrow from the small fish’s weight to the small fish:

(pin-arrow-line 8

main1/weight

small-lbs ct-find

small-fish cb-find) 10 lbs

Again, to satisfy the design recipe for this step, we must build a pict that draws only

the arrow:

(add-bbox

(pin-arrow-line 8

(ghost main1/weight)

small-lbs ct-find

small-fish cb-find))

Once we have designed the arrow overlay for a single frame, we can abstract over

its construction, as with the weight overlay:

;; arrow-overlay : pict[frame] pict[main-char] pict[wt] -> pict

(define (arrow-overlay frame fish lbs)

(pin-arrow-line 8

(ghost frame)

lbs ct-find

fish cb-find))

4 We use add-bbox, which adds a gray box to the given pict, to show the location of the bounding box
in a mostly blank image.

https://doi.org/10.1017/S0956796806006010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006010


Slideshow: functional presentations 603

Now that we have defined the two overlays, we can write a single function that

combines them. Since pin-over and pin-add-line do not adjust the bounding

box of the ghosted frame when creating an overlay, we combine overlays with

cc-superimpose:

;; overlay : pict[frame] pict[main-char] -> pict

(define (overlay pict fish)

(let* ([weight (lbs (weight fish))]

[w/weight (weight-overlay pict fish weight)])

(cc-superimpose

w/weight

(arrow-overlay w/weight fish weight))))

(add-bbox (overlay main1 small-fish)) 10 lbs

3.4 Putting it all together

All that remains is to define a function that puts together the aquarium, the main

characters, and the overlays, and then call the function once for each frame in the

scene:

;; fish-scene : (listof pict[main-char]) -> pict

(define (fish-scene active-characters)

(let ([frame (in-aq (main-characters active-characters))])

(apply cc-superimpose

frame

(map (lambda (fish) (overlay frame fish))

active-characters))))

10 lbs 10 lbs 10 lbs

(fish-scene (list dinner-fish

lunch-fish

small-fish))

10 lbs 10 lbs 10 lbs

(fish-scene (list dinner-fish

lunch-fish

small-aaah-fish))

10 lbs 20 lbs

(fish-scene (list dinner-fish

medium-fish)
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10 lbs 20 lbs
(fish-scene (list dinner-fish

medium-aaah-fish)

(fish-scene (list large-fish))
30 lbs

3.5 Exploiting the design recipe

By following the design recipe, we have established a clear connection between the

scene’s storyboard and its source code. If we imagine a change to the storyboard,

the design recipe helps us determine how to modify the implementation.

For example, suppose we decide to color the arrows that connect the weights to

the fish. The corresponding code is the arrow-overlay function. Simply adding a

colorize expression to its body produces colored arrows.

;; arrow-overlay : pict pict pict -> pict

(define (arrow-overlay frame fish lbs)

(colorize

(pin-arrow-line 8

(ghost frame)

lbs ct-find

fish cb-find)

"darkgray"))

(fish-scene (list dinner-fish

lunch-fish

small-aaah-fish)) 10 lbs 10 lbs 10 lbs

(fish-scene (list large-fish)) 30 lbs

This modification relies on implementing the supporting cast as overlays. If we had

not followed the design recipe and placed the arrow directly on the scene, colorize

would have colored the weights as well as the arrows.
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;; !! Incorrectly colors the weight !!

(colorize

(pin-arrow-line 8

main1/weight

small-lbs ct-find

small-fish cb-find)

"darkgray") 10 lbs

For a second example, suppose we want to make the fish grow pudgier as it eats,

instead of growing equally in both dimensions. This change to the storyboard affects

only the main characters. Correspondingly, we need to modify only the definitions

of the main characters:

;; pudgy : pict num -> pict

(define (pudgy p n) (scale p (expt n 1/4) (expt n 3/4)))

(define medium-fish

(launder (pudgy small-fish 2)))

(define medium-aaah-fish

(launder (pudgy small-aaah-fish 2)))

(define large-fish

(launder (pudgy small-fish 3)))

The aquarium and arrows adapt automatically to the new fish dimensions:

(fish-scene (list dinner-fish

lunch-fish

small-aaah-fish))

(fish-scene (list dinner-fish

medium-aaah-fish))

(fish-scene (list large-fish))

10 lbs 10 lbs 10 lbs

10 lbs 20 lbs

30 lbs
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Finally, imagine generalizing from three fish to an arbitrary number of fish.

Although this change is more complex, the design recipe suggests how to analyze

the change, and it motivates a set of modifications to the code.

The first step is to adapt our definitions of the main characters. We can organize

them into three lists: the fish that are eaten, the fish that do the eating with their

mouths closed, and the fish that do the eating with their mouths open.

(define num-fish 9)

(define meal-fish

(build-list (- num-fish 1) (lambda (i) (launder lunch-fish))))

(apply hc-append meal-fish)

(define eating-fish

(build-list num-fish

(lambda (i) (launder (pudgy small-fish (+ i 1))))))

(apply hc-append eating-fish)

(define eating-aaah-fish

(build-list num-fish

(lambda (i) (launder (pudgy small-aaah-fish (+ i 1))))))

(apply hc-append eating-aaah-fish)

This modification also affects the second step of the design recipe: the placement

of the main characters. We must re-define main-characters to generalize from just

three fish to an arbitrary number of fish. With the exception of the first eating fish,
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each eating fish is lc-superimposed onto one of the food fish, and the rest of the

scene is placed just behind with spacer in between. The procedure in the body

of main-characters constructs this portion of the scene. Using foldl, we iterate

over the three lists of fish. The second argument to foldl is the initial pict, which

contains only the first eating fish. The last three arguments of foldl correspond to

lists of arguments to the folding procedure.

;; main-characters : (list-of pict[main-char]) -> pict

(define (main-characters active)

(foldl (lambda (meal-fish eating-fish eating-aaah-fish so-far)

(lc-superimpose

(on active eating-fish)

(on active eating-aaah-fish)

(hc-append (on active meal-fish) spacer so-far)))

(cc-superimpose (on active (car eating-fish))

(on active (car eating-aaah-fish)))

meal-fish

(cdr eating-fish)

(cdr eating-aaah-fish)))

(main-characters (append meal-fish eating-fish eating-aaah-fish))

The weight and arrow overlays remain the same, per fish, in the storyboard, so

the code from the third step of the design recipe does not change.

To follow the recipe’s fourth step and complete the modification, we define ith

to accept a frame number and produce the corresponding pict, using our earlier

definition of fish-scene.

;; ith : num -> pict

(define (ith i)

(fish-scene

(cons (list-ref (if (even? i)

eating-fish

eating-aaah-fish)

(quotient i 2))

(sublist meal-fish (quotient i 2) (- num-fish 1)))))
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(ith

0) 10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs

(ith

1)

10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs10 lbs

(ith

6)

40 lbs10 lbs10 lbs10 lbs10 lbs10 lbs

(ith

7) 40 lbs10 lbs10 lbs10 lbs10 lbs10 lbs
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(ith

16)

90 lbs

Overall, generalizing to an arbitrary number of fish required us to abstract over

the fish construction and to write some list-processing functions. We sometimes

use the same ideas to demonstrate the behavior of an algorithm in a presentation.

After designing a scene that represents a snapshot of an algorithm, animating the

algorithm is merely a matter of adding a call in the algorithm’s body to generate

snapshot picts.

4 Implementation

Slideshow is implemented as a PLT Scheme application (PLT, 2005). PLT Scheme

provides the primitive drawing context for rendering picts, as well as the widget

toolbox for implementing the Slideshow presentation window and other interface

elements.

Slideshow is designed to produce consistent results with any projector resolution,

as well as when generating PostScript versions of slides. The main challenges for

consistency concern pict scaling and font selection, as discussed in the following

sections. We also comment on Slideshow’s ability to condense staged slides for

printing, to pre-render slides to minimize delays during a presentation, and to

trigger interactions during a presentation.

4.1 Drawing picts

The dc function connects PLT Scheme’s low-level drawing facilities with the world

of picts. The dc function takes an arbitrary drawing procedure and a height, width,

ascent, and descent for the pict. When the pict is to be rendered, the drawing

procedure is called with a target drawing context and offsets.

For example, the blank pict constructor can be implemented as

;; blank : num num -> pict

(define (blank w h)

(dc (lambda (dest x y)

(void))

w h h 0))

More interestingly, we can define a hook function that is implemented using the

methods draw-spline and draw-line of a primitive drawing context.
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;; hook : num num -> pict

(define (hook w h)

(dc (lambda (dest x y)

(let ([mid-x (+ x (/ w 2))]

[mid-y (+ y (/ h 2))]

[far-x (+ x w)]

[far-y (+ y h)]

[d (/ w 3)])

(send dest draw-spline

x y x far-y mid-x far-y)

(send dest draw-spline

mid-x far-y far-x far-y far-x mid-y)

(send dest draw-line

far-x mid-y (- far-x d) (+ mid-y d))))

w h 0 h))

(define go-fish

(ht-append 5 (hook 5 12) lunch-fish))

The primitive drawing context is highly stateful, with attributes such as the current

drawing color and drawing scale. Not surprisingly, slides that are implemented by

directly managing this state are prone to error, which is why we have constructed the

pict abstraction. Nevertheless, the state components show up in the pict abstraction

in terms of attribute defaults, such as the drawing color or width of a drawn line. In

particular, the linewidth, colorize, and scale primitives change the line width,

color, and scale of a pict produced by hook:

(scale

(colorize (linewidth 1 go-fish) "darkgray")

2)

Although the underlying drawing context includes a current font as part of its state,

a pict’s font cannot be changed externally, unlike the pict’s scale, color, or line

width. Changing a pict’s font would mean changing the font of sub-picts, which, in

turn, would cause the bounding box of each sub-pict to change in a complex way,

thus invalidating computations based on the sub-pict boxes. We discuss this design

constraint further in section 4.3.

4.2 Scaling

Since 1024x768 displays are most common, Slideshow defines a single slide to be

a pict with a bounding box of 1024x768 units, which makes drawing units match

pixels on most projectors.5 Depending on the display at presentation time, the pict’s

5 The default border introduced by slide leaves a 984x728 region for slide content.
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drawing context is scaled; for example, it is scaled by a factor of 25
32

for an 800x600

display. If the display’s aspect ratio is not 4:3, then scaling is limited by either the

display’s width or height to preserve the pict’s original 4:3 aspect ratio, and unused

screen space is painted black. Unused space typically appears when viewing slides

directly on a desktop machine, such as during slide development.

A Slideshow presentation is a program, and pict layouts are computed every time

the presentation is started. (This computation is rarely so expensive that it inteferes

with interactive development.) Consequently, the target screen resolution is known

at the time when slides are built. This information can be used, for example, to scale

bitmap images to match the display’s pixels, instead of units in the virtual 1024x768

space. Furthermore, information about the display is also useful for just-in-time font

selection.

4.3 Fonts

Fonts are not consistently available across operating systems, or even consistently

named. To avoid platform dependencies, Slideshow presentations typically rely on

PLT Scheme’s mapping of platform-specific fonts through portable “family” symbols,

such as ’roman (a serif font), ’swiss (a sans-serif font, usually Helvetica), ’modern

(a fixed-width font), and ’symbol (a font with Greek characters and other symbols).

PLT Scheme users control the family-to-font mapping, so a Slideshow programmer

can assume that the user has selected reasonable fonts. Alternately, a programmer

can always name a specific font, though at the risk of making the presentation

unportable.

Since specific fonts vary across platforms, displays, and users, the specific layout of

picts in a Slideshow presentation can vary, due to different bounding boxes for text

picts. Nevertheless, as long as a programmer uses pict-width and pict-height

instead of hard-wiring text sizes, slides display correctly despite font variations. This

portability depends on computing pict layouts at display time, instead of computing

layouts in advance and distributing pre-constructed picts.

Text scaling leads to additional challenges. For many displays, a font effectively

exists only at certain sizes; if a pict is scaled such that its actual font size would

fall between existing sizes, the underlying display engine must substitute a slightly

larger or smaller font. Consequently, a simple scaling of the bounding box (in the

1024x768 space) does not accurately reflect the size of the text as it is drawn,

leading to overlapping text or unattractive gaps. Slideshow avoids many text-scaling

problems by checking the expected scaling of slides (based on the current display size)

when generating text picts. The programmer can optionally control this text-scale

correction directly.

4.4 Printing slides

A drawing context in PLT Scheme is either a bitmap display (possibly offscreen) or a

PostScript stream. Thus, printing a Slideshow presentation is as simple as rendering

the slides to a PostScript drawing context instead of a bitmap context.
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Slideshow provides a “condense” mode for collapsing staged slides. In condense

mode, Slideshow automatically ignores ’next annotations; a programmer can use

’next! instead of ’next to force separate slides in condense mode. In contrast,

’alts annotations cannot be ignored, because each alternative can show different

information. A Slideshow programmer can indicate that intermediate alternatives

should be skipped in condense mode by using ’alts˜ instead of ’alts.

Slideshow synchronizes page numbering in condensed slides with slide numbering

in a normal presentation. In other words, when slide skips a ’next annotation,

it also increments the slide number. As a result, a condensed slide’s “number” is

actually a range, indicating the range of covered slides.

Programmers can use the condense? and printing? predicates in pict-generating

expressions to further customize slide rendering. A skip-slides! function allows

the programmer to increment the slide count directly, in case a customization for

condense mode skips a slide.

4.5 Pre-rendering slides

The time required to render a slide is normally imperceptible, but since a programmer

can create arbitrarily complex picts or write arbitrarily complex code that uses the

drawing context directly, the rendering delay is sometimes significant. To ensure

instantaneous response in the common case, Slideshow pre-renders the next slide

in the presentation sequence while the speaker dwells on the current slide. If the

speaker requests a slide change within half a second, the slide is not pre-rendered,

because the speaker is likely stepping backward through slides.

4.6 Display interaction

In addition to creating pictures for the screen, slide presenters must sometimes

interact more directly with the display system.

Commentary: A slide author might wish to attach a commentary to slides, for

the benefit of the speaker or for those viewing the slides after the talk. Slideshow

provides a comment constructor that takes a commentary string and produces an

object that can be supplied to slide. When the slide function finds a comment

object, it accumulates the comment into the slide’s overall commentary (instead

of generating an image). The Slideshow viewer displays a slide’s commentary on

demand in a separate window.

Multiple displays: If a speaker’s computer supports multiple displays, the speaker

might like to see comments and a preview on a private display. Thus, in addition to

the separate commentary window, Slideshow provides a preview window that shows

the current slide and the next slide in the presentation.

Demo hyperlinks: For presentations that involve demos, the speaker might like

hyperlinks on certain slides to start the demos. Slideshow provides a clickback

operator that takes a pict and a procedure of no arguments; the result is a pict

that displays like the given one, but that also responds to mouse clicks by calling
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Fig. 2. Picts in DrScheme’s REPL.

the given procedure. (In this case, we exploit the fact that slide generation and slide

presentation execute on the same virtual machine.)

Animation: Although many “animations” can be implemented as multiple slides

that the speaker advances manually, other animations should be entirely automatic,

such as moving an image across the screen in real time. Currently, Slideshow provides

only minimal support for such animations through an imperative scroll-transition

function that registers a scroll animation over the previously registered slide.

(This feature has been used mainly to animate an algebraic reduction, making

the expression movements easier to follow.) In the future, we might enrich the

pict abstraction to support more interesting kinds of animation, as discussed in

section 6.3.

5 Environment support

Slideshow programs can be implemented using the DrScheme programming en-

vironment (Findler et al., 2002), since Slideshow is a library for PLT Scheme. All

of DrScheme’s programming tools work as usual, including the on-the-fly syntax

colorer, the syntax checker, the debugger, and the static analyzer. Non-textual syntax

can be used in a Slideshow program, such as a test-case boxes, comment boxes, or

XML boxes (which support literal XML) (Clements et al., 2004). More importantly,

we can use DrScheme’s extension interface to add new tools to DrScheme that

specifically support slide creation.

5.1 REPL Picts

In support of interactive slide development, DrScheme’s read-eval-print-loop (REPL)

prints picts as they are drawn in a slide. Figure 2, for example, shows a call to the

function main-characters and the resulting pict.
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Fig. 3. Mousing over expressions to see resulting picts.

Each pict result in DrScheme’s REPL is itself interactive. When the programmer

moves the mouse pointer over a pict, DrScheme shows sub-pict bounding boxes that

enclose the pointer. In the figure, the narrow bounding box corresponds to the blue

fish under the pointer, and the wide bounding box corresponds to an intermediate

pict from hc-append.

By default, DrScheme does not show bounding boxes that contain other bounding

boxes around the pointer (so the visible bounding boxes are minimal), but pressing

the Alt (or Meta) key exposes all of the bounding boxes that enclose the pointer.

Pressing the Control key shows all bounding boxes in the entire pict. Pressing the

Shift key toggles the color of each bounding box between black and white.

5.2 Tracing picts

Figure 3 displays a screen dump for another tool. This tool records all picts that are

generated during the run of a Slideshow program. It then highlights each expression

that produced a pict by drawing a black box at the start of the expression. A

programmer can move the mouse over a box to see the pict(s) generated by the

expression.6

In the screen dump, the mouse is over the start of an hc-append call. The right-

hand side of the window shows one pict for each time that the expression was

evaluated during the program run. Specifically, the first pict shows the result of the

first evaluation, where rest-of-scene contains only one eating fish (including its

6 The lc-superimpose call in the third line has no black box because it is in tail position. To preserve
tail-calls (Steele, 1977; Clinger, 1998), our prototype tool does not record the values of expressions
that are syntactically in tail position.
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Fig. 4. A pict box containing Scheme boxes.

aaah variant, superimposed), so the result of hc-append contains two fish. As the

program continued, this result was further extended with an eating fish, and then it

became rest-of-scene for the evaluation of the hc-append expression, and so on.

Overall, the expression under the mouse is evaluated eight times when the program

is run, so eight results are shown for the expression.

5.3 WYSIWYG picts

The left-hand side of figure 4 shows a program that uses WYSIWYG layout for a

composite pict. The box with a projector-screen icon in its top-right corner is a pict

box. Inside the pict box, each box with a top-right comma (suggestive of unquote)

is a Scheme box. A programmer can create any number of Scheme boxes within a

pict box, and then drag the Scheme boxes to position them within the pict box.

A pict box is an expression in graphical syntax, and its result is always a pict

value. When the pict box is evaluated, its Scheme-box expressions are evaluated

to obtain sub-picts, and these sub-picts are combined using the relative positions

of Scheme boxes in the source pict box. In this example, the program defines

freeform-swimmers as a pict that contains a school of manually positioned fish.

The right-hand side of figure 4 shows the same program, but after the programmer

has toggled the box to preview mode. In preview mode, each Scheme box is replaced

with the image of the pict that resulted from the most recent evaluation of the

Scheme box. (Preview mode is not available until after the program has been run

once.) In this way, a programmer can arrange the content of a pict box using actual

images, instead of just Scheme expressions.

Pict boxes illustrate how a programming environment can provide WYSIWYG

tools that complement the language’s abstraction capabilities. A pict box can be

placed in any expression position, and Scheme boxes are lexically scoped within the

pict-box expression. For example, a pict box can be placed into a function, and then

a Scheme box within the pict box can access arguments of the function. In this way,

a programmer can use both WYSIWYG editing and programmatic construction of

picts, instead of choosing one or the other.
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6 Design choices and related work

Slideshow is by no means the first language designed for drawing pictures, nor is

it the first environment for programmatic creation of slides. Many of our design

choices for Slideshow are best explained through comparisons to other systems.

6.1 Picture constructs

Slideshow’s definition of a pict – a drawing procedure, a bounding box, and

coordinates for sub-picts – closely resembles aspects of in Henderson’s functional

pictures (Henderson, 1982), PostScript (Adobe Systems Incorporated, 1999), ML-

graph (Chailloux et al., 1997), Pictures (Finne & Peyton Jones, 1995), Functional

PostScript (Shivers & Sae-Tan, 2004), FPIC (Kamin & Hyatt, 1997), pic (Kernighan,

1991), MetaPost (Hobby, 1992), and other systems. Compared to Slideshow, the

picture operators of MLgraph, Pictures, Functional PostScript, and FPIC include a

richer set of transformation operations (mainly because they all build on PostScript),

while Slideshow provides a richer set of text-formatting operations. Slideshow’s

combination of the -find operations, ghost, and launder appears to be unique.

These operations reflect generally the way that Slideshow is tailored for slide creation,

and specifically how Slideshow supports a design recipe for slide sequences.

Among the above systems, the primitives for creating the drawing procedure differ,

but in all cases, drawing sizes and locations are represented by concrete numbers.

TEX (Knuth, 1990), IDEAL (Van Wyk, 1981), and Juno-2 (Heydon & Nelson, 1994),

in contrast, define pictures in terms of constraints. In TEX, glue allows a box to

grow or shrink, depending on the box’s context in the final picture. In IDEAL,

programmers define pictures by describing constraints, such as “arrow X’s endpoint

is attached to box Y’s right edge.” Thus, picture sizes and locations are represented

as constraints instead of as numbers.

We have opted for a direct functional style in Slideshow, instead of a constraint-

based language, because we find that many patterns of constraints are easily covered

by basic combinators (such as vl-append), while other patterns of constraints (like

adding lines to connect nodes) are easily abstracted into new functions.

Contraints, however, support certain operations that concrete sizes do not. In

particular, a pict’s font cannot be changed externally in Slideshow, because changing

the font could change the bounding boxes of sub-picts non-uniformly, which would

invalidate computations based on those bounding boxes’ dimensions. In a constraint-

based system, such invalidated computations can simply be re-executed. In Slideshow

and other systems the offsets are computed by arbitrary code, so that automatic

re-calculation is not always possible.

Functional reactive programming (FRP) (Elliott & Hudak, 1997) offers an

attractive alternative to both contraints and fixed-size attributes, and an inter-

esting evolutionary path from Slideshow’s current design. With FRP, a picture’s

attributes can be expressed as number-valued signals instead of plain numbers.

FRP systems provide variants of arithmetic operations that consume and produce

number-valued signals instead of plain numbers, so programs in an FRP-based

https://doi.org/10.1017/S0956796806006010 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006010


Slideshow: functional presentations 617

Slideshow would have the same intuitive form as programs in the current version

of Slideshow. We hope to explore this possibility for future versions of Slideshow

using FrTime (Cooper & Krishnamurthi, 2004).

6.2 Programming and presentation environment

Unlike TEX, pic, MetaPost (but like MLgraph, etc.), Slideshow builds on a general-

purpose programming language, so it can support modular development, it allows

programmers to write maintainable code, libraries, and tests, and it is supported by

a programming environment.

The environment most similar to Slideshow is Slithy (Zongker, 2003), which is a

Python-based tool for building slide presentations. Slithy provides a programmatic

interface for slide construction, manages the display of slides directly, and supports

an explicit set of design principles for presentation authors.

Skribe (Seranno & Gallesio, 2005; Seranno & Gallesio, 2002) is like Slideshow in

that it builds on Scheme to support programmatic document creation in a general-

purpose functional language. Skribe’s architecture targets mainly the creation of

articles, books, and web pages. Since Skribe includes a LATEX-output engine, appro-

priate bindings could added to Skribe to create slides through LATEX-based packages,

or a new back-end could be developed for Skribe to target other display applications.

Countless packages exist for describing slides with an HTML-like notation.

Such packages typically concentrate on arranging text, and pictures are imported

from other sources. Countless additional packages exists for creating slides with

LATEX, including foiltex and Prosper (Van Zandt, 2005). With these packages, LATEX

remains well adapted for presenting math formulae and blocks of text, but not for

constructing pictures, and not for implementing and maintaining abstractions.

Unlike Slideshow, most slide-presentation systems (including all based on Post-

Script, PDF, and LATEX) treat the slide viewer as an external tool. Separating the

viewer from the slide-generation language makes display-specific customization more

difficult, and it inhibits the integration with a programming environment described in

section 5. An integrated viewer, meanwhile, can easily support executable code that

is embedded within slides. Embedded code is particularly useful in a presentation

about programming or about a software system, since an “eval” hyperlink can be

inserted into any slide. More generally, Slideshow gives the presentation creator

access to the complete PLT Scheme GUI toolbox, which the programmer can use to

enrich a presentation with interactive graphical elements.

6.3 Animation

Slithy (Zongker, 2003) is designed specifically to support movie-like animation,

whereas Slideshow mainly supports slide-stepping animation. Slithy’s slide-construc-

tion combinators seem more primitive than Slideshow’s; most of the work to

implement a Slithy presentation is in building animations directly, much like building

pictures with Slideshow’s dc primitive. A pict-like layer of abstraction would support

our design recipe in Slithy, but more work is required to adapt the pict constructs
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to fully support movie animation. In particular, key points and times, as in SVG

animation (World Wide Web Consortium, 2003), may provide in the time dimension

something like of sub-pict location in the space dimension. Naturally, FRP is a

promising direction for animation support in Slideshow.

Somewhat like our design recipe, the Slithy authors have identified principles for

slide animation (Zongker & Salesin, 2003) to guide the design of presentations with

animations. Whereas our design recipe focuses on the steps required to implement

a maintainable scene, their principles are more general, and less tied to the task of

implementation.

7 Conclusion

In only the last few years, laptop-projected slides have become the standard vehicle

for delivering talks, and tools other than PowerPoint are still catching up. We

offer Slideshow as a remedy to PowerPoint’s lack of abstraction, HTML’s lack of

flexibility, and LATEX’s lack of maintainability. We also offer a design recipe for slide

sequences that is supported by Slideshow’s set of primitives.

Programmatic construction of pictures and slides is probably not for everyone,

even with powerful programming-environment tools. For various reasons, many

people will prefer to create pictures and slides in PowerPoint and without significant

abstraction, no matter how nice the language of picture construction.

For the authors’ tastes and purposes, however, programmatic construction works

well, and we believe that it appeals to many programmers. In our slides, with

proper code abstraction, we can quickly experiment with different configurations of

a picture, add slide-by-slide animation, and evolve ever more general libraries to

use in constructing talks. Many tasks can be automated entirely, such as typesetting

code and animating reduction sequences. As others begin to use Slideshow, we look

forward to contributed libraries for typesetting mathematical formulae and plotting

charts.

All of the figures in this paper are generated by Slideshow’s pict library, using

exactly the code as shown.7 In fact, like many other picture languages, the core pict

language works equally well on paper and on slides. A picture language alone is not

enough, however; most of our effort behind Slideshow was in finding appropriate

constructs for describing, staging, and rendering slides.

For further information on using Slideshow and for sample slide sets – including

slides for conference talks and two courses – see the following web page:

http://www.plt-scheme.org/software/slideshow/
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