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ON THE MEROMORPHIC SOLUTIONS OF SOME
FUNCTIONAL EQUATIONS

JIANHUA CHEN, JIANYONG QIAO AND WENJUN ZHANG

Let f(z) be a meromorphic function, let P(z) and Q(z) be two polynomials. We
shall investigate the asymptotic behaviour of the ratio T(r, /(P))/T(r, f(Q)), and
discuss the growth of the meromorphic solutions of some functional equations.

1. INTRODUCTION AND MAIN RESULTS

Let /(z) be a meromorphic function in C. We denote the order and the lower
order of /(z) by pf and /if respectively.

There are many interesting works about the meromorphic solutions of functional
equations(see [4, 5, 7, 8] et cetera). In this paper, we deal with the following functional
equation:

(1) Ri(

where Rj(z,w) = Pj(z,w)/Qj(z,w),

and Pj{z,w) = ^a i i (z)u; 1 , Qj(z,w) =
t=0 Jb=O

are two polynomials of w which are mutually prime, aij(z) and bkj(z) all are poly-
nomials of z; f(w) is a transcendental meromorphic function; g(z) is an entire func-
tion; Pm{z) — o-m.2m + • • • + a.\Z + ao (am ^ 0) is a polynomial of degree m. Put
dRj = max(j>j,qj) (j = 1,2). We have the following:

THEOREM 1 . Let Rj(z,w) (j = 1,2), f(w), g(z) and Pm(z) satisfy the equation

(1). Then g(z) is a polynomial and its degree n lies between m and (dR^/dR\)m.

Furthermore, put g(z) = bnz
n + • • • + b\z + to (&n i1 0), We iave

(1) Ifm^n,thenpf = 0;
(2) Hm = nand \am\ ^\bn\, then pf = (if = log (flB,)/(fliij)/log |om/6n|;
(3) II m — n, \am\ = \bn\, and dR\ ^ dR%, then fif — oo.
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REMARKS. (1) Let / be a meromorphic function, g be an entire function, P be a
polynomial of degree k, and f(g(z)) — f(P(z)). Gross [2, p.542, Problem 31] has
posed the following problem: Must g also be a polynomial of degree k? The above
Theorem 1 can give an affirmative answer to this problem.

(2) In [5], Shimomura investigated the Schroder equation

(2) f(cz) = Q(f(z)),

where c is a constant with \c\ > 1, Q(w) is a polynomial of degree n. He proved that
any non-constant entire solution f(z) of (2) has order p/ = log ra/log \c\. The above
Theorem 1 is a generalisation of this result.

(3) In [8], Yanagihara investigated the following functional equation:

(3) f(z + l) = R(z,f(z)),

where R(z, w) is a rational function of two variables. He proved that any transcendental
meromorphic solution f(z) of (3) has order pf = oo if dR > 1. The above Theorem 1
is a generalisation of this result.

Qiao [4] has investigated the asymptotic behaviour of the ratio

T(r,f(az+I3))/T(r,f(z)).

Let Pm(z) = amzm + • • • + alZ + aQ and Qn(z) = bnz
n + • •• + blZ + b0 (ambn ^ 0) be

two polynomials. Denote

p*f = jliii^ log T(r,/)/log log r; fj,*f = hm log T(r,/)/log log r.

In this paper, we deal with the ratio

<r(r,f,Pm,Qn) = T(r,f(Pm))/T(r,f(Qn)),

and prove the following:

THEOREM 2 . (l)Ifm>n, then

(4) lim a(r,f,Pm,Qn) ^ (-) f ^ (-

(2) If m = n, and \am\ > |6n|, tien

JmT a(r, f,Pm, Qn);
»oo

(5) hm <r(r,f,Pm,Qn)^
bn bn

lim <T(r,f,Pm,Qn);

(3) If m = n, \am\ = \bn\, and fif < oo, then

(6) h m * { r , f , P m , Q n ) ^ l ^ M < r { r , f , P m , Q n ) .

REMARK. The proof of Theorem 1 mainly depends on Theorem 2.
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2. T H E P R O O F O F T H E O R E M 2

Put
fi= Km <r(r,f,Pm,Qn).

r—>oo

Firstly, we prove that (m/n^f, |om/6n|/i-' and 1 are the upper bounds of Q in the
cases (1), (2) and (3) respectively. If fl = 0, this is obviously true. Below, we suppose
fi > 0 (f2 may be infinity). Therefore, for any finite and positive number T < f2, there
exists ri > 0, such that

T(T,f(Pm))>rT(r,f(Qn))

when r ~^ r\. Choose a complex number a which isnt a Valiron deficient value of
f(Pm),f(Qn) and f(z). Thus for any e > 0, from the above inequality we deduce that
there exists some r^ > fi , such that

(7) N(r, f(Pm) = a) > r • \^N(r, f(Qn) = a)

when r ^ r-i.

Now |Qn(^)| ~ |6n| |z|™ as z —> oo. For a positive number 8 < min{\am\ ,|6n|)
, put Ai = \bn\ — 6, and then there exists R > 0 such that |(?n(z)| ^ Ai \z\n when
\z\ ^ R. Therefore, all roots of Qn(z) = w must lie in {z : \z\ < r} when r ^ R and
|ii;| < Airn. This means that n(r,Qn = w) = n when r ^ R and \w\ < Airn. Denote
the roots of f(w) = a by {w*}. Thus

n(r,Qn=wk)

when r ^ R. It follows that

^ T n.n(A1r,f = a) ^ + Q ( 1 ) = t ^ n(t,f

JR t JAlR
n t

= N(AlT
n,f = a) - N(AxR

n,f = a) + 0(1).

We thus obtain

(8) N(r, f(Qn) = a)> N(AlT
n,f = a) + 0(1), (r ̂  oo).
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On the other hand, for sufficiently large r, we have

n(r, f(Pm) = a) = ]T n(r,Pm = wk) ^ m • n(A2r
m,f = a),

where A2 = \am\ + 6. It follows that

(9) N(r,f(Pm) = a)^N(A2r
m,f = a) + O(l), (r -> oo).

Since a isnt a Valiron deficient value of f(z), it follows from (7), (8) and (9) that there
exists T3 > 7*2 , such that

(10) T(A2r
m,f)

when T>T3. Put c = ((1 - e)/(l + e))3r, t = A2/A™/n, and iEj = A ^ . Hence it
follows from (10) that

(11) r (< r m / " , / ) ^ cr(r , / ) , (r ^ fix).

We discuss the following three cases:

(1) If m > n. For any £ > 0, put a = m/n + e and assume </re < 1 when r ~^ R\

(otherwise, we choose a larger R\). By (11), we obtain that

r , / ) , (r

It follows that

(12)

For arbitrary real number r ^ iZj, since a > 1, we assume r G iZf , R" 1 for some

natural number p. By (12) we deduce

T(r,f) >

where Ai is a positive number. It follows immediately that /xj ^ log c/log a. Let

£ -^ 0, then C^>T,CL^> m/n. Thus T ^ (m/n)11'/ . Let T ̂  fi, then fi ^ (m/n)^ .

(2) If 77i = ra and |am| > |6n|. Let 6 be sufficiently small such that A2 > Ai.

Since t > 1, it follows from (11) that

(13) T(tkR1,f)>ckT(R1J), (* = 1,2,3,"-)-
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For arbitrary real number r ~£ R2, we assume r £ [Ritp, Ritp+1) for some natural
number p . By (13) we deduce

T{r,f) > T(R1t",f) > <?T{Ruf) > ^c1"^1"^,

where \i\ is a positive number. It follows that /j.f ^ log c/ log t. Let e —» 0, then
c -> T, and t -» |aro/6n|. Thus r ^ |a m /6 n | " / . Let r -» ft, then ft ^ |a m /6 n | " / .

(3) If m — n, |om| = |6n| and fif < 00. Since A2 > -Ai ,we have t > 1. We can
deduce / j / ̂  log c/logt by the same method as in case 2). Let e —» 0, then c —> T and
t ^ 1. Thus T ̂  1. Let T -> f2, then fi < 1.

Now

Therefore, by the above discussion, we know that lim cr(r,f,Pm,Qn) has the lower
T*—•OO

bounds as stated in Theorem 2. The proof of Theorem 2 is thus complete. u

3. THE PROOF OF THEOREM 1

In order to prove Theorem 1, we need the following results:

LEMMA 1. [3] Let g(z) be a transcendental entire function, q be a natural num-
ber. Then for any M > 0, tiere exists Ro > 0 and Rn -> 00 fiere RQ < Rt < R2 <
••• < Rn< ••• ) , such that

(14) N(r,g(z)=w)>M

when T G [Rn, Rn] and w 6 {w : RQ < \w\ ̂  rq}.

LEMMA 2 . Let g(z) be a transcendental entire function, P(z) be a polynomial
and f(w) be a meromorphic function. Then

PROOF: Denote the degree of P(z) by m. We choose a natural number q > m
and real number M > 0. By Lemma 1, there exist RQ and Rn —> 00 (here RQ <
Ri < R2 < • • • < Rn < • • • ), such that the inequality (14) holds when r e [Rn,Rn]
and w E {w : Ro < |to| < r*}. Now we can deduce the following inequality by a
method similar to that used in [1] to prove that the superior limit of T(r, f(g))/T(r, f)
is infinite:

(15) T(Rl,f(g)) > ^ ( 1 + o( l ) )T( i# , / (z)) , (n - 00).
zq
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Choose a complex number a which is not a Valiron deficient value of f(g). We deduce
from (10) and (15) that

T(R2
n,f(g)) > ^( , (n -> oo).

Let M —> oo, then the proof of Lemma 2 is complete. U

LEMMA 3 . [6] Let R(z,w) be a rationed function of two variables, and let f be
a meromorphic function. Then

T(r,R(z,f(z))) = 8R • T(r,f) + O(logr), (r - oo).

THE PROOF OF THEOREM 1: Firstly, we can deduce from the equality (1) and
Lemma 3 that

(16) nmT(r,f(g))/T(r,f(Pm)) = dR2

dR,

It follows from Lemma 2 that g(z) is a polynomial. If the degree n of g(z) is not equal
to m, by Theorem 2 and (16) we obtain

(17) (n/m)pf = dR2

Since / is not a constant, we have p% *%• 1. By (17) we know : If n < m , then

n/m ^ (n/m)ptf = (dR2)/{dRi), thus n > ((dR2)/(8Ri)) • m; If n > TO, then njm sj

(n/m)"f = (8R2)/(dRi), thus n < ((&R2)/(d.Ri))v m. Hence n lies between TO and

I (dR2) /(dRi) 1 • m. Below, we discuss three cases:

(1) If m ^ n, (17) imphes p*j < cx>, thus pj — 0.
(2) If TO = n and \am\ ^ \bn\, without loss of generality, we suppose \am\ >

\bn\. By Theorem 2 and (16),

bn

Hence dRx ^ dR2 and

"I _ dR1

~ dR2

(3) If TO = n, \am\ = \bn\ and dRx ^ dR2, by Theorem 2 and (16) we have
fj.f = oo. The proof of Theorem 1 is complete. 0
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