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Abstract

It is known that the problem of settling the existence of an n X n Hadamard matrix, where n is
divisible by 4, is equivalent to that of finding the cardinality of a smallest set T of 4-circuits in the
complete bipartite graph Kn n such that Tcontains at least one circuit of each copy of K23 in Kn „.
Here we investigate the case where n = 2 (mod 4), and we show that the problem of finding the
cardinality of T is equivalent to that of settling the existence of a certain kind of n X n matrix.
Moreover, we show that the case where n m 2 (mod 4) differs from that where n s 0 (mod 4) in that
the problem of finding the cardinality of T is not equivalent to that of maximising the determinant of
an n X n (l,-l)-matrix.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 50

1. Introduction

In [5], the following theorem is proved.

THEOREM 1. Let S be the set of all 4-circuits of Kn „ where n is divisible by 4. Let

Sx, S2,...,Sk be the collection of all subsets S1, of S, of cardinality 3, such that the

union of the three circuits of S, is K2-i. Let T be a smallest subset of S such that

T n St: # 0 for each i. Then \T\ > |«2(/ j - 1)(« - 2), and equality holds if and

only if there exists an Hadamard matrix of order n.

Thus the Hadamard conjecture is equivalent to a problem about the 4-circuits

of Kn „, where n = 0 (mod 4). It is also well-known to be equivalent to the
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problem of maximising the determinant of an n X n (1, -l)-matrix, where n = 0
(mod 4). In this paper we investigate the corresponding problem about the
4-circuits of Kn n where n = 2 (mod 4). In this case, it transpires that the problem
is not equivalent to the maximisation of the determinant of an n X n (1, -1)-
matrix, where n = 2 (mod 4), although the two problems are closely related. The
maximisation of such determinants has been studied by Ehlich [3] (see also [2]).
For each n = 2 (mod 4), let an denote the maximum value of the determinant of
an n X n (1, - l)-matrix. Then Ehlich's paper shows that an <
2(« - l)(w - 2 ) " / 2 " 1 (see also [7]). Moreover for each n let /„ and /„ denote the
n X n identity matrix and the n X n matrix (1) respectively. Suppose there exists
an n X n (1,-l)-matrix A, where n = 2 (mod 4), such that AAT = diag[B, B]
where B = (n - 2)In/2 + 2Jn/2. Then an = \A\ = 2(« - 1)(« - 2)"/2"1 . A
search for such matrices A has been conducted by Ehlich [3] and Yang [7]. We
use A as the motivation for the following definition. Let n = 2 (mod 4), and write
n = 2s. Then an n X n (1, -l)-matrix A is a generalised Ehlich matrix if
A AT = B, where B = (btj) and, for each / and j , btj is determined as follows:

i f / = 7 ,
if / < j and j < s, or if / > s and j > s,
otherwise.

We then prove the following theorem.

THEOREM 2. Let S be the set of all A-circuits of Knn where n = 2 (mod 4). Let
Sj, S 2 , . . . , Sk be the collection of all subsets 5, of S, of cardinality 3, such that the
union of the three circuits of S, is K2V Let T be a smallest subset of S such that
T n Si; # 0 for each i. Then \T\ > | n ( n - 2)(n2 - n + 2), and equality holds if
and only if there exists a generalised Ehlich matrix of order n.

2. Proof of Theorem 2

We begin with a lemma.

LEMMA. Let S be a set with \S\ = nfor some n = 2 (mod 4). Suppose there exist
subsets 7\, T2,..., Tn_1 of S such that

(i) n/2 - 1 < |7;.| < n/2 + 1 for each i,
(ii) |7^| = n/2 for exactly n/2 values ofi, and

(iii) n/2 - 1 s£ \Tt, - 7}| + |7} - 7)| < n/2 + 1 whenever i * j .
Then there exists a generalised Ehlich matrix of order n.
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P R O O F . Le t 5 = {sv...,sn}. Def ine E = (etj), where eXj = 1 for all ; e
{1 , . . . , n } and, for all / e (2,3, . . . , n },

-1 otherwise.
For each i, let ft = S - Tt. Let Jx = {1,2,..., n/2 - 1} and J2 = { n/2, n/2 +
l , . . . ,n — 1}. By condition (ii) we may assume without loss of generality that
|7;.| = n/2 if and only if / e J2.

Condition (i) shows that the inner product of any row j > \ with row 1 is -2, 0
or 2, and the assumption above shows that this inner product is 0 if and only if
j > n/2.

Now choose / and j so that i>\, j > 1 and / * j . Let a = |7] , n T}\,
b = \Tin Tj\, c = \ft n fj\ and d = \Tt n 7}|. Observe that the inner product of
rows / + 1 and j + 1 is a + c — b — d. There are various possibilities.

Case 1. Suppose |7].| = |7}|. Thus a + d = a + b so that b = d. Hence \Tt - 7}|
+ \Tj — Tt\ = d + b = 2d. Since n is not divisible by 4, condition (iii) shows that
2d <= {n/2 - 1, n/2 + 1}. If 2d = n/2 - 1, then a + c = n/2 + 1, since a + b
+ c + d = n. If 2d = n/2 + 1, then a + c = n/2 - 1. Hence a + c - b - d =
±2.

We may now suppose without loss of generality that \Tt\ < \TA.
Case 2. Suppose \Tt\ = n /2 - 1 and |7}| = n / 2 + 1. Then a + b = a + d+2

so that b = d + 2; hence \Tt - 7}| + |7} - 7)| = 2d + 2. It follows that 2d + 2 <=
{n/2 — 1, n / 2 + 1} and we deduce as before that a + b — c - d = ±2.

Case 3. We may now assume that |7}| = |7]-| + 1. Now b = d + 1. Since n = 2
(mod 4) we deduce that 2d + 1 = n /2 ; hence a + b — c — d = 0.

In summary, if / > 1 and j>\ then rows i + 1 and j + 1 are orthogonal if
and only if |{j, j} n / J = 1. In all other cases where /' and j are distinct and
greater than 1, the inner product of rows / and j is + 2. Hence £ is a generalised
Ehlich matrix.

The proof of Theorem 2 requires the application of the following special case of
a well-known theorem of Turan [6].

THEOREM 3. The maximum number of edges in a graph with n vertices and no
triangles is [\n2]. Moreover, the only such graphs with [\n2] edges are Kn/2n/2 (if
n is even) andK(n+1)/2<(n_1)/2 (ifn is odd).

PROOF. In outline the proof of Theorem 2 is similar to the proof of Theorem 1
in [5], but we present the whole argument here for the sake of completeness and
clarity. Let A be an n X n (1, -l)-matrix (a,7). Let Kn „ be the complete
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bipartite graph with vertex set { vv v2, ...,vn, wv w2,..., wn }, where i>, and vv, are
adjacent for each i and j . Furthermore, for each / and j let the edge joining vt to
vv be directed from i>, to vv,. if aiy = 1 and from vv, to vt otherwise.

Note that a pair of rows and a pair of columns of A corresponds in an obvious
way to an undirected 4-circuit in Knn. We say that this 4-circuit is clockwise even
if the number of edges directed in the clockwise sense is even, and clockwise odd
otherwise. Let C be a 4-circuit of Knn with vertex set {vh,vt,Wj,wk). If
ahj = a,p then exactly one of the two edges of C incident on vv, is directed in the
clockwise sense. If ahj ± atj, then those edges are directed in the same sense on
C. Analogous results hold for ahk and aik. It follows that C is clockwise odd if
and only if exactly one of the equations ahj = au and ahk = aik holds.

Let Xhi be the set of columns j of A for which ahj = atj and let Yhi be the set
of all the remaining columns of A. It follows from the above paragraph that the
number of clockwise odd 4-circuits containing vh and vt is lA^HY^I. This product
is a maximum if \Xhi\ = \Yhi\, and this condition holds if and only if rows h and i
of A are orthogonal. If rows h and i are not orthogonal, then the product
l-**«l|5*/l i s maximised if and only if \\Xhj\ - \Yhi\\ = 2, and this condition holds if
and only if the inner product of rows h and / is ±2. Thus the number of
clockwise odd 4-circuits of Knn is maximised if as many pairs of rows as possible
are orthogonal and the remaining pairs have ± 2 as their inner product. Observe
that since n is not divisible by 4, no three rows can be mutually orthogonal, and
therefore the maximum number of pairs of orthogonal rows is no greater than the
maximum number of edges in a simple graph with n vertices and no triangles. By
Theorem 3, this number is Jn2. Let us assume then that this is the number of
pairs of orthogonal rows. (Clearly this is the case for a generalised Ehlich matrix.)
If rows h and i are orthogonal, then \Xhi\ = |yAl| = n/2, so that such pairs of
rows contribute \n2 clockwise odd 4-circuits each, yielding a total of ^ « 4

clockwise odd circuits. For rows h and / which are not orthogonal, we have
{\Xhi\,\Yhi\} = {n/2 - l,n/2 + 1}, so that such pairs of rows contribute
J H 2 —1 clockwise odd 4-circuits each, for a total of 2 • \ • (« /2) (« /2 — 1)-
(\n2 — 1) = t^«4 ~ i " 3 ~ 4«2 + n / 2 clockwise odd circuits. Therefore the max-
imum number of clockwise odd circuits is \nA - | n 3 - \n2 + n/2. Since there
are ( j)2 4-circuits in all, the minimum number of clockwise even circuits is

in\2 JnL _ «! _ UL 4. rL\- n{n - 2){n2 - n + 2)
\2) \ 8 8 4 + 2]~ 8

Let To be the set of all clockwise even 4-circuits of Kn „. If AT23 is oriented so
that the vertices of degree 3 are sources or sinks, then all three circuits are
clockwise even. Since every edge of K2 3 belongs to exactly two circuits of K23, it
follows that for any orientation of K23 there are an odd number of clockwise
even circuits. Hence To n S, ¥= 0 for all /. Thus we have proved that it there
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exists a generalised Ehlich matrix of order n, then j7"| < jn{n - 2X«2 - n + 2).
We prove next that in fact \T\ > \n(n - 2X«2 - n + 2). The existence of an
n X n generalised Ehlich matrix will then imply that \T\ = |w(w — 2)(«2 — n +
2). We will then prove the converse.

Suppose therefore that T n 5,- # 0 for all i. Consider first those copies of K23

in Kn which contain exactly three vertices of { vx,..., vn }. Let Cx and C2 be the
components of the complement of Kn „, where F(CX) = {v l t . . . , vn}. The com-
plement (in Ks) of a copy of K2<3 containing three vertices of {vv...,vn} is
Px U P2, where Pl is a triangle of Cx and P2 an edge of C2. The complement (in
K4) of a circuit in K23 is then the union of P2 with an edge of Pv If we fix P2

and let i>x run through all triangles in Q , then in order to contain at least one
circuit in each of the corresponding copies of K23, T must contain at least as
many circuits as the cardinality of the smallest set of edges whose deletion from
Kn yields a graph with no triangles. Moreover each such circuit contains both
end-vertices of P2. By Theorem 3, the largest subgraph of Kn having no triangles
is Kn/2n/2. Since Kn has (2) edges and Kn/2n/2 has \n2 edges, T must contain
at least (J) — i « 2 circuits which include the end-vertices of P2.

Let us suppose that there exists a triangle Q2 such that, for each choice of P2 in
Q2, T contains only (2) - \n* circuits that include the end-vertices of P2.
Consider the copies of K23 in Kn „ which contain the three vertices of Q2 and
two vertices of {vv...,vn}. The complement (in K5) of such a copy of K23 is
Q\ u Qi where Qx is an edge of Cv The complement (in K4) of any circuit in
such a copy Z of K23 is the union of Qx with an edge e of Q2. We have already
seen that in order to include at least one circuit of each copy of K2 3 that includes
the end-vertices of e and three vertices of {vv..., vn), T must contain all the
4-circuits whose complements in K4 are pairs of edges where one edge of the pair
is e and the other is chosen from the complement, 2Kn/2, in Ct of a fixed copy of
Kn/2a/2. In order to ensure that Tcontains a circuit of Z, the copies of Kn/2n/2

in Cx corresponding to the edges of Q2 must be chosen in such a way that the
edge Qx appears in the complement of at least one of them. Since Q± is any edge
of Cv we find that Cx must be the union of three copies of 2Kn/2, each copy
being the complement in Ct of a copy of Kn/2n/2 chosen to correspond to an
edge of Q2. For any edge e of Q2, let us denote by Vx(e) and V2(e) the vertex
sets of the copies of Kn/2 in the subgraph 2Kn/2 of Cx corresponding to e. Thus
Wi(e)\ = \vii.e)\ = n/2 for each e.

Let ev e2, e3 be the edges of Q2. Since C\ is the union of the corresponding
copies of 2Kn/2, each pair of vertices of Cx must be contained in at least one of
the sets V^ej) where i e (1,2} and j e {1,2,3}. It follows that

J.V^e,)} = {[^(ej n Vx{e2)} u[V2(ei) n V2{e2)\,
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Note that

\V1(e1)nV1(e2)\=\V2(e1)nV2(e2)\,

since I F ^ e ^ = |F2(e2)|, IF^eJI = \Vx{ex) n Fj(e2)| + \Vx(ex) n V2(e2)\ and
l| = I F J O J n F2(e2)| + |F2(e!) n F2(e2)|. Since |F1(e1) n i

n V2(ei)\ = \vi(e3)\ = |F2(e3)| = n/2, it follows that ^(ej n
= n/4 and so n is divisible by 4.

This contradiction shows that for at least one edge e in each triangle Q2 of C2,
T contains at least (2)— \n2 + 1 circuits that include the end vertices of e. Let R
be the set of edges of C2 with this property. Then by Theorem 3, \R\ > 2 • \ •
(n/2)(n/2 — 1) = \n(n — 2) since that is the size of the smallest set of edges in
Kn which meets every triangle. The remaining edges of C2 are \n2 in number.
Therefore

n\n — £)\n — n -r L)

Let us now assume that \T\ = i«(n — 2)(n2 — n + 2) and prove the existence
of an n X n generalised Ehlich matrix. Let e be an edge of C2. If T contains just
(2) ~~ i" 2 circuits that include the end-vertices of e, then T contains all the
4-circuits whose complements in K4 are pairs of edges where one edge of the pair
is e and the other is chosen from the complement, 2Kn/2, in Cx of a fixed copy of
Kn/2n/2. Suppose T has (2) - \n2 + 1 circuits that include the end-vertices of e.
Then e e R and T contains all the 4-circuits whose complements in K4 are pairs
of edges where one edge of the pair is e and the other is chosen from the
complement in C1 of a fixed copy of some subgraph X of C1 that has exactly
\n2 — 1 edges but no triangles. By a theorem of Erdos [4] (see also p. 109 of [1]),
X is degree-majorised by some complete bipartite graph H. Because X has n
vertices and \n2 — 1 edges, the only candidates for H are Kn/2n/2 and
Kn/2_ln/2+1. Suppose H is isomorphic to Kn/2 n/1. Because R is the smallest set
of edges which meets every triangle of C2, there must be a triangle Q of C2 in
which e is the only edge that belongs to R. Let E{Q) = {e, ex, e2).

For each 1 e {1,2}, T contains all the 4-circuits whose complements in KA are
pairs of edges where one edge of the pair is et and the other is chosen from the
complement, Yt, in Q of a fixed copy of Kn/2n/2. It also contains all the
4-circuits whose complements in K4 are pairs of edges where one edge of the pair
is e and the other is chosen from the complement, Y, in C1 of a fixed copy of
Kn/2n/2 — x where x is an edge. In order to ensure that T contains a 4-circuit of
each copy of K22, we must choose Y, Yv Y2 so that their union is C1 itself. For
each / e (1,2}, let us denote by F^e,) and F2(e,) the vertex sets of the copies of
Kn/2 in the subgraph 2Kn/2 of C\ corresponding to e,. Thus ^ ( e , ) ! = |F2(e,)| =
n/2.
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Next, let A = Vfa) n V2(e2), B = V^eJ n Vx(e2), C = V2(e^ n Vx{e2),
D = vi(ei) n ^ ( ^ X a = 1̂ 1. *> = I5I> c = |C|» <* = I-DI- Note that a + b = c +
d=b + c = a + d = n/2, so that a = c and b = d. We shall show that the
graph Y must contain all the edges which join two vertices of A U C or two
vertices of B U D. Suppose not. Without loss of generality, let u,v be distinct
vertices of A U C such that the edge y joining them is not in Y. If u e A and
D G C o r vice versa, then we have the contradiction that y £ E(Y) U E(Y1) U
E(Y2). Suppose therefore without loss of generality that u, v e A. Let / , K be
complementary subsets of C1 such that every edge in the complement of Y joins
a vertex of / to a vertex of K. Without loss of generality, let u e J and v e K.
Since a = c, there must exist distinct vertices «', v' e C. As y contains only one
edge joining a vertex in J to a vertex in T̂, there must be an edge of C1 joining a
vertex in {u,v} to a vertex in {«',£>'} which is not in E(Y) and hence not in
E(Y) U £(1^) U E(Y2). This contradiction establishes the aforementioned prop-
erty of Y.

Since the graph Y must contain all the edges which join two vertices of A U C
or two vertices of B U D, we have

—4 -
2

>(!-«•)

= 4a — 2na + — — —.

This function is minimised when n = 4a, but n is not divisible by 4. Therefore let
a = n/4 + z, so that c = n/4 + z and b = d = n/4 — z. Then

hi -z +2z f - 2 ,

= -r ~ x + 4z

and we see that \z\ < j . Since a must be an integer, we have \z\ = \. Hence Y
must be isomorphic to Kn/2+1U Kn/2_v This result shows that H, and therefore
X, is isomorphic to Kn/2_ln/2+v

In summary, for every edge e in C2, T contains all the 4-circuits whose
complements in K4 are pairs of edges where one edge of the pair is e and the
other is chosen from the complement W in C1 of a fixed copy of Kn/2 n/2 or
Kn/2_hn/2+1. Let FjO) and V2(e) be the vertex sets of the two components of
W.
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Finally we consider a subgraph Kln_l of C2. Any pair of the n — 1 edges
fi,..., /„_! in this subgraph form two sides of a triangle in C2. Note that the set
U of all edges e for which |Fi(e)| = n/2 is a largest set of edges of C2 which does
not include a triangle. By Theorem 3, U is therefore of the form E(Kn/2n/2).
Hence U includes exactly n/2 edges of {/i,•••,/„_i}, and so condition (ii) of
Lemma 1 is satisfied if we choose 7j = V^f) for each i e {1,2,...,« — 1}. For
the edges /,, e U we have {^{fdWiUt))) = {»/2 - M / 2 + 1}, so that
condition (i) is satisfied. To establish condition (iii), choose distinct numbers
i, j G {1,2,. . . ,« — 1}. Since /) and fj form two sides of a triangle in C2, we may
define e to be the third edge of that triangle. Certainly for each / e {1,2}, we
have n/2 — 1 < \Vt(e)\ < n/2 + 1. Moreover, since ft, fj and e are the three
sides of a triangle in C2, the union of the complete graphs induced by the vertex
sets VxUd, V2Ud, Vx(fj), V2(fj), V^e), V2(e) must be Cv This observation
shows that

[VM.VM) = {{VU) n F2(/7)) u(F2(/;) n nl/,)),
(^(/,) n Kx(/y)) u(F2(/,) n F2(/,))}.

Since (Fx( / ) n F2(/y)) U (K2(/4) n F1(/y)) = (T, - 7)) U (Ty - 7]), condition (iii)
follows. Hence there exists a generalised Ehlich matrix of order n, and the proof
of Theorem 2 is complete.

It is interesting to note that although the problem of minimising |T| is
equivalent to the problem of maximising the determinant of an n x n (1, -1)-
matrix if n = 0 (mod 4), the two problems are not equivalent if n = 2 (mod 4).
This point is easily checked by noting that

1 1 -
- 1 1
1 - 1

1
1
1
1

1/

and

1
-
1
1
-

1
1
_
—
1

-
1
1
_
—
1

-
1
1
1
1

1

1
_
1
1

- 1

- 1

for example, are 6 x 6 generalised Ehlich matrices with distinct determinants.
Methods similar to those employed in the proof of Theorem 2 can be used to

investigate the case where n is odd. We simply quote the result.

THEOREM 4. Let S be the set of all A-circuits of Knn where n is odd. Let S1;

S2,...,Sk be- the collection of all subsets S, of S, of cardinality 3, such that the
union of the three circuits of S, is K22. Let T be a smallest subset of S such that
T n S, ¥= 0 for each i. Then \T\ > \n(n - I)3, and equality holds if and only if
there exists an n X n (1, -Y)-matrix A in which the dot product of any pair of
distinct rows is +1 .
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It is known, however (see [3]), that there are odd integers n for which no such
matrix A exists.
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