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Abstract. Let T be a bounded operator on a complex Banach space X . Let V be
an open subset of the complex plane. We give a condition sufficient for the mapping
f (z) �→ (T − z)f (z) to have closed range in the Fréchet space H(V, X) of analytic X-
valued functions on V . Moreover, we show that there is a largest open set U for which
the map f (z) �→ (T − z)f (z) has closed range in H(V, X) for all V ⊆ U . Finally, we
establish analogous results in the setting of the weak–∗ topology on H(V, X∗).
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Introduction. Let X be a complex Banach space and denote by B(X) the algebra
of bounded linear operators on X . For T ∈ B(X), let σ (T) denote the spectrum of
T , and denote by Lat (T) the collection of closed T-invariant subspaces of X . If
M ∈ Lat (T), we write the restriction of T to M as T |M .

A basic notion in local spectral theory is that of decomposability. Given an open
subset U of the complex plane C, T ∈ B(X) is said to be decomposable on U provided
that for any open cover {V1, . . . , Vn} of C with C \ U ⊂ V1, there exists {X1, . . . , Xn} ⊂
Lat (T) such that X = X1 + · · · + Xn and σ (T |Xk ) ⊂ Vk for each k, 1 ≤ k ≤ n; see [2],
[5], [8], [11], and [12]. That for each T ∈ B(X) there exists a largest open set U on which
T is decomposable was first shown by Nagy, [11].

An alternative characterization of decomposability may be given in terms of a
property introduced by E. Bishop, [3]. For an open subset V of �, let H(V, X) denote
the space of all analytic X-valued functions on V. Then H(V, X) is a Fréchet space
with generating semi-norms given by pK (f ) := sup{‖f (λ)‖ : λ ∈ K}, where K runs
through the compact subsets of V. Every operator T ∈ B(X) induces a continuous
linear mapping TV on H(V, X), defined by TV f (λ) := (T − λ)f (λ) for all f ∈ H(V, X)
and λ ∈ V. An operator T is said to possess Bishop’s property (β) on an open set
U ⊂ C if for each open subset V of U, the operator TV is injective with range ran TV
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closed in H(V, X); see [6, Prop. 1.2.6]. Clearly there exists a largest open set ρβ(T) on
which T has property (β).

Fundamental work by Albrecht and Eschmeier established that an operator T ∈
B(X) has property (β) on U precisely when there exists an operator S ∈ B(Y ) such
that S is decomposable on U , X ∈ Lat (S) and T = S|X , [2, Theorem 10]. Moreover,
[2, Theorems 8 and 21], T is decomposable on U if and only if T and its adjoint T∗

share property (β) on U . Thus Nagy’s largest open set on which T is decomposable is
the set ρβ(T) ∩ ρβ(T∗).

An operator T ∈ B(X) is said to have the single-valued extension property (SVEP)
at a point λ ∈ C provided that, for every open disc V centered at λ, the mapping TV

is injective on H(V, X). If U ⊂ C is open, then T is said to have SVEP on U if T
has SVEP at every λ ∈ U, equivalently, if TV is injective for each open set V ⊆ U. Let
ρSVEP(T) denote the largest open set on which T has SVEP.

Recently, M. Neumann, V. Miller and the first author of the current paper showed,
[9, Theorem 2.5], that TV has closed range in H(V, X) for every open subset V of the
“Kato-type” resolvent set of T , an open set that contains the semi-Fredholm region
of T , thus extending a result of Eschmeier, [5]. Following Neumann, we say that an
operator has the closed range property (CR) on an open set U ⊂ C provided ran (TV )
is closed in H(V, X) for every open subset V of U . Thus T has property (β) on U if
and only if T has both SVEP and (CR) on U .

In this note, we give a more general condition that suffices for T ∈ B(X) to have
(CR) on an open set U and prove that there is in fact a largest open set ρCR(T) on
which T has the closed range property. Thus ρβ(T) = ρSVEP(T) ∩ ρCR(T). In the last
section we establish corresponding results in the setting of the weak–∗ topology on
H(V, X∗).

Main results. We denote the kernel of T ∈ B(X) by ker(T) and define N∞(T) :=⋃
n≥0 ker(Tn) and R∞(T) := ⋃

n≥0 ran (Tn). If T ∈ B(X) is such that ran (T) is closed
and N∞(T) ⊆ R∞(T), then T is said to be a Kato operator. A systematic exposition of
this class, also referred to as semi-regular operators, may be found in [10, Section II.12];
also see [1, Section 1.2] and [6, Section 3.1]. In particular, an equivalent condition may
be given in terms of the reduced minimum modulus function: for S ∈ B(X), define
γ (S) := inf{‖Sx‖ : dist (x, ker(S)) = 1}. Then an operator T is Kato if and only if
γ (T) > 0 and the mapping z → γ (T − z) is continuous at 0, [10, II.12 Theorem 2].
Denote by σK (T) the set of all λ ∈ C such that T − λ is not Kato. Then σK (T) is a
nonempty compact set, z �→ R∞(T − z) is constant on each component of ρK (T) :=
C \ σK (T), R∞(T − λ) is closed and (T − λ)R∞(T − λ) = R∞(T − λ) for each λ ∈
ρK (T), [10, II.12, Theorem 15 and Cor. 19]. Moreover, if G is a component of ρK (T)
and S ⊂ G has an accumulation point in G, then

⋂
z∈S ran (T − z) = R∞(T − λ) for

each λ ∈ G, [6, 3.1.11].
For each closed subset F of C, define the “glocal” analytic spectral subspace

XT (F) := {x ∈ X : x ∈ ran TC\F }. These spaces are T-invariant, but generally not
closed. If M ∈ Lat (T) and V ⊂ C is such that (T − z)M = M for all z ∈ V , then
M ⊂ XT (C \ V ) by a theorem of Leiterer, [6, Theorem 3.2.1]. It follows from above
that if G is a component of ρK (T) and V ⊂ G is open, then XT (C \ V ) = R∞(T − λ)
for all λ ∈ G; in particular, XT (C \ V ) is closed. Also, it is easily seen that if T has (CR)
on an open set U , then XT (C \ V ) is closed for every open V ⊂ U .

A consequence of Theorem 5 below is that the converse holds under the additional
assumption that ran (T − z) is closed for all but countably many z ∈ V . Some additional
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assumption beyond closeness of the glocal spectral subspaces is seen to be necessary
for (CR) by the facts that, on one hand, T has property (β) on all of C precisely when T
has (CR) on C, [6, Prop. 3.3.5], while on the other hand, there is an operator T ∈ B(X)
without property (β) but for which XT (F) is closed for all closed F ⊂ C, [7].

If (X, d) is a metric space, let B(x, r) denote the open ball in X with radius r > 0
and center x ∈ X .

LEMMA 1. Let T ∈ B(X) and let V be an open subset of C. Let (Di)i∈A be a cover
of V consisting of simply connected open sets Di such that XT (C \ Di) is closed for each
i ∈ A and Di \ Dj = ∅ if XT (C \ Di) = XT (C \ Dj).

Let M = ⋂
i∈A XT (C \ Di). Then M is closed, TM ⊂ M and

(i) if x ∈ M and gj ∈ H(Dj, X) are such that TDj gj = x, then gj(Dj) ⊂ M;
(ii) ker TDj ⊂ H(Dj, M);

(iii) (T − z)M = M for all z ∈ V;
(iv) if T̃ : X/M → X/M is the quotient map induced by T then T̃Dj is injective on

H(Dj, X/M).

Proof. Clearly M is a closed subspace of X and TM ⊂ M.
(i) Let x ∈ M and gj ∈ H(Dj, X) be such that TDj gj = x.

We show first that gj(Dj) ⊂ XT (C \ Dj). Let z ∈ Dj, and define hj : Dj → X by hj(ω) =
(gj(ω) − gj(z))/(ω − z) if ω ∈ Dj \ {z} and hj(z) = g′

j(z). Then hj ∈ H(Dj, X) and if ω =
z, then

(T − ω)hj(ω) = 1
ω − z

(x − ((T − z) + (z − ω))gj(z)) = gj(z).

By continuity, (T − z)hj(z) = gj(z) as well. Hence gj(z) ∈ XT (C \ Dj) and so gj(Dj) ⊂
XT (C \ Dj).

If i ∈ A is such that XT (C \ Di) = XT (C \ Dj), let gi ∈ H(Di, X) be such that
TDi gi = x, let z ∈ Dj \ Di and define hi : Di → X by hi(ω) = (gi(ω) − gj(z))/(ω − z).
Then hi ∈ H(Di, X) and again

(T − ω)hi(ω) = 1
ω − z

((T − ω)gi(ω) − ((T − z) + (z − ω))gj(z))

= 1
ω − z

(x − x + (ω − z)gj(z)) = gj(z).

Thus gj(z) ∈ XT (C \ Di) and gj(Dj \ Di) ⊂ XT (C \ Di).
Since the sets Di and Dj are open, simply connected and Dj \ Di = ∅, it is easy

to see that Dj \ Di contains an accumulation point. Indeed, let z0 ∈ Dj \ Di. If z0 /∈ Di

then there is an open neighborhood of z0 contained in Dj \ Di. If z0 ∈ ∂Di, then there
is a sequence (zn) ⊂ Dj \ Di such that zn → z0.

Since XT (C \ Di) is closed and gj(Dj \ Di) ⊂ XT (C \ Di), it follows that gj : Dj →
XT (C \ Di).

This proves (i).
(ii) is an immediate consequence of (i).

(iii) Let z ∈ Dj and x ∈ M ⊂ XT (C \ Dj). There is a function gj : Dj → X such that
TDj gj = x. By (i), gj(z) ∈ M and so x = (T − z)gj(z) ∈ (T − z)M.

(iv) If π : X → X/M is the canonical projection, then Gleason’s theorem implies
that the sequence 0 → H(	, M) → H(	, X)

π→ H(	, X/M) → 0 is exact, [6,
Prop. 2.1.5]. Thus, if T̃Dj h = 0 for some h ∈ H(Dj, X/M), then there exists

https://doi.org/10.1017/S0017089507003898 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003898


20 THOMAS L. MILLER AND VLADIMIR MÜLLER

f ∈ H(Dj, X) such that h = f̃ , where f̃ = π ◦ f . Clearly TDj f ∈ H(Dj, M) and
(iii) together with Leiterer’s theorem implies that there exists g ∈ H(Dj, M)
such that TDj f = TDj g. Thus f − g ∈ ker TDj ⊂ H(Dj, M) by (ii). Consequently,
f ∈ H(Dj, M) and therefore, h = f̃ = 0. �

LEMMA 2. Let V1, V2 be open subsets of C and suppose that 	 is an open subset of
V1 ∪ V2. Then there exist open sets 	1, 	2 so that 	j ⊂ Vj, 	 = 	1 ∪ 	2 and an open
cover U of 	 such that

(i) each D ∈ U is a simply connected subset of either V1 or V2;
(ii) if G is a component of 	1 ∩ 	2, then there is a D ∈ U such that D ⊂ G;

(iii) D \ D′ = ∅ whenever D, D′ ∈ U are distinct.

Proof. Let Uj = Vj ∩ 	 for j = 1, 2 and define 	1 to be the union of all components
G of U1 such that G \ U2 = ∅, and 	2 the union of components H of U2 such that
H \ 	1 = ∅. Then, each 	j is open, and every component of 	j is a component of
Uj. We may assume that each 	j is nonempty. Clearly, 	 = 	1 ∪ U2, and if H is a
component of U2, then either H ⊂ 	1 or H ⊂ 	2. Thus 	 = 	1 ∪ 	2.

Let G1, G2, . . . be the components of 	1 ∩ 	2. We note ∂Gn ∩ 	j = ∅ for each
n ∈ N and j = 1, 2. Indeed, suppose to the contrary that ∂Gn ∩ 	1 = ∅. Let Mj be the
component of 	j containing Gn. Then M1 = Gn ∪ (M1 \ Gn), where Gn = ∅ and where
M1 \ Gn = M1 \ Gn ⊃ M1 \ M2 = ∅, contradicting the fact that M1 is connected. That
∂Gn ∩ 	2 = ∅ follows similarly.

Choose λn ∈ ∂Gn ∩ 	1 and µn ∈ ∂Gn ∩ 	2. Then λn ∈ 	2 and µn ∈ 	1. Select
λ′

n, µ′
n ∈ Gn so that |λn − λ′

n| < 2−n and |µn − µ′
n| < 2−n. If we construct a piecewise

linear path in Gn connecting λ′
n and µ′

n, then, taking such a path with minimal number
of segments, we obtain a path γn between λ′

n and µ′
n that does not intersect itself.

Clearly it is possible to find a simply connected open set Dn so that γn ⊂ Dn ⊂ Gn.
Let D = ⋃

n Dn and suppose that z ∈ 	1 \ D. We claim that there is a δ(z) >

0 such that B(z, δ(z)) ⊂ 	1 and B(z, δ(z)) ∩ {µ′
1, µ

′
2, . . .} = ∅. To this end, choose

ε(z) > 0 so that B(z, ε(z)) ⊂ 	1, and let n0 be such that 2−n0 < ε(z)/2. Now, let
δ(z) = min{ε(z)/2, |z − µ′

1|, . . . , |z − µ′
n0−1|}. Then µ′

n ∈ B(z, δ(z)) if n < n0, and if
n ≥ n0, then µn ∈ 	1 implies that |z − µ′

n| ≥ |z − µn| − |µn − µ′
n| ≥ ε(z) − 2−n0 > δ(z),

as required. Similarly, if z ∈ 	2 \ 	1, then there is a δ(z) > 0 such that B(z, δ(z)) ⊂ 	2

and B(z, δ(z)) ∩ {λ′
1, λ

′
2, . . .} = ∅.

We define a sequence of (possibly empty) collections of open balls recursively: for
each k ≥ 1, let Uk := {B(z, 2−j) : δ(z) ≥ 2−k and B(z, 2−k) ⊂ Vk−1}, where V0 = ∅ and
Vj := ⋃

�≤j
⋃

B∈U�
B for all j ≥ 1. If z ∈ 	 \ D, then there is a least m so that δ(z) ≥ 2−m,

and so either B(z, 2−m) ⊂ Vm−1 or B(z, 2−m) ∈ Um. Thus z ∈ Vm in either case. It follows
that 	 \ D = ⋃∞

k=1 Vk = ⋃∞
�=1

⋃
B∈U�

B, and consequently U := {Dn}n ∪ ⋃∞
�=1 U� is an

open cover of 	 satisfying the desired conditions. �
LEMMA 3. Let V1, V2 be open subsets of C. If T ∈ B(X) has (CR) on each Vj (j =

1, 2), then T has (CR) on V1 ∪ V2.

Proof. Let 	 ⊂ V1 ∪ V2 be an open set. To show that T	 has closed range, let 	1,
	2 and U be as in the previous lemma, and let f ∈ ran T	. Since T has (CR) on each
	j, XT (C \ D) is closed for each D ∈ U and there are gj ∈ H(	j, X) such that f |	j =
T	j gj for j = 1, 2. Define M := ⋂

D∈U XT (C \ D). We have T	1∩	2 (g1 − g2) = 0, and so
(g1 − g2)(	1 ∩ 	2) ⊂ M by Lemma 1 (ii). Thus g̃1|	1∩	2 = g̃2|	1∩	2 and we can define
h ∈ H(	, X/M) by h(z) = g̃j(z) for z ∈ 	j. We have f̃ = T̃	h and, again by Gleason’s
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theorem, there exists g ∈ H(	, X) such that h = g̃. Then f − T	g ∈ H(	, M) and so
Lemma 1 (iii) and Leiterer’s theorem together imply that f − T	g = T	k for some
k ∈ H(	, M). Hence f = T	(g + k) ∈ ran T	. �

THEOREM 4. Let T ∈ B(X). Then there is a largest open set ρCR(T) on which T has
(CR).

Proof. Let W be the family of all open subsets V ⊂ C such that T has (CR) on
V . We show that T has (CR) on the union W = ⋃

W , which is obviously the largest
open set on which T has (CR).

Let 	 ⊂ W be a nonempty open subset. We show that T	 has closed range. For
each z ∈ 	 choose 0 < δ(z) < dist (z, ∂	) so that T has (CR) on B(z, δ(z)). As in the
proof of Lemma 2, define Uk := {B(z, 2−k) : δ(z) ≥ 2−k and B(z, 2−k) ⊂ Vk−1}, where
Vj := ⋃

�≤j
⋃

B∈U�
B and V0 = ∅. Then, again as in Lemma 2, 	 = ⋃

m≥1 Vm, and so
U ′ := ⋃∞

m=1 Um is a collection of open balls covering 	 such that T has (CR) on each
ball D ∈ U ′ and also such that D = D′ in U ′ implies D \ D′ = ∅. Let U = (Dk)k∈N be a
countable subcover of U ′ and define 	n = ⋃

k≤n Dk. By Lemma 3, T has (CR) on each
	n.

Let M = ⋂
n XT (C \ Dn). By Lemma 1, M is a closed subspace of X , TM ⊂ M

and (T − z)M = M for all z ∈ 	. Denote by T̃ : X/M → X/M the operator induced
by T and by π : X → X/M the canonical projection.

Let f ∈ ran T	. Then for each n there exists gn ∈ H(	n, X) such that f |	n = T	n gn.
If n ≥ 2, then T	n−1 (gn|	n−1 − gn−1) = 0 and so, by Lemma 1 (ii), gn|	n−1 − gn−1 :
	n−1 → M, i.e., g̃n|	n−1 = g̃n−1 in H(	n−1, X/M).

Define h : 	 → X/M by h|	n = g̃n. Then h is well-defined and analytic on 	.
Also, f̃ = T̃	h in H(	, X/M). By Gleason’s theorem, there exists g ∈ H(	, X) such
that g̃ = h and therefore, π (f − T	g) = 0. Exactness implies that f − T	g ∈ H(	, M),
and so it again follows from Lemma 1 (iii) and Leiterer’s theorem that there is a
k ∈ H(	, M) such that f − T	g = T	k, i.e., f = T	(g + k) ∈ ran T	. �

THEOREM 5. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that the set
{z ∈ V : ran (T − z) is not closed} is countable and that, for all z ∈ V, there is an r0 > 0
for which XT (C \ B(z, r)) is closed for all r ∈ (0, r0). Then T has (CR) on V.

Proof. Since the conditions of the theorem are inherited by every open subset U
of V , it suffices to show that TV has closed range in H(V, X). Moreover, because
the set {z ∈ C : ran (T − z) is closed and T − z is not Kato} is countable by [10, II.12
Theorem 13], it follows that E := V ∩ σK (T) is countable; let E = {λn : n = 1, 2, . . .}
be an enumeration of E (possibly finite). Note that, while E need not be discrete, the
set V \ E = V ∩ ρK (T) is open.

We construct a sequence (Bj) of mutually disjoint open discs such that E ⊂ ⋃
j Bj,

Bj ⊂ V and XT (C \ Bj) is closed for each j. Indeed, choose r1 > 0 such that B(λ1, r1) ⊂
V , XT (C \ B(λ1, r1)) is closed, and |λj − λ1| = r1 (j ≥ 2). Set B1 = B(λ1, r1). Let k be
the smallest index such that λk /∈ B1 and find r2 > 0 such that B2 := B(λk, r2) satisfies
B2 ⊂ V \ B1, the space XT (C \ B2) is closed and |λj − λk| = r2 (j > k). If we continue
in this way, we obtain the required sequence of open discs UE = (Bj)j covering E.

For each z0 ∈ V \ E we next find a simply connected open set Wz0 such that
z0 ∈ Wz0 ⊂ V \ E and Wz0 \ Bn = ∅ for each Bn ∈ UE . If z0 /∈ ⋃

n Bn, choose r > 0
such that B(z0, r) ⊂ V \ E and set Wz0 = B(z0, r). Suppose then that z0 ∈ ⋃

n Bn \ E.
Since the sets Bn are mutually disjoint, there is only one j with z0 ∈ Bj, and since the set
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E is countable, there is a θ, 0 ≤ θ < 2π such that {z0 + teiθ : t ≥ 0} ∩ E = ∅. Let t0 =
min{t ≥ 0 : z0 + teiθ /∈ Bj}. Since the set S := {z0 + teiθ : 0 ≤ t ≤ t0} is compact and the
set E ∪ ∂V is closed, there is an ε > 0 such that the set Wz0 := {z ∈ C : dist {z, S} < ε} is
disjoint with E ∪ ∂V . Clearly Wz0 is an open simply connected set such that z0 ∈ Wz0 ⊂
V \ E ⊂ ρK (T). If G is the component of ρK (T) containing Wz0 , then XT (C \ Wz0 ) =
R∞(T − λ) for every λ ∈ G. In particular, XT (C \ Wz0 ) is closed and Wz0 ∩ Wz1 = ∅ if
z0, z1 ∈ V \ E are such that XT (C \ Wz0 ) = XT (C \ Wz1 ). By construction, Wz \ Bk =
∅ and Bk \ Wz = ∅ whenever z ∈ V \ E and Bk ∈ UE . Thus, if UK = {Wz : z ∈ V \ E}
and U = UK ∪ UE , then U is an open cover of V satisfying the hypotheses of Lemma 1.

As in Lemma 1, let M = ⋂
D∈U XT (C \ D) and let T̃ : X/M → X/M be the

operator induced by T . By Lemma 1 (iii), we have (T − z)M = M for all z ∈ V . We
show that T̃ − z is bounded below for each z ∈ V \ E, i.e., if z ∈ V \ E and (xn)n ⊂ X
is such that (T̃ − z)x̃n → 0 in X/M, then x̃n → 0 in X/M.

Fix z ∈ V \ E and let x ∈ ker(T − z). Then ker(T − z) ⊂ R∞(T − z) = XT (C \
Wz), and so there exists g ∈ H(Wz, X) so that (T − ω)g(ω) = x for all ω ∈ Wz. If
h = (T − z)g, then h ∈ ker TWz and, since Wz ∈ U , it follows from Lemma 1 (ii) that
h : Wz → M. In particular, x = h(z) ∈ M. Thus ker(T − z) ⊂ M.

A sequence (xn)n ⊂ X satisfies (T̃ − z)x̃n → 0 only if there exists (yn)n ⊂ M so that
(T − z)xn − yn → 0 in X . Since (T − z)M = M, there exists (wn)n ⊂ M so that (T −
z)wn = yn and therefore, (T − z)(xn − wn) → 0. Since ran (T − z) is closed, it follows
that dist (xn − wn, ker(T − z)) → 0. But ker(T − z) ⊂ M, and so dist (xn, M) → 0, i.e.,
x̃n → 0 in X/M as required. Hence T̃ − z is bounded below for each z ∈ V \ E. In
particular, V \ E ⊂ ρK (T̃).

We wish to show that T̃V is injective with closed range. Suppose then that (fn)n

is a sequence in H(V, X/M) such that T̃V fn → 0. In order to show that fn → 0
in H(V, X/M), it suffices to show that pF (fn) = supz∈F ‖fn(z)‖ → 0 for every closed
rectangle F ⊂ V . Suppose that a, b, c, d are real numbers such that the rectangle
F = [a, b] × [c, d] ⊂ V . Choose δ > 0 so that [a − δ, b + δ] × [c − δ, d + δ] ⊂ V . Since
E is countable, the projections P1 = {Reλ : λ ∈ E} and P2 = {Imλ : λ ∈ E} are
countable and we may choose a′, b′ ∈ R \ P1 and c′, d ′ ∈ R \ P2 so that a − δ <

a′ < a < b < b′ < b + δ and c − δ < c′ < c < d < d ′ < d + δ. Define � to be the
positively oriented boundary of the rectangle [a′, b′] × [c′, d ′] ⊂ V . Then � ⊂ V \ E
surrounds F in the sense of Cauchy’s theorem. By continuity of the minimum modulus
function z �→ γ (T̃ − z) on V \ E, there is a constant c > 0 so that supz∈� ‖fn(z)‖ ≤
c supz∈� ‖(T̃ − z)fn(z)‖ for all n. Thus for each λ ∈ F the maximum principle implies
that

‖fn(λ)‖ ≤ sup
z∈�

‖fn(z)‖ ≤ C p�(T̃V fn)

where C = c |�|/(2π dist (�, F)). Thus pF (fn) → 0 as n → ∞ as required. Since (T −
z)M = M for all z ∈ V by part (iii) of Lemma 1, Leiterer’s theorem implies that
TV H(V, M) = H(V, M), and TV therefore has closed range in H(V, X) by [9, Prop.
2.1]; the theorem is established. �

For T ∈ B(X) denote by K(T) the analytic core of T , i.e., the set of all x0 ∈ X such
that there exists a sequence (xn)n ⊂ X such that Txn = xn−1 (n ≥ 1) and sup ‖xn‖1/n <

∞. Clearly K(T) = ⋃
n XT (C \ D(0, 1/n)). This set has been shown to play a significant

role in the Fredholm theory of Banach space operators; see, for example [1].
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COROLLARY 6. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that K(T − z)
is closed for each z ∈ V and that the set {z ∈ V : ran (T − z) is not closed} is countable.
Then T has (CR) on V.

Proof. Let z ∈ V and K(T − z) be closed. Clearly (T − z)K(T − z) = K(T − z)
and, by the Banach open mapping theorem, there is an ε > 0 such that K(T − z) =
XT (C \ B(z, ε)). In fact, ε = γ ((T − z)|K(T−z))−1. Clearly XT (C \ W ) = K(T − z) for
each open set W with z ∈ W ⊂ B(z, ε). By Theorem 5, T has (CR) on V . �

A generalized Kato decomposition for T ∈ B(X) is a pair of subspaces X1, X2 ∈
Lat (T) such that X = X1 ⊕ X2, T |X1 is Kato and T |X2 is quasinilpotent. The operator
T is said to be of Kato-type if T |X2 is nilpotent. It is well known that semi-Fredholm
operators are of Kato-type, see e.g. [1], [10].

If ρgk(T) denotes the set of λ ∈ C such that T − λ has a generalized Kato
decomposition, then ρgk(T) is open and ρgk(T) ∩ σK (T) accumulates only on ∂ρgk(T).
Indeed, suppose that 0 ∈ ρgk(T) and that X1, X2 ∈ Lat (T) such that X = X1 ⊕ X2,
T |X1 is Kato and T |X2 is quasinilpotent. If ε > 0 is such that B(0, ε) ⊂ ρK (T |X1 ),
then for 0 < |z| < ε, (T − z)X2 = X2. Thus ran (T − z) = (T − z)X1 ⊕ X2 is closed
and N∞(T − z) = N∞(T |X1 − z) ⊂ R∞(T |X1 − z).

Moreover, if T has generalized Kato decomposition (X1, X2) as above, then by the
remarks preceding Lemma 1, R∞(T |X1 ) ⊆ K(T). On the other hand, if x ∈ K(T), write
x = u0 + v0 with u0 ∈ X1 and v0 ∈ X2. We show that v0 = 0.

Suppose to the contrary that v0 = 0. Then, by definition, there are sequences
(un) ⊂ X1 and (vn) ⊂ X2 such that Tun = un−1 and Tvn = vn−1 for all n and C :=
sup ‖un + vn‖1/n < ∞. Let P ∈ B(X) be the projection with ker P = X1 and ran P = X2.
We have ‖vn‖1/n = ‖P(un + vn)‖1/n ≤ ‖P‖1/n · C. Thus

lim
n→∞ ‖Tn|X2‖1/n ≥ lim sup

n→∞

(‖v0‖
‖vn‖

)1/n

= 1
lim infn→∞ ‖vn‖1/n

≥ 1/C > 0,

a contradiction to the assumption that T |X2 is quasinilpotent. Hence v0 = 0 and
K(T) ⊆ X1. Therefore

K(T) = K(T |X1 ) = R∞(T |X1 );

in particular, K(T) is closed.
Thus we have established the following special case of Corollary 6, generalizing [9,

Theorem 2.5].

COROLLARY 7. T ∈ B(X) has (CR) on ρgk(T).

Duality and weak–∗ closed ranges. Let C∞ = C ∪ {∞} be the Riemann sphere
and for U an open neighborhood of ∞, let P(U, X) denote the Fréchet space of
analytic functions f : U → X with f (∞) = 0. If T ∈ B(X), then T induces a continuous
mapping TU on P(U, X) defined by TU f (z) = (T − z)f (z) + lim|ω|→∞ ω f (ω). For F
closed in C∞ with ∞ ∈ F , let P(F, X) denote the inductive limit of the spaces P(U, X),
U ⊃ F open; i.e., P(F, X) is the (LF)-space consisting of germs of analytic X–valued
functions defined in a neighborhood of F and vanishing at infinity. If ∞ ∈ F is closed
and U is open with F ⊂ U , let iU : P(U, X) → P(F, X) be defined by iU f = [f ]. Then
a mapping S from P(F, X) to an arbitrary topological vector space E is continuous if
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and only if S ◦ iU is continuous for every open neighborhood U of F . In particular,
the mappings TU induce a continuous mapping TF on P(F, X). Recall further the
Grothendieck-Köthe duality principle: given V ⊂ C open, the Fréchet space H(V, X∗)
may be canonically identified with the strong dual of P(C∞ \ V, X) via

〈f, g〉 =
∫

γ

〈f (z), g̃(z)〉 dz,

where f ∈ H(V, X∗), g̃ ∈ P(U, X) is a representative of g ∈ P(C∞ \ V, X) and γ is a
contour surrounding C \ U in V . In this sense, we have that T∗

V = (T�\V )∗, [6, Theorem
2.5.12 and Lemma 2.5.13]. Moreover, by the duality results of Albrecht and Eschmeier,
specifically, Theorem 21 and the proof of Theorem 5 of [2], T∗ has property (β) on U
if and only if TF P(F, X) = P(F, X) for every closed set F ⊆ C∞ with C∞ \ U ⊆ F . In
this case, for every open V ⊆ U , T∗

V is injective with weak–∗ closed range in H(V, X∗)
by a theorem of Köthe, [6, Theorem 2.5.9].

Let us say that T∗ has the property (CR)weak−∗ on U provided that ran T∗
V is

weak–∗ closed in H(V, X∗) for every open V ⊆ U .

PROPOSITION 8. Let T ∈ B(X) and U ⊂ C open and suppose that F is closed in C

with C \ U ⊂ F.
(i) If T has (CR) on U, then XT (F) = ⊥X∗

T∗ (C \ F), the preannihilator of X∗
T∗ (C \

F) := ⋃{X∗
T∗ (K) : K compact, K ⊂ C \ F}.

(ii) If T∗ has (CR)weak−∗ on U, then X∗
T∗ (F) = XT (C \ F)⊥, the annihilator of XT (C \

F) := ⋃{XT (K) : K compact, K ⊂ C \ F}. In particular, X∗
T∗ (C \ V ) is weak–∗

closed whenever V ⊆ U is open.

Proof. If F is closed and C \ U ⊆ F , then V := C \ F is an open subset of U . Thus
ran TV is closed in case (i), and ran T∗

V is weak–∗ closed in case (ii). The result now
follows from parts (c) and (d) of [4, Lemma I.2.5]; alternatively, one could argue as in
the proof of [6, Prop 2.5.14]. �

As a consequence of the Proposition 8, we obtain weak–∗ analogs of Theorems 4
and 5.

THEOREM 9. There is a largest open set V on which T∗ ∈ B(X∗) has (CR)weak−∗.

Proof. First we establish an analog of Lemma 3. Suppose that T∗ ∈ B(X∗) has
(CR)weak−∗ on open sets V1 and V2 and that 	 is an open subset of V1 ∪ V2. Let
	1 ⊂ V1 ∩ 	, 	2 ⊂ V2 ∩ 	 be open sets and U an open cover of 	 as in Lemma 2. Let
M = ⋂

D∈U X∗
T∗ (C \ D). By Proposition 8, for each D ∈ U , X∗

T∗ (C \ D) is weak–∗ closed
and therefore M is also weak–∗ closed. Evidently, the restriction mapping f �→ f |	j

from H(	, X∗) to H(	j, X∗) is weak-∗ continuous and intertwines T∗
	 and T∗

	j
, j = 1, 2.

Therefore, if f ∈ ran T∗
	

weak−∗
, then f |	j ∈ ran T∗

	j

weak−∗
, and so, by assumption, there

are gj ∈ H(	j, X∗) such that f |	j = T∗
	j

gj for each j. As in the proof of Lemma 3,
it follows from Lemma 2 that T∗

	1∩	2
(g1 − g2) = 0, and so (g1 − g2)(	1 ∩ 	2) ⊂ M

by Lemma 1 (ii). Thus g̃1|	1∩	2 = g̃2|	1∩	2 in H(	1 ∩ 	2, X∗/M), and we can define
h ∈ H(	, X∗/M) by h(z) = g̃j(z) for z ∈ 	j. We have f̃ = (T∗ )̃	h and, by Gleason’s
theorem, there exists g ∈ H(	, X∗) such that h = g̃. Moreover, f − T∗

	g ∈ H(	, M),
and so again Lemma 1 (iii) and Leiterer’s theorem imply that f − T∗

	g = T∗
	k for some

k ∈ H(	, M). Hence f = T∗
	(g + k) ∈ ran T∗

	. Thus T∗ ∈ B(X∗) has (CR)weak−∗ on
V1 ∪ V2.
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To complete the argument, we adapt the proof of Theorem 4 similarly. The routine
details are left to the reader. �

Recall that ran T∗ is weak–∗ closed in X∗ if and only if ran T is closed in X , [6,
A.1.10]. Also, σK (T∗) = σK (T), [10, II.12 Theorem 11].

THEOREM 10. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that the set
{z ∈ V : ran (T − z) is not closed} is countable and that, for all z ∈ V, there is a r0 > 0
for which XT (C \ B(z, r)) is weak–∗ closed for all r ∈ (0, r0). Then T∗ has (CR)weak−∗

on V.

Proof. Since the conditions of the theorem are inherited by every open subset U
of V , it suffices to show that T∗

V has weak–∗ closed range. Let E := V ∩ σK (T) and
construct a covering U = UK ∪ UE exactly as in the proof of Theorem 5, noting that if
z0 ∈ V \ E and if λ is in the component of ρK (T) containing z0, then X∗

T∗ (C \ Wz0 ) =
R∞(T∗ − λ) is weak–∗ closed. Let M = ⋂

D∈U X∗
T∗ (C \ D) and denote by (T∗)̃ the

operator on X∗/M induced by T∗. Then Lemma 1 (iii) implies that (T∗ − z)M = M
for all z ∈ V , and, as in the proof of Theorem 5, (T∗)̃ − z is bounded below for each
z ∈ V \ E. The conclusion now follows from [9, Prop. 3.1], noting that, as indicated in
the proof of Theorem 5, it suffices in [9, Prop. 3.1] that the exceptional set E be merely
countable rather than discrete. �

COROLLARY 11. Let T ∈ B(X) and let V ⊂ C be an open set. Suppose that the
analytic core K(T∗ − z) is weak–∗ closed for each z ∈ V and that the set {z ∈ V :
ran (T − z) is not closed} is countable. Then T∗ has (CR)weak−∗ on V. In particular,
T∗ has (CR)weak−∗ on ρgk(T).

Proof. The first statement follows from Theorem 10 just as Corollary 6 follows
from Theorem 5. If T ∈ B(X) has generalized Kato decomposition (X1, X2), then
(X⊥

2 , X⊥
1 ) is a generalized Kato decomposition for T∗ consisting of weak–∗ closed

subspaces of X∗. Thus ρgk(T) ⊆ ρgk(T∗). If z ∈ ρgk(T), and (X1, X2) is a generalized
Kato decomposition for T , then K(T∗ − z) = K((T∗ − z)|X⊥

2
) = R∞((T∗ − z)|X⊥

2
); in

particular, K(T∗ − z) is weak–∗ closed in X∗. Since ρgk(T) ∩ σK (T), is discrete, the last
result now follows. �

We are indebted to the referee and editor for their careful reading that substantially
contributed to this paper.
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