F. Halter-Koch Nagoya Math. J. Vol. 123 (1991), 141-151

ON A CLASS OF INSOLUBLE BINARY QUADRATIC DIOPHANTINE EQUATIONS

FRANZ HALTER-KOCH

§0. Introduction

The binary quadratic diophantine equation

$$|x^2 - ny^2| = t$$

is of interest in the class number problem for real quadratic number fields and was studied in recent years by several authors (see [4], [5], [2] and the literature cited there).

To be precise, for a positive square-free integer n, we set

$$\sigma_n = egin{cases} 1 \ , & ext{if} \ n \not\equiv 1 \mod 4 \ , \ 2 \ , & ext{if} \ n \equiv 1 \mod 4 \ ; \end{cases}$$

a solution $(x, y) \in \mathbf{Z}$ of the diophantine equation

$$|x^2 - ny^2| = \sigma_n^2 t$$

is called *primitive*, if $(x, y)|\sigma_n$, where (x, y) denotes the g.c.d. of x and y. The reason for this terminology will become clear from the theory of quadratic orders, to be explained in §1.

R.A. Mollin [4] proved, generalizing previous results by Yokoi [5] and others, the following criterion.

PROPOSITION 0. Let s, t, r be integers such that $n = (st)^2 + r > 5$ is squarefree and the following conditions are satisfied:

- (1) $s \ge 1, t \ge 2$ and (t, r) = 1;
- (2) $r | 4s, and st < r \le st;$
- (3) If $n \equiv 1 \mod 4$, then $|r| \in \{1, 4\}$.
- (4) If |r| = 4, then $s \ge 2$.
- (5) If r = 1, then $s \ge 3$ and 2|st.

Then the diophantine equation $|x^2 - ny^2| = \sigma_n^2 t$ has a primitive solution if

Received November 13, 1990.

and only if n = 7, t = 3.

Actually, the result as given in [4], is formally stronger than Proposition 0; there it is asserted, that the diophantine equation has no non-trivial solutions (in a sense precised there). To obtain Mollin's result, we must apply Proposition 0 for all t' > 1 such that $t = t'u^2$ for some $u \in \mathbf{N}$.

In [2], we derived a general method to handle such equations using continued fractions, and we claimed [2, p. 92] that an application of these techniques would lead to a simple proof and a generalization of Proposition 0. J. B. Leicht (Heidelberg) pointed out to me that this is not quite correct: The techniques of [2] do only work if $\sigma_n t < \sqrt{n}$, and there are two cases of Proposition 0 in which this condition is violated:

$$s=1\,,\ r=-1\,,\ n=t^2-1\,;$$

 $s=1\,,\ r=-2\,,\ n=t^2-2\,.$

In this paper, we develop different techniques which, among others, also cover these cases. We consider the diophantine equation as a norm equation, and then the ideal theory of quadratic orders becomes available for the problem (§ 1). In § 2 we prove a criterion for certain ideals to be reduced (Theorem 1) and a general reduction statement (Theorem 2). In § 3 we reformulate these Theorems for diophantine equations. Finally, in § 4, we give some applications for discriminants of Richaud-Degerttype; thereby we restrict ourselves to those cases, which cannot be settled with the methods of [2].

§1. Preliminaries on quadratic orders

In this section we recall some well-known facts about quadratic orders and formulate them in a manner which will be useful later on; for proofs see [1] or [3] (but note that the notions of [3] are slightly different from ours).

A positive integer D is called a *discriminant*, if D is not a square and $D \equiv 0$ or $1 \mod 4$; in this paper, D always denotes a discriminant. We set

$$\omega_D = egin{cases} rac{1}{2}\sqrt{D} \ , & ext{if} \ D \equiv 0 \ ext{mod} \ 4 \ , \ rac{1}{2}(1 \ + \sqrt{D}) \ , & ext{if} \ D \equiv 1 \ ext{mod} \ 4 \ , \end{cases}$$

and

$$\mathscr{R}_{D} = \mathbf{Z} \oplus \mathbf{Z} \omega_{D} \,.$$

 \mathscr{R}_D is an order in the quadratic number field $\mathbf{Q}(\sqrt{D})$. If D_0 is the discriminant of $\mathbf{Q}(\sqrt{D})$, then

$$D = D_0 f_D^2$$

for some $f_D \in \mathbf{N}$; f_D is called the *conductor* associated with D.

Every $\xi \in \mathscr{R}_{D}$ has a unique representation in the form

$$\xi = \frac{b + e\sqrt{D}}{2},$$

where $b, e \in \mathbb{Z}$ and $b \equiv eD \mod 2$; we call

$$\mathscr{N}(\boldsymbol{\xi}) = rac{b^2 - e^2 D}{4} \in \mathbf{Z}$$

the norm of ξ . An element $\xi \in \mathscr{R}_D$ is called *primitive*, if $m^{-1}\xi \notin \mathscr{R}_D$ for all integers $m \geq 2$. Obviously, $\xi \in \mathscr{R}_D$ is primitive if and only if either

$$D \equiv 0 \mod 4 \ , \ \ \xi = x + y \sqrt{rac{D}{4}} \ , \ \ x,y \in {f Z} \ , \ \ (x,y) = 1$$

or

$$D\equiv 1 \mod 4$$
, $\xi=rac{x+y\sqrt{D}}{2}$, $x,y\in \mathbb{Z}$, $x\equiv y \mod 2$, $(x,y)|2$.

For an ideal (0) $\neq J \triangleleft \mathscr{R}_D$ we call

$$\mathscr{N}(J) = (\mathscr{R}_{\scriptscriptstyle D} : J) \in \mathbf{N}$$

the norm of J; J is called primitive, if $m^{-1}J \not\subset \mathscr{R}_D$ for all integers $m \geq 2$. If $J = \xi \mathscr{R}_D$ is a principal ideal, then $\mathscr{N}(J) = |\mathscr{N}(\xi)|$, and J is primitive if and only if ξ is primitive. Let $\Omega(D)$ be the set of all norms of primitive principal ideals of \mathscr{R}_D . Using this terminology, we rephrase the question about the solubility of the diophantine equations under consideration as follows.

PROPOSITION 1. If D is a discriminant and t is a positive integer, then the following two assertions are equivalent:

- a) $t \in \Omega(D)$
- b) The diophantine equation

FRANZ HALTER-KOCH

$$iggl\{ iggl| x^2 - rac{D}{4} \, y^2 iggr| = t \,, \qquad ext{if} \, \, D \equiv 0 mod 4 \,, \ |x^2 - Dy^2| = 4t \,, \qquad ext{if} \, \, D \equiv 1 mod 4 \, \end{cases}$$

has a solution $(x, y) \in \mathbb{Z}^2$ satisfying

$$\begin{cases} (x, y) = 1, & if \ D \equiv 0 \mod 4, \\ (x, y) | 2, & if \ D \equiv 1 \mod 4. \end{cases}$$

An ideal $(0) \neq J \triangleleft \mathscr{R}_D$ is called *regular*, if $\mathscr{R}_D = \{x \in \mathbf{Q}(\sqrt{D}) | xJ \subset J\}$. Any regular ideal is invertible. Any principal ideal and any ideal J of \mathscr{R}_D such that $(\mathscr{N}(J), f_D) = 1$ is regular. In this paper we shall mainly be concerned with ideals J such that $(\mathscr{N}(J), f_D) = 1$.

The primitive ideals of \mathscr{R}_{D} are precisely the Z-modules of the form

$$J = \mathbf{Z}a \oplus \mathbf{Z}\frac{b + \sqrt{D}}{2}$$

where $a, b \in \mathbb{Z}$, a > 0 and $4a | b^2 - D$. In this representation, $a = \mathcal{N}(J)$ is uniquely determined by J, while b is only determined modulo 2a. If J is as above, then J is regular if and only if $(a, b, (b^2 - D)/4a) = 1$.

For lack of a suitable reference, we give a proof of the following simple result concerning ideals whose norm divides the discriminant.

LEMMA 1. Let D be a discriminant and r a positive integer such that r|D and $4\not|r$. Then there exists exactly one primitive ideal $J \triangleleft \mathscr{R}_D$ such that $\mathscr{N}(J) = r$.

Proof. Since $4 \nmid r$, we have either $4r \mid D$ or $4r \mid r^2 - D$, and we set

Then J is a primitive ideal of \mathscr{R}_D , and $\mathscr{N}(J) = r$.

If $I = \mathbf{Z}r \oplus \mathbf{Z}(b + \sqrt{D})/2$ is a primitive ideal of \mathscr{R}_D , where $0 \leq b < 2r$, $4r|b^2 - D$, then r|D implies r|b and therefore b = 0 or b = r. If there were two primitive ideals in \mathscr{R}_D with norm r, then $I_1 = \mathbf{Z}r \oplus \mathbf{Z}(\sqrt{D}/2)$ and $I_2 = \mathbf{Z}r \oplus \mathbf{Z}(r + \sqrt{D})/2$ both were ideals, whence 4r|D and $4r|r^2 - D$; this implies $4r|r^2$ and hence 4|r, contradicting the assumption that r is square-free.

An ideal (0) $\neq J \triangleleft \mathscr{R}_{D}$ is called *reduced*, if it is primitive, regular, and has a representation of the form

$$J = \mathbf{Z}a \oplus \mathbf{Z} \frac{b + \sqrt{D}}{2}$$

such that

$$0 < \sqrt{\,\overline{D}\,} \, - b < 2a < \sqrt{\,\overline{D}\,} \, + b$$
 ;

note that these conditions also determine b uniquely. If J is a reduced ideal of \mathscr{R}_D , then $\mathscr{N}(J) < \sqrt{D}$. If J is a primitive regular ideal of \mathscr{R}_D and $\mathscr{N}(J) < \frac{1}{2}\sqrt{D}$, then J is reduced.

Two ideals J_1 , $J_2 \triangleleft \mathscr{R}_D$ are called *equivalent*, if there exist elements β_1 , $\beta_2 \in \mathscr{R}_D \setminus \{0\}$ such that $\beta_1 J_1 = \beta_2 J_2$.

If $J = \mathbf{Z}a \oplus \mathbf{Z}(b + \sqrt{D})/2$ is a primitive ideal of \mathscr{R}_D $(a, b \in \mathbf{Z}, a > 0, 4a | b^2 - D)$, then its Lagrange neighbour J^+ is defined by

$$J^{\scriptscriptstyle +} = {f Z} a^{\scriptscriptstyle +} \oplus {f Z} {b^{\scriptscriptstyle +} + \sqrt{D}\over 2}$$
 ,

where

$$b^{\scriptscriptstyle +}= - \ b + 2a \Big[rac{b + \sqrt{D}}{2a} \Big] \quad ext{and} \quad a^{\scriptscriptstyle +}= rac{D - b^{\scriptscriptstyle +2}}{4a} \,.$$

 J^{+} is an ideal of \mathscr{R}_{D} , equivalent to J, and if J is regular (reduced), then J^{+} is also regular (reduced). Let $(J_{n})_{n\geq 0}$ be defined by $J_{0} = J$ and $J_{n+1} = J_{n}^{+}$. The sequence $(J_{n})_{n\geq 0}$ becomes ultimately periodic, and if J is regular, it contains all reduced ideals equivalent to J. The sequence $(J_{n})_{n\geq 0}$ can be calculated by means of the continued fraction algorithm as follows: If

$$\xi = \frac{b + \sqrt{D}}{2a} = [b_0, b_1, b_2, \cdots]$$

is the simple continued fraction expansion of ξ and, for $\nu \geq 0$,

$$\xi_{\scriptscriptstyle
u} = [b_{\scriptscriptstyle
u}, b_{\scriptscriptstyle
u+1}, \cdots] = rac{P_{\scriptscriptstyle
u} + \sqrt{D}}{2Q_{\scriptscriptstyle
u}}\,,$$

where $P_{\nu} \in \mathbf{Z}$ and $Q_{\nu} \in \mathbf{N}$, then

$$J_{\scriptscriptstyle
m
u} = {f Z} Q_{\scriptscriptstyle
m
u} \oplus {f Z} {P_{\scriptscriptstyle
m
u} + \sqrt{D}\over 2}$$

The case $J_0 = \mathscr{R}_D$ is of particular interest: If

FRANZ HALTER-KOCH

$$\omega_D = [b_0, \overline{b_1, \cdots, b_l}],$$

l is the length of a primitive period and if, for $\nu \in \{1, \dots, l\}$,

$$\xi_
u = [\overline{b_
u}, \overline{b_
u+1}, \cdots, \overline{b_l}, \overline{b_1}, \cdots, \overline{b_{
u-1}}] = rac{P_
u + \sqrt{D}}{2Q_
u},$$

then the set

$$\Omega^*(D) = \{Q_1, \cdots, Q_l\}$$

is precisely the set of norms of reduced principal ideals of \mathcal{R}_p .

§2. Reduced ideals

THEOREM 1. Let $D = 4t^2 + m$ be a discriminant, where t and m are integers such that t > 0, $4t \nmid m$ and either

$$m \ge -4t+2$$

or

 $m \geq -8t+5$, $m \equiv 1 \mod 4t$.

Then any primitive regular ideal J of \mathscr{R}_{D} with $\mathscr{N}(J) = t$ is reduced.

Proof. If m > 0, then $t < \frac{1}{2}\sqrt{D}$, and therefore any primitive regular ideal of \mathscr{R}_{D} with norm t is reduced.

Thus we may suppose that m < 0. Let $J \triangleleft \mathscr{R}_D$ be a primitive regular ideal with $\mathscr{N}(J) = t$, and set

$$J = \mathbf{Z}t \oplus \mathbf{Z} rac{x + \sqrt{D}}{2}$$

where $1 \le x \le 2t$ and $x^2 \equiv D \equiv m \mod 4t$. Since $4t \nmid m$, we have x < 2t, and we must prove that

$$0 < \sqrt{|\overline{D}|} - x < 2t < \sqrt{|\overline{D}|} + x$$
 ,

i.e.,

$$x^2 < D < (2t + x)^2 \quad ext{and} \quad (2t - x)^2 < D \, .$$

Since m < 0, we always have $D < 4t^2 < (2t + x)^2$. If $m \ge -4t + 2$, then $x^2 \le (2t - 1)^2$, $(2t - x)^2 \le (2t - 1)^2$, and $(2t - 1)^2 < 4t^2 + m = D$.

If $m \not\equiv 1 \mod 4t$ and $m \geq -8t + 5$, then $2 \leq x \leq 2t - 2$, $x^2 \leq (2t - 2)^2$, $(2t - x)^2 \leq (2t - 2)^2$ and $(2t - 2)^2 < 4t^2 + m = D$.

THEOREM 2. Let $D = t^2 + m$ be a discriminant, where t > 1 and m are integers such that either

$$-2t+1 < m < 2t+1$$

or

$$-4t + 4 < m < 4t + 4, \qquad m \not\equiv 1 \mod t$$

Let $J \triangleleft \mathscr{R}_{D}$ be a primitive regular ideal such that $\mathscr{N}(J) = t$, let J^{+} be the Lagrange neighbour of J, and $Q = \mathscr{N}(J^{+})$.

Then $Q < \frac{1}{2}\sqrt{D}$, and $D - 4tQ \in \mathbb{Z}$ is a perfect square. In particular, J^+ is reduced.

Proof. Suppose that $J = \mathbf{Z}t \oplus \mathbf{Z}(y + \sqrt{D})/2$ where $y \in \mathbf{Z}$, $y^2 \equiv D \mod 4t$ and $t < y \leq 3t$; we consider first the case $m \neq 4t$. Then we have $y \neq 3t$ and therefore $t + 1 \leq y \leq 3t - 1$. Moreover, if $m \not\equiv 1 \mod t$, then $y^2 \not\equiv 1 \mod t$, and therefore $t + 2 \leq y \leq 3t - 2$. Since

$$egin{array}{ll} t-1 < \sqrt{D} < t+1\,, & ext{if} \ -2t+1 < m < 2t+1\,, \ t-2 < \sqrt{D} < t+2\,, & ext{if} \ -4t+4 < m < 4t+4\,, \end{array}$$

we obtain in any case

$$1 < \frac{y + \sqrt{D}}{2t} < 2$$

and therefore

$$J^{\scriptscriptstyle +} = \mathrm{Z} Q \oplus \mathrm{Z} rac{P + \sqrt{D}}{2}$$
 ,

where P = 2t - y and $Q = (D - P^2)/4t$. We set $y^2 = D + 4tz$, where $z \in \mathbb{Z}$, and obtain

$$Q = y - t - z.$$

If m = 4t, then y = 3t and $J^+ = \mathcal{R}_D$, so that in this case Q = 1, z = 2t - 1 and again

$$Q=y-t-z.$$

In any case we obtain

$$y^2 = D + 4t(y - t - Q) = 4ty + D - 4t^2 - 4tQ$$

and therefore

$$y=2t\pm\sqrt{D-4tQ}\,,$$

whence D - 4tQ must be a perfect square.

Suppose that $Q > \frac{1}{2}\sqrt{D}$; then we obtain

$$z = y - t - Q < y - t - \frac{1}{2}\sqrt{D} ,$$

and therefore

$$y^2 = D + 4tz < t^2 + m + 4ty - 4t^2 - 2t\sqrt{D}$$

whence

$$y^2 - 4ty + (3t^2 + 2t\sqrt{D} - m) < 0$$
.

This however can only occur when

$$(2t)^2 - (3t^2 + 2t\sqrt{D} - m) = t^2 - 2t\sqrt{D} + m > 0$$
,

i.e., when $2t\sqrt{D} < t^2 + m$. Squaring this inequality gives

$$4t^2D = 4t^4 + 4t^2m < t^4 + 2t^2m + m^2,$$

and therefore

$$0 > 3t^4 + 2t^2m - m^2 = (3t^2 - m)(t^2 + m),$$

contradicting our assumptions on m and t.

§3. Diophantine equations

In this section we reformulate Theorems 1 and 2 for diophantine equations. We do this using the set $\Omega(D)$; the final translation into the language of diophantine equations is given by Proposition 1.

THEOREM 1A. Let $D = 4t^2 + m$ be a discriminant as in Theorem 1, and suppose that $(t, f_D) = 1$. Then we have $t \in \Omega(D)$ if and only if $t \in \Omega^*(D)$.

Proof. Since $(t, f_D) = 1$, any ideal J of \mathscr{R}_D satisfying $\mathscr{N}(J) = t$ is regular. Therefore the assertion follows from Theorem 1.

THEOREM 2A. Let $D = t^2 + m$ be a discriminant as in Theorem 2, and suppose that $(t, f_D) = 1$.

i) If $t \in \Omega(D)$, then there exists some $Q \in \Omega^*(D)$ such that $Q < \frac{1}{2}\sqrt{D}$, and the integer D - 4tQ is a perfect square.

148

ii) If $Q \in \Omega(D)$ is such that the integer D - 4tQ is a perfect square and all primitive ideals $J \triangleleft \mathscr{R}_D$ with $\mathscr{N}(J) = Q$ are principal ideals, then $t \in \Omega(D)$.

iii) If D - 4t is a perfect square, then $t \in \Omega(D)$.

Proof. i) Let $J \triangleleft \mathscr{R}_D$ be a primitive principal ideal such that $\mathscr{N}(J) = t$; since $(t, f_D) = 1$, J is regular. By Theorem 2, $Q = \mathscr{N}(J^+) < \frac{1}{2}\sqrt{D}$, and D - 4tQ is a perfect square.

ii) If $D - 4tQ = P^2$ for some $P \in \mathbb{N}$, then the primitive ideals $J_1 = \mathbb{Z}Q \oplus \mathbb{Z}(P + \sqrt{D})/2$ and $J_2 = \mathbb{Z}t \oplus \mathbb{Z}(-P + \sqrt{D})/2$ are equivalent by [3, Cor. 2]. By assumption, J_1 is principal, whence J_2 is principal, too, and therefore $t \in \Omega(D)$.

iii) follows from ii) with Q = 1.

§4. Discriminants of Richaud-Degert-type

PROPOSITION 2. Let $D = 4a^2 + r$ be a discriminant, where a and r are integers such that $1 \le |r| \le a$, $r \mid a$, r is square-free and $r \equiv 1 \mod 4$.

i) If $r \neq 1$, then $a \notin \Omega(D)$.

ii) $2a \in \Omega(D)$ if and only if either $4a^2 - 8a + r$ or $4a^2 - 8a|r| + r$ is a perfect square.

iii) $2a \in \Omega(4a^2 + 1)$ if and only if a = 2.

Proof. Since r is square-free, $(r, f_D) = 1$. From [2] we obtain $\Omega^*(D) = \{1, r, a \pm (r-1)/4\}$ if r > 0, and $\Omega^*(D) = \{1, |r|, a + (r-1)/4\}$ if r < 0.

i) follows from Theorem 1A with t = a, m = r.

ii) We apply Theorem 2A with t = 2a, m = r. If $2a \in \Omega(D)$, then D - 4tQ is a perfect square for one of the numbers Q = 1, |r|, $a \pm (r-1)/4$. If $Q = a \pm (r-1)/4$, then D - 4tQ < 0, and therefore it cannot be a perfect square. If Q = |r|, then $D - 4tQ = 4a^2 - 8a|r| + r$, and if Q = 1, then $D - 4tQ = 4a^2 - 8a|r| + r$, and if Q = 1, then $D - 4tQ = 4a^2 - 8a + r$.

For the converse suppose that, for Q = 1 or Q = |r|, D - 4tQ is a perfect square. By Lemma 1, there eixsts exactly one primitive ideal J of \mathscr{R}_D such that $\mathscr{N}(J) = Q$, and since $\{1, |r|\} \subset \Omega^*(D)$, J is principal. Now the assertion follow from Theorem 2A, ii).

iii) By ii), $2a \in \Omega(4a^2 + 1)$ if and only if $4a^2 - 8a + 1 = (2a - 2)^2 - 3$ is a perfect square, which is equivalent with a = 2.

PROPOSITION 3. Let $D = a^2 + 4r$ be a discriminant, where a and r are integers such that $a \equiv 1 \mod 2$, a > 1, $r \mid a, r \neq -a$, and r is square-free.

i) $a \in \Omega(D)$ if and only if either $a^2 - 4a + 4r$ or $a^2 - 4a|r| + 4r$ is a perfect square.

ii) $a \in \Omega(a^2 - 4)$ if and only if a = 5.

Proof. From $-a = \mathcal{N}(\frac{1}{2}(a + \sqrt{a^2 + 4a}))$ we obtain $a \in \mathcal{Q}(a^2 + 4a)$, and therefore we may suppose that |r| < a, and consequently $|r| \le a/3$. Since r is square-free, $(r, f_D) = 1$. From [2] we obtain $\mathcal{Q}^*(D) = \{1, r\}$ if r > 0, and $\mathcal{Q}^*(D) = \{1, |r|, a + r - 1\}$ if r < 0.

We apply Theorem 2A with t = a, m = 4r. If $a \in \Omega(D)$, then D - 4tQ is a perfect square for one of the numbers Q = 1, |r|, a + r - 1. If Q = a + r - 1, then D - 4tQ = -a(3a + 4r) + 4(a + r) < 0 cannot be a perfect square. If Q = |r|, then $D - 4tQ = a^2 - 4a|r| + 4r$, and if Q = 1, then $D - 4tQ = a^2 - 4a + 4r$.

The converse is proved exactly as in Proposition 2.

ii) follows from i) with r = -1, observing that $a^2 - 4a - 4 = (a - 1)^2 - 8$ is a perfect square if and only if a = 5.

PROPOSITION 4. Let $D = 4(a^2 + r)$ be a discriminant, where a and r are integers such that $a \ge 3$, r | 2a, r > -a, and r is square-free.

i) Suppose that either 2 a or $a^2 + r$ is not a discriminant. Then $a \in \Omega(D)$ if and only if a = r.

ii) Suppose that $a^2 + r$ is not a discriminant. Then $2a \in \Omega(D)$ if and only if either $a^2 - 2a + r$ or $a^2 - 2a|r| + r$ is a perfect square. In particular:

If r = 1, then $2a \in \Omega(D)$;

if $r \in \{-1, 2\}$, then $2a \notin \Omega(D)$;

if r = -2, then $2a \in \Omega(D)$ if and only if a = 3.

Proof. From [2] we obtain $\Omega^*(D) = \{1, r\}$, if r > 0, and $\Omega^*(D) = \{1, 2a + r - 1, |r|\}$, if r < 0. Since r is square-free, no odd prime divides (a, f_D) . Since $2|f_D$ if and only if $a^2 + r$ is a discriminant, we obtain $(a, f_D) = 1$ in i) and $(2a, f_D) = 1$ in ii).

Now we proceed as in the proof of Proposition 2: We infer i) from Theorem 1A with t = a, m = 4r, and ii) from Theorem 2A with t = 2a, m = 4r.

§5. An application

We finish with an amusing application of the preceding theory, part of which was posed as a problem (cf. Bulletin dell' Association des

Professeurs de Mathématiques no. 374, 1990, Problem no. 177).

PROPOSITION 5. If x and y are positive integers such that, for some choice of the sign,

$$c=\frac{x^2+y^2}{xy\pm 1}$$

is an integer, then c is either a perfect square, or c = 5.

Proof. We suppose that $c = (x^2 + y^2)/(xy \pm 1)$ is an integer and not a perfect square; since c = 2 implies $(x - y)^2 = \pm 2$, we obtain c > 2. Dividing by (x, y), we obtain an equation

$$u^2-cuv+v^2=\pm c_0,$$

where $u, v \in \mathbb{Z}$, (u, v) = 1, $c_0 > 1$ and $c = c_0 q^2$ for some $q \in \mathbb{N}$. If $D = c^2 - 4$, then D is a discriminant, and

$$\pm c_{\scriptscriptstyle 0} = \mathscr{N} \Big(rac{2u - cv + v \sqrt{D}}{2} \Big),$$

whence $c_0 \in \Omega(D)$. If $4 | c_0$, then we obtain $u^2 + v^2 \equiv 0 \mod 4$, contradicting (u, v) = 1; therefore we have $4 \nmid c_0$ and thus $(c_0, f_D) = 1$.

If $c_0 \neq c$, then $c_0 \leq c/4 < \frac{1}{2}\sqrt{D}$ and therefore $c_0 \in \Omega^*(D)$. By [2], we have $\Omega^*(D) = \{1, c-2\}$ and therefore $c_0 = 1$, a contradiction.

If $c_0 = c$ is odd, then Proposition 3, ii) implies c = 5. If $c_0 = c$ is even, then $c \equiv 2 \mod 4$, since $4 \not\mid c_0$, and therefore $u^2 - cuv + v^2 \equiv (u - v)^2 \equiv 2 \mod 4$, a contradiction.

References

- [1] P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, Braunschweig 1893, Chelsea Reprint 1968.
- [2] F. Halter-Koch, Quadratische Ordnungen mit großer Klassenzahl, J. Number Theory, 34 (1990), 82-94.
- [3] P. Kaplan, K. S. Williams, The distance between ideals in the orders of a real quadratic field, L'Enseig. Math., 36 (1990), 321-358.
- [4] R. A. Mollin, On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degerttype, Nagoya Math. J., 105 (1987), 39-47.
- [5] H. Yokoi, On the diophantine equation $x^2 py^2 = \pm 4q$ and the class number of real subfields of a cyclotomic field, Nagoya Math. J., 91 (1983), 151-161.

Institut für Mathematik Karl-Franzens-Universität Halbärthgasse 1/I A-8010 Graz, Österreich