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COMPUTING CERTAIN GROMOV-WITTEN
INVARIANTS OF THE CREPANT

RESOLUTION OF P(1,3,4,4)

SAMUEL BOISSIÈRE, ÉTIENNE MANN, and FABIO PERRONI

Abstract. We prove a formula computing the Gromov-Witten invariants of
genus zero with three marked points of the resolution of the transversal A3-
singularity of the weighted projective space P(1,3,4,4) using the theory of
deformations of surfaces with An-singularities. We use this result to check
Ruan’s conjecture for the stack P(1,3,4,4).

§1. Introduction

The main results of this paper concern the weighted projective space
P(1,3,4,4). The singular locus of its coarse moduli space |P(1,3,4,4)| is
the disjoint union of an isolated singularity of type (1/3)(1,1,1) (we use
Reid’s notation in [17]) and a transversal A3-singularity. Using toric meth-
ods, we construct a crepant resolution Z of |P(1,3,4,4)|. In Theorem 3.3.1,
we determine a formula for certain Gromov-Witten invariants of Z over the
A3-singularity using the theory of deformations of surfaces with rational
double points and the deformation invariance property of Gromov-Witten
invariants. We then apply this result in Theorem 5.2.1 to construct a ring
isomorphism—predicted in [18] by Ruan’s cohomological crepant resolution
conjecture —between the quantum corrected cohomology ring of Z and the
Chen-Ruan orbifold cohomology of P(1,3,4,4), after evaluating the quan-
tum parameters related to the transversal A3-singularity to a fourth root
of the unity and putting the last parameter to zero. This last evaluation is
quite surprising (in [2], we show that this parameter can be evaluated to 1).
To confirm this property, we show in Proposition 5.3.1 that, for all weighted
projective spaces P(1, . . . ,1, n) with n weights equal to 1 which have only
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2 S. BOISSIÈRE, É. MANN, AND F. PERRONI

one isolated singular point (1/n)(1, . . . ,1), the predicted ring isomorphism
can be obtained simply by putting the quantum parameter to zero.

§2. Weighted projective spaces

Let n ≥ 1 be an integer, and let w = (w0, . . . ,wn) be a sequence of integers
greater than or equal to 1. The multiplicative group C� acts on Cn+1 \ {0}
by

λ · (x0, . . . , xn) := (λw0x0, . . . , λ
wnxn).

The weighted projective space P(w) is defined as the quotient stack [Cn+1 \
{0}/C�]. It is a smooth Deligne-Mumford stack whose coarse moduli space,
denoted |P(w)|, is a projective variety of dimension n.

According to Borisov, Chen, and Smith [4], P(w) is a toric stack associated
to the stacky fan

(1)
(
N := Zn+1/

n∑
i=0

wivi, β : Zn+1 → N, Σ
)
,

where v0, . . . , vn is the standard basis of Zn+1, β is the canonical projection,
and Σ ⊂ N ⊗Z Q is the fan whose cones are generated by any proper subset
of the set {β(v0) ⊗ 1, . . . , β(vn) ⊗ 1}.

The weighted projective space P(w) comes with a natural invertible sheaf
OP(w)(1) defined as follows: for any scheme Y and any morphism Y → P(w)
given by a principal C�-bundle P → Y and a C�-equivariant morphism P →
Cn+1 \ {0}, OP(w)(1)Y is the sheaf of sections of the associated line bundle
of P .

Recall that an orbifold is by definition a smooth Deligne-Mumford stack
over C with generically trivial stabilizers. A Gorenstein orbifold is an orb-
ifold such that, at each point, the stabilizer acts with determinant 1 on the
tangent space. This implies that the coarse moduli space is a Gorenstein
variety, but that it is not equivalent. For instance, the variety |P(1,3)| is
Gorenstein (in fact, smooth, isomorphic to P1) but P(1,3) is not a Goren-
stein orbifold, as is easily seen using the following classical result.

Proposition 2.0.1. We have the following.

(1) The Deligne-Mumford stack P(w) is an orbifold if and only if the great-
est common divisor of w0, . . . ,wn is 1.

(2) An orbifold P(w) is Gorenstein if and only if wi divides
∑n

j=0 wj for
any i.
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GROMOV-WITTEN INVARIANTS OF THE CREPANT RESOLUTION OF P(1,3,4,4) 3

In dimension n, the problem of determining all Gorenstein orbifolds P(w)
is equivalent to the problem of Egyptian fractions, that is, the number of
solutions of 1 = 1/x0 + · · · + 1/xn with 1 ≤ x0 ≤ · · · ≤ xn (see [19]). Hence,
there is a finite number of such P(w) (only P1 in dimension 1, three in
dimension 2, and 14 in dimension 3). All weighted projective spaces that we
will be considering satisfy these two conditions.

§3. Gromov-Witten invariants of the resolution of |P(1,3,4,4)|

3.1. The Mori cone
Let X be a Gorenstein orbifold with coarse moduli space X . Recall that a

resolution of singularities ρ : Z → X is called crepant if ρ∗KX
∼= KZ . Assume

furthermore that X and Z are projective. Let N+(Z) ⊂ A1(Z;Z) be the
cone of effective 1-cycles in Z, and set Mρ(Z) := Ker(ρ�) ∩ N+(Z), where
ρ� : A�(Z;Z) → A�(X;Z) is the morphism of Chow groups induced by ρ.
The set Mρ(Z) is called the Mori cone of contracted effective curves.

Lemma 3.1.1. Let P(w) be a Gorenstein orbifold, and let ρ : Z → |P(w)|
be a toric crepant resolution associated to a subdivision Σ′ of Σ and the
identity morphism of N . Then the cone Mρ(Z) is polyhedral.

Proof. Let Σ′(n − 1) be the set of (n − 1)-dimensional cones of Σ′. Then

Mρ(Z) =
{ ∑

ν∈Σ′(n−1)

γν [V(ν)]
∣∣∣ γν ∈ N, ρ�

( ∑
ν∈Σ′(n−1)

γν [V(ν)]
)

= 0
}
,

where, for any ν ∈ Σ′(n − 1), V(ν) denotes the rational curve in Z stable
under the torus action which is associated to ν, and where [V(ν)] is the
induced Chow class (see Fulton [11]). Now let L ∈ Pic(|P(w)|) be an ample
line bundle. From standard intersection theory, we have (see, e.g., [12])

ρ�

( ∑
ν∈Σ′(n−1)

γν [V(ν)]
)

= 0 if and only if

c1(ρ�L) ∩
( ∑

ν∈Σ′(n−1)

γν [V(ν)]
)

= 0.

Since c1(ρ�L) ∩ [V(ν)] ≥ 0 for any ν, it follows that

Mρ(Z) =
{ ∑

ν∈Σ′(n−1)

γν [V(ν)]
∣∣∣ γν ∈ N, ρ�([V(ν)]) = 0

}
,

hence the claim.
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4 S. BOISSIÈRE, É. MANN, AND F. PERRONI

3.2. Crepant resolution of |P(1,3,4,4)|
The coarse moduli space of P(1,3,4,4) has a transversal A3-singularity on

the line {[0 : 0 : x2 : x3]} ∼= P1 and an isolated singularity of type (1/3)(1,1,1)
at the point [0 : 1 : 0 : 0]. We identify the stacky fan (N,β,Σ) with

(
Z3,

{Λ(β(vi))}i∈ {0,1,2,3},Σ
)
, where the vi are defined in (1) and where Λ: N →

Z3 is the isomorphism defined by sending v0 
→ (−3, −4, −4), v1 
→ (1,0,0),
v2 
→ (0,1,0), and v3 
→ (0,0,1). A crepant resolution of |P(1,3,4,4)| can be
constructed using standard methods in toric geometry. Consider the integral
points

P1 := (0, −1, −1) =
3
4
Λ
(
β(v1)

)
+

1
4
Λ
(
β(v0)

)
,

P2 := (−1, −2, −2) =
1
2
Λ
(
β(v1)

)
+

1
2
Λ
(
β(v0)

)
,

P3 := (−2, −3, −3) =
1
4
Λ
(
β(v1)

)
+

3
4
Λ
(
β(v0)

)
,

P4 := (−1, −1, −1) =
1
3
Λ
(
β(v0)

)
+

1
3
Λ
(
β(v2)

)
+

1
3
Λ
(
β(v3)

)
,

and subdivide Σ by inserting the rays generated by P1, P2, P3, and P4 as
shown in Figure 1. Let Σ′ be the fan obtained after this subdivision, let Z be

Figure 1: Polytope of P(1,3,4,4) and of the crepant resolution Z
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the associated toric variety, and let ρ : Z → |P(1,3,4,4)| be the birational
morphism associated to the identity on Z3. One checks easily that Z is
smooth and ρ is crepant. This follows from the existence of a continuous
piecewise linear function |Σ| → R, which is linear when restricted to each
cone of Σ and associates the value −1 to the minimal lattice points of the
rays of Σ′ (see [11, Section 3.4]).

Remark 3.2.1. In [2, Proposition 2.2], we showed that the coarse moduli
space |P(1,3,4,4)| admits a unique crepant resolution, up to isomorphism.
So the toric crepant resolution Z constructed above is unique.

3.3. Statement of the main result
By Lemma 3.1.1, the cone Mρ(Z) can be directly determined from the

combinatorial data Σ and Σ′. In our case, Mρ(Z) is generated by four curves:
an A3-chain Γ1, Γ2, Γ3 over the transversal A3-singularity and one curve Γ4

over the isolated singularity (see Section 5.2 for the toric equations of these
curves). We compute the Gromov-Witten invariants of the crepant resolu-
tion Z of genus zero, homology class Γ = d1Γ1 + d2Γ2 + d3Γ3, and without
marked points. We denote by M0,0(Z,Γ) the corresponding moduli space.
Note that the expected dimension is zero. Our result confirms Perroni’s
conjecture [16, Conjecture 5.1].

Theorem 3.3.1. Let ρ : Z → |P(1,3,4,4)| be the crepant resolution of
|P(1,3,4,4)| defined in Section 3.2, and let Γ = d1Γ1 + d2Γ2 + d3Γ3. Then

deg[ M0,0(Z,Γ)]vir

=

{
1/d3 if Γ = d

∑ν
i=μ Γi, with 1 ≤ μ ≤ ν ≤ 3 and d ∈ N∗,

0 otherwise.

§4. Proof of Theorem 3.3.1

To prove Theorem 3.3.1, we use the deformation invariance property of
the Gromov-Witten invariants. We define an open neighborhood V of the
singular locus {

[0 : 0 : x2 : x3] ∈ |P(1,3,4,4)|
} ∼= P1

of |P(1,3,4,4)|, we construct an explicit deformation of V , and then we
construct a simultaneous resolution. This gives a deformation of ρ−1(V ),
a neighborhood of the component of the exceptional divisor which lies over
|P(4,4)|. We will denote this deformation by Graph(μ)t, t ∈ Δ. Then we
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6 S. BOISSIÈRE, É. MANN, AND F. PERRONI

relate the Gromov-Witten invariants of Z we are interested in with some
Gromov-Witten invariants of Graph(μ)t that we can explicitly compute.

4.1. The neighborhood
By abuse of notation, for any a ∈ Z, we denote by the same symbol

O(a) the sheaf OP1(a) and the corresponding vector bundle, and we identify
O(a) ⊗ O(b) with O(a+ b) using the canonical isomorphism. For any vector
bundle E, we denote by 0E its zero section.

The transversal A3-singularity of |P(1,3,4,4)| is identified with P1 by the
morphism [z0 : z1] 
→ [0 : 0 : z0 : z1]. We set

Vi :=
{
[x0 : x1 : x2 : x3] ∈ |P(1,3,4,4)| such that xi �= 0

}
for any i ∈ {0,1,2,3}, and we set V := V2 ∪ V3 ⊂ |P(1,3,4,4)|.

Consider the bundle morphism

ψ : O(1) ⊕ O(3) ⊕ O(1) −→ O(4)

(ξ, η, ζ) 
−→ ξ ⊗ η − ζ⊗4,

and consider the inverse image under ψ of the zero section of O(4)

ψ−1
(
Im(0O(4))

)
⊂ O(1) ⊕ O(3) ⊕ O(1).

Lemma 4.1.1. The variety V is isomorphic to ψ−1(Im(0O(4))).

Proof. Let U4 ⊂ C� be the group of fourth roots of the unity acting lin-
early on C3 with weights (1,3,0). We have the identification

C3/U4 −→ V2

(2)
[(x0, x1, x3)] 
−→ [x0 : x1 : 1 : x3],

where (x0, x1, x3) are coordinates on C3 and where [(x0, x1, x3)] denotes the
equivalence class of the corresponding point. On the other hand, we have
the isomorphism

(3) C3/U4 −→ Spec
(
C[s,u, v,w]/(uv − w4)

)
given by setting s := x3, u := x4

0, v := x4
1, and w := x0x1. The composition

of the inverse of (2) with (3) gives the isomorphism V2 � Spec(C[s,u, v,w]/
(uv − w4)). In the same way, by setting t := x2, x := x4

0, y := x4
1, and z :=
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x0x1, we have the isomorphism V3 � Spec(C[t, x, y, z]/(xy − z4)). The affine
open subvarieties V2, V3 ⊂ V glue together by means of the ring isomorphism

C[s, 1
s , u, v,w]

(uv − w4)
−→

C[t, 1
t , x, y, z]

(xy − z4)

s 
−→ 1
t

u 
−→ 1
t
x

v 
−→ 1
t3

y

w 
−→ 1
t
z.

On the other hand, consider a trivialization of the bundle O(1) ⊕ O(3) ⊕ O(1)
on W0 = {[z0, z1] ∈ P1 | z0 �= 0}. On such a trivialization, the morphism ψ is
given by

W0 × C3 −→ W0 × C

(s, v1, v2, v3) 
−→ (s, v1v2 − v4
3).

Hence we have that, over W0, ψ−1(Im(0O(4))) is Spec(C[s, v1, v2, v3]/(v1v2 −
v4
3)). If we do the same over W1 = {[z0, z1] ∈ P1 | z1 �= 0}, we deduce that V

and ψ−1(Im(0O(4))) are a union of the same affine varieties with the same
gluing. This proves that they are isomorphic.

4.2. The deformation
We now construct a deformation of V . The construction is inspired by the

theory of deformations of surfaces with An-singularities (see Tyurina [20]).
Consider the fibration f : V → P1 defined as the composition of the iso-
morphism V

∼−→ ψ−1(Im(0O(4))) in Lemma 4.1.1, followed by the inclusion
ψ−1(Im(0O(4))) ⊂ O(1) ⊕ O(3) ⊕ O(1), and then the bundle map. The mor-
phism f : V → P1 exhibits V as a 3-fold fibered over P1 with fibers iso-
morphic to a surface A3-singularity. Furthermore, the fibration is locally
trivial.

The aim is to extend some of the results of Tyurina [20] to V , when
viewed as a family of such surfaces with respect to f : V → P1. Consider the
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8 S. BOISSIÈRE, É. MANN, AND F. PERRONI

bundle morphism

χ : O(1)⊕4 −→ O(1)

(δ1, . . . , δ4) 
−→ δ1 + · · · + δ4,

and set F := χ−1(Im(0O(1))). Then consider the bundle morphism

π : O(1) ⊕ O(3) ⊕ O(1) ⊕ F −→ O(4)

(ξ, η, ζ, δ1, . . . , δ4) 
−→ ξ ⊗ η −
4⊗

i=1

(ζ + δi),

and set VF := π−1(Im(0O(4))). We obtain a Cartesian diagram

V

f

VF

F

P1
0F

F

where the arrow F is the composition of the inclusion VF → O(1) ⊕ O(3) ⊕
O(1) ⊕ F followed by the projection O(1) ⊕ O(3) ⊕ O(1) ⊕ F → F . Note
that F : VF → F is a family of surfaces. We now construct a simultaneous
resolution. Consider the rational map

μ : VF ��� P
(

O(1) ⊕ O(1)
)

× P
(

O(1) ⊕ O(2)
)

× P
(

O(1) ⊕ O(3)
)

(ξ, η, ζ, δ1, . . . , δ4) 
−→ (ξ, ζ + δ1) ×
(
ξ, (ζ + δ1) ⊗ (ζ + δ2)

)
×
(
ξ,

3⊗
i=1

(ζ + δi)
)
,

and let Graph(μ) be the graph of μ. We denote by Graph(μ) the closure
of Graph(μ) in VF ×

(×3
i=1 P(O(1) ⊕ O(i))

)
. Let R : Graph(μ) → VF be

the composition of the inclusion Graph(μ) → VF ×
(×3

i=1 P(O(1) ⊕ O(i))
)

followed by the projection on the first factor VF ×
(×3

i=1 P(O(1) ⊕ O(i))
)

→
VF .
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Lemma 4.2.1. The diagram

(4)

Graph(μ)
R

F ◦R

VF

F

F
id

F

is a simultaneous resolution of F : VF → F .

Proof. The property of being a simultaneous resolution is local in F .
Diagram (4) is fibered over P1. If we restrict it to an open subset of P1

where O(1) is trivial, then the assertion is exactly the result obtained by
Brieskorn [5].

Set Δ := C. For any section θ ∈ H0(P1, F ), we get a deformation of V

parameterized by Δ

V

f

Vθ

fθ

VF

F

P1 P1 × Δ
Θ

F

where Θ: P1 × Δ → F sends ([z0 : z1], t) to t · θ([z0 : z1]), where Vθ is defined
by the requirement that the diagram is Cartesian, and where the map P1 →
P1 × Δ is the inclusion [z0 : z1] 
→ ([z0 : z1],0). The pullback of diagram (4)
with respect to Θ gives the diagram

(5)

Graph(μ)θ

ρθ

Vθ

fθ

P1 × Δ
id

P1 × Δ

where ρθ is the pullback of R in (4). Observe that (5) is a simultaneous
resolution of Vθ over P1 × Δ.

4.3. Computation of the invariants
We specialize the previous construction in the case where θ is given as

follows. Let δ ∈ H0(P1, O(1)) be a nonzero section, set

δ� := exp
((2� + 1)πi

4

)
· δ, � ∈ {1, . . . ,4},
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10 S. BOISSIÈRE, É. MANN, AND F. PERRONI

and define θ := (δ1, . . . , δ4) ∈ H0(P1, F ). For any t ∈ Δ, we set Vt := f −1
θ (P1 ×

{t}), ft : Vt → P1 × {t} as the restriction of fθ, and we set Graph(μ)t :=
ρ−1

θ (Vt), ρt : Graph(μ)t → Vt as the restriction of ρθ. We have the following
commutative diagram

ρ−1(V ) = Graph(μ)0

ρ0=ρ

Graph(μ)θ

ρθ

Graph(μ)t

ρt

V

f0=f

Vθ

fθ

Vt

ft

P1 × {0} P1 × Δ P1 × {t}

Lemma 4.3.1. Let δ be a global section of O(1) → P1 that vanishes only
at one point. Then, for t �= 0, the variety Graph(μ)t has only one connected
nodal complete curve of genus zero whose dual graph is of type A3 and which
is contracted by ρt (see the diagram above).

Proof. Without lost of generality, we can assume that δ vanishes only at
the point [1 : 0]. Let W0 := {[z0 : z1] ∈ P1 | z0 �= 0}. As our bundles are trivial
over W0, the restriction of V over W0 is given by W0 × V(xy − z4) ⊂ W0 × C3.
The choice of the δ� implies that the 3-fold Vt is given by

W0 × V
(
xy −

4∏
�=1

(z + δ�t)
)

= W0 × V
(
xy − z4 − (tδ)4

)
⊂ W0 × C3.

By means of ft, Vt is viewed as a family of surfaces parameterized by P1.
As t �= 0 and δ([1 : 0]) = 0, the only singular surface of the family is the
surface f −1

t ([1 : 0] × {t}), which is a surface with an isolated A3-singularity.
Since ρt : Graph(μ)t → Vt is a simultaneous resolution over P1 × {t}, the
fiber Graph(μ)([1:0],t) is a smooth surface with only one complete connected
curve of genus zero whose dual graph is of type A3 and which is contracted
by ρt. For any [z0 : z1] �= [1 : 0], the fiber Graph(μ)([z0:z1],t)

is isomorphic
to the smooth surface f −1

t ([z0 : z1] × {t}). Hence, the exceptional locus of
the resolution ρt : Graph(μ)t → Vt has only one connected nodal complete
curve of genus zero whose dual graph is of type A3 and which is contracted
by ρt.
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Let Γ1,Γ2,Γ3 ∈ H2(Graph(μ)t;Z) be the homology classes of the compo-
nents of the connected nodal complete curve of genus zero whose dual graph
is of type A3 and which is contracted by ρt. Let us assume that they are
numbered in such a way that if Γi is the class of Γ̃i, then the intersection
Γ̃i ∩ Γ̃j is empty if |i − j| > 1. Then Lemma 4.3.1 implies that, for t �= 0,
Graph(μ)t satisfies the hypothesis of [8, Proposition 2.10]. Therefore, we
deduce the following formula:

deg
[

M0,0(Graph(μ)t,Γ)
]vir

(6)

=

{
1/d3 if Γ = d(Γμ + Γμ+1 + · · · + Γν), for μ ≤ ν,

0 otherwise.

This formula together with Lemma 4.3.2 completes the proof of Theo-
rem 3.3.1.

Lemma 4.3.2. Let Γ be as in the statement of Theorem 3.3.1. For any
t ∈ Δ, the following equality holds:

deg
[

M0,0

(
Graph(μ)t,Γ

)]vir = deg[ M0,0(Z,Γ)]vir.

Proof. Since Γ is the homology class of a contracted curve, we have an
isomorphism of moduli stacks (see [16, Lemma 7.1])

(7) M0,0(Z,Γ) � M0,0

(
ρ−1(V ),Γ

)
.

In particular, the right-hand side moduli stack is proper with projective
coarse moduli space. The isomorphism (7) identifies the tangent-obstruction
theories used to define the Gromov-Witten invariants, hence the virtual
fundamental classes [ M0,0(ρ−1(V ),Γ)]vir and [ M0,0(Z,Γ)]vir have the same
degree. Then it is enough to prove that, for any t ∈ Δ,

(8) deg
[

M0,0(Graph(μ)t,Γ)
]vir = deg

[
M0,0(ρ−1(V ),Γ)

]vir
.

Gromov-Witten invariants of projective varieties are invariant under
deformation of the target variety. We now explain why this result holds
for ρ−1(V ) and Graph(μ)t, even if they are not projective.

Let qθ : Graph(μ)θ → Δ be the composition of fθ ◦ ρθ in (5), followed by
the projection P1 × Δ → Δ. The morphism qθ is smooth, as it is a compo-
sition of smooth morphisms. Moreover, qθ factorizes through an embedding
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12 S. BOISSIÈRE, É. MANN, AND F. PERRONI

followed by a projective morphism. To see this, it is enough to prove the
same statement for the morphism F ◦ R : Graph(μ) → F in (4). By construc-
tion, Graph(μ) is embedded in (O(1) ⊕ O(3) ⊕ O(1) ⊕ F ) ×

(×3
i=1 P(O(1) ⊕

O(i))
)
; moreover, F ◦ R is the restriction of the projection (O(1) ⊕ O(3) ⊕

O(1) ⊕ F ) ×
(×3

i=1 P(O(1) ⊕ O(i))
)

→ F .
Let us now consider the projection O(1) ⊕ O(3) ⊕ O(1) ⊕ F → F . Because

it has a vector bundle structure over F , then it can be seen as a subbundle of
the projective bundle P(O(1) ⊕ O(3) ⊕ O(1) ⊕ F ⊕ OF ) → F , and therefore
we have that F ◦ R factorizes as the composition of an embedding followed
by a projective morphism.

To finish the proof, consider the moduli stack which parameterizes rel-
ative stable maps to qθ : Graph(μ)θ → Δ of homology class Γ and genus
zero. We denote it by M0,0(Graph(μ)θ/Δ,Γ). As Γ is the class of curves
which are contracted by the resolution ρθ and qθ : Graph(μ)θ → Δ factor-
izes through an embedding followed by a projective morphism, Abramovich
and Vistoli’s theorem [1, Theorem 1.4.1] implies that the moduli space
M0,0(Graph(μ)θ/Δ,Γ) is a proper Deligne-Mumford stack. Since the
class Γ is contracted by ρθ, for any t ∈ Δ, the fiber at t of the natural mor-
phism M0,0(Graph(μ)θ/Δ,Γ) → Δ is the proper Deligne-Mumford stack
M0,0(Graph(μ)t,Γ). Then, by applying the same proof as in [14, Theo-
rem 4.2] to this situation, we get (8).

§5. Application to the cohomological crepant resolution conjec-
ture

5.1. The cohomological crepant resolution conjecture
Ruan’s crepant resolution conjecture states that when ρ : Z → X is a

crepant resolution of the coarse moduli space X of a Gorenstein orbifold X ,
the (orbifold) quantum cohomology of X and Z are related by analytic con-
tinuation in the quantum parameters. This conjecture was formulated more
precisely by Bryan and Graber [6] as an isomorphism of Frobenius mani-
folds (under some condition), and then further interpreted in full generality
by Coates, Iritani, and Tseng [10] as a symplectic transformation between
the Givental spaces associated to X and Z. This symplectic transformation
encodes all information on the relationships between the genus zero Gromov-
Witten theories of X and Z. We refer to Iritani [13] for details and references
on this still-evolving conjecture. At a lower level, the conjecture implies the
cohomological crepant resolution conjecture; that is, the quantum corrected
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cohomology ring of Z (deformed by Gromov-Witten invariants computed
on curves contracted by ρ) is isomorphic to the orbifold (Chen-Ruan) coho-
mology ring of X , after evaluation of the quantum parameters to roots of
the unity. In the next sections, we check this conjecture on some weighted
projective spaces.

We briefly recall the definition of the quantum corrected cohomology ring
(see [18]). Assume that Mρ(Z) is generated by a finite number of classes of
rational curves which are linearly independent over Q. This will be the case
for weighted projective spaces by Lemma 3.1.1. Fix a set of such generators
Γ1, . . . ,Γm. Then, any Γ ∈ Mρ(Z) can be written in a unique way as Γ =∑m

�=1 d�Γ� for some nonnegative integers d�. Assign a formal variable q�

for each Γ� so that Γ =
∑m

�=1 d�Γ� ∈ Mρ(Z) corresponds to the monomial
qd1
1 · · · qdm

m . The quantum 3-points function is by definition

(9) (α1, α2, α3)q(q1, . . . , qm) :=
∑

d1,...,dm>0

ΨZ
Γ (α1, α2, α3)qd1

1 · · · qdm
m ,

where α1, α2, α3 ∈ H�(X,C) and where ΨZ
Γ (α1, α2, α3) is the Gromov-Witten

invariant of Z of genus zero, homology class Γ, and three marked points. One
makes the assumption that (9) defines an analytic function of the variables
q1, . . . , qm on some region of the complex space Cm. The quantum corrected
cup product α1 ∗ρ α2 of two classes α1, α2 ∈ H�(Z;C) is then defined by
requiring that, for all α3 ∈ H�(Z;C), one has∫

Z
(α1 ∗ρ α2)α3 =

∫
Z

α1α2α3 + (α1, α2, α3)q(q1, . . . , qm).

The resulting associative, skew-symmetric, graded ring (H�(Z;C), ∗ρ) is the
quantum corrected cohomology ring with quantum parameters specialized at
(q1, . . . , qm). It is also denoted by H�

ρ (Z;C)(q1, . . . , qm).
Let us fix the notation used for the computations below. Let ρ : Z →

|P(w)| be a crepant resolution defined by a subdivision Σ′ of the fan Σ of
|P(w)|. Set H := c1(OP(w)(1)) ∈ H2(P(w);C) and h := ρ�H ∈ H2(Z;C). For
i ∈ {0, . . . , n}, we denote by bi ∈ H2(Z;C) the first Chern class of the line
bundle associated to the torus-invariant divisor corresponding to the ray
of Σ′ generated by β(vi), and similarly e1, . . . , ed ∈ H2(Z;C) for the rays in
Σ′(1) \ Σ(1). Since ρ is crepant, we have h = (1/

∑n
i=0 wi)(

∑n
i=0 bi +

∑d
j=1 ej)

(see Fulton [11]). Since H is an ample line bundle (see [11, Section 3.4]),
Lemma 3.1.1 shows that the Mori cone Mρ(Z) is generated by the set

(10)
{
[V (ν)]

∣∣ h ∩ [V (ν)] = 0, ν ∈ Σ′(n − 1) \ Σ(n − 1)
}
.
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5.2. The case of |P(1,3,4,4)|
Consider the crepant resolution ρ : Z → |P(1,3,4,4)| defined in Section 3.2.

Theorem 5.2.1. For (q1, q2, q3, q4) ∈ {(i, i, i,0), (−i, −i, −i,0)}, there is an
explicit ring isomorphism

H�
ρ (Z;C)(q1, q2, q3, q4) ∼= H�

CR

(
P(1,3,4,4);C

)
which is an isometry with respect to the Poincaré pairing on H�

ρ (Z;C)(q1, q2,

q3, q4) and with respect to the Chen-Ruan pairing on H�
CR(P(1,3,4,4);C).

Proof. A toric computation shows that the cohomology ring of Z is iso-
morphic to the quotient of the polynomial ring C[h, e1, e2, e3, e4] by the ideal
generated by

3he4, e1e3, e1e4, e2e4, e3e4,

e2
1 − 10he1 − 4he2 − 2he3 + 24h2,

e1e2 + 3he1 + 2he2 + he3 − 12h2,

e2
2 − 6he1 − 12he2 − 2he3 + 24h2,

e2e3 + 3he1 + 6he2 + he3 − 12h2,

e2
3 − 6he1 − 12he2 − 14he3 + 24h2,

16h2e1,16h2e2,16h2e3,16h3 − 1
27

e3
4.

We fix the following basis of the vector space H�(Z;C):

1, h, e1, e2, e3, e4, h
2, he1, he2, he3, e

2
4, h

3.

Let Γ1,Γ2,Γ3,Γ4 ∈ Mρ(Z) be the generators defined in Section 3.3 and
whose equations are Γ1 := PD(4he1), Γ2 := PD(4he2), Γ3 := PD(4he3), and
Γ4 := PD(−(1/3)e2

4). We now give a presentation of the quantum corrected
cohomology ring H�

ρ (Z;C)(q1, q2, q3,0). First, notice that any curve of
homology class d4Γ4 is disjoint from any other curve of class d1Γ1 + d2Γ2 +
d3Γ3; in other words, M0,0(Z,Γ) is empty if Γ =

∑4
�=1 d�Γ� with d4 · (d1 +

d2 +d3) �= 0. From the degree axiom, it follows that we need to consider only
Gromov-Witten invariants ΨZ

Γ (α1, α2, α3) with αi ∈ H2(Z;C), i ∈ {1,2,3}.
Finally, by applying the divisor axiom, we deduce the following expression
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for the quantum 3-points function:

〈α1, α2, α3〉q(q1, q2, q3, q4)

=
∑

d1,d2,d3>0

( 3∏
i=1

∫
∑3

�=1 d�Γ�

αi

)
deg

[
M0,0

(
Z,

3∑
�=1

d�Γ�

)]vir
qd1
1 qd2

2 qd3
3

+
∑
d4>0

( 3∏
i=1

∫
d4Γ4

αi

)
deg[ M0,0(Z,d4Γ4)]virqd4

4 .

Since
∫
Γ�

h = 0 for any � ∈ {1,2,3,4}, one has h ∗ρ α = hα for any α ∈
H�(Z;C), and similarly

ei ∗ρ e4 =

{
eie4 = 0 if i �= 4,

ε(q4)e2
4 otherwise,

for some function ε(q4) such that ε(0) = 1.
Since in the isomorphism of rings that we will define we put q4 = 0, we

only consider classes Γ = d1Γ1 + d2Γ2 + d3Γ3 for di ∈ N. We set Γμν :=
Γμ + · · · + Γν for 1 ≤ μ ≤ ν ≤ 3. Using Theorem 3.3.1, we get

deg[ M0,0(Z,Γ)]vir =

{
1/d3 if Γ = dΓμν for 1 ≤ μ ≤ ν ≤ 3 and d ∈ N∗,

0 otherwise.

Hence, the remaining part of the multiplicative table of H�
ρ (Z;C)(q1, q2, q3,0)

is as follows:

e1 ∗ρ e1 = −24h2 +
(
10 + 16

q1

1 − q1
+ 4

q1q2

1 − q1q2
+ 4

q1q2q3

1 − q1q2q3

)
he1

+
(
4 + 4

q2

1 − q2
+ 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)
he2

+
(
2 + 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)
he3,

e1 ∗ρ e2 = 12h2 +
(

−3 − 8
q1

1 − q1
+ 4

q1q2

1 − q1q2

)
he1

+
(

−2 − 8
q2

1 − q2
+ 4

q1q2

1 − q1q2
− 4

q2q3

1 − q2q3

)
he2

+
(

−1 − 4
q2q3

1 − q2q3

)
he3,
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e1 ∗ρ e3 =
(

−4
q1q2

1 − q1q2
+ 4

q1q2q3

1 − q1q2q3

)
he1

+
(
4

q2

1 − q2
− 4

q1q2

1 − q1q2
− 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)
he2

+
(

−4
q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)
he3,

e2 ∗ρ e2 = −24h2 +
(
6 + 4

q1

1 − q1
+ 4

q1q2

1 − q1q2

)
he1

+
(
12 + 16

q2

1 − q2
+ 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3

)
he2

+
(
2 + 4

q3

1 − q3
+ 4

q2q3

1 − q2q3

)
he3,

e2 ∗ρ e3 = 12h2 +
(

−3 − 4
q1q2

1 − q1q2

)
he1

+
(

−6 − 8
q2

1 − q2
− 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3

)
he2

+
(

−1 − 8
q3

1 − q3
+ 4

q2q3

1 − q2q3

)
he3,

e3 ∗ρ e3 = −24h2 +
(
6 + 4

q1q2

1 − q1q2
+ 4

q1q2q3

1 − q1q2q3

)
he1

+
(
12 + 4

q2

1 − q2
+ 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)
he2

+
(
14 + 16

q3

1 − q3
+ 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)
he3.

To compute the Chen-Ruan cohomology ring H�
CR(X ;C) (here X = P(1,3,

4,4)), we follow Boissière, Mann, and Perroni [3]. The twisted sectors are
indexed by the set T :=

{
exp(2πiγ) | γ ∈ {0,1/3,2/3,1/4,1/2,3/4}

}
. For

g ∈ T , written g = exp(2πiγ) with γ ∈ {0,1/3,2/3,1/4,1/2,3/4}, the age of
g is given by the formula

age(g) = {γ} + {3γ} + {4γ} + {4γ},

where {·} denotes the fractional part. For any g ∈ T, X(g) is a weighted
projective space. Setting I(g) := {i ∈ {0,1,2,3} | gwi = 1}, one has X(g) =

https://doi.org/10.1215/00277630-2010-015 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-015


GROMOV-WITTEN INVARIANTS OF THE CREPANT RESOLUTION OF P(1,3,4,4) 17

P(wI(g)), where wI(g) = (wi)i∈I(g). The inertia stack is the disjoint union of
the twisted sectors

IX =
⊔
g∈T

P(wI(g)).

As a vector space, the Chen-Ruan cohomology is the cohomology of the
inertia stack; that is, the graded structure is obtained by shifting the degree
of the cohomology of any twisted sector by twice the corresponding age. We
have

Hp
CR(X ;C) =

⊕
g∈T

Hp−2age(g)
(
P(wI(g));C

)

= Hp
(
P(1,3,4,4);C

)
⊕ Hp−2

(
P(3);C

)
⊕ Hp−4

(
P(3);C

)
(11)

⊕ Hp−2
(
P(4,4);C

)
⊕ Hp−2

(
P(4,4);C

)
⊕ Hp−2

(
P(4,4);C

)
.

A basis of H�
CR(X ;C) is easily obtained in the following way, set

H,E1,E2,E3,E4 ∈ H�
CR(X ;C)

as the image of c1(OX (1)) ∈ H2(X ;C), 1 ∈ H0(X(exp(πi/2));C), 1 ∈
H0(X(exp(πi));C), 1 ∈ H0(X(exp(πi3/2));C), and 1 ∈ H0(X(exp(2πi/3));C),
respectively, under the inclusion H�−2age(g)(P(wI(g))) → H�

CR(X ) determined
by the decomposition (11). As a C-algebra, the Chen-Ruan cohomology ring
is generated by H,E1,E2,E3,E4 with the following relations (see [3]):

HE4,E1E1 − 3HE2,E1E2 − 3HE3,E1E3 − 3H2,

E2E2 − 3H2,E2E3 − HE1,E3E3 − HE2,16H3 − E3
4 ,

H2E1,H
2E2,H

2E3,E1E4,E2E4,E3E4.

We see that the following elements form a basis of H�
CR(X ;C) which we fix

for the rest of the proof:

1,H,E1,E2,E3,E4,H
2,HE1,HE2,HE3,E

2
4 ,H3.

(Note that the elements of our basis are different from those used in [3] by
a combinatorial factor.)

For cohomology classes α1 and α2, the product α1 ∗ρ α2 ∈ H�
ρ (Z;C)(q1, q2,

q3,0) differs from the usual cup product only when α1, α2 ∈ {e1, e2, e3}. We

https://doi.org/10.1215/00277630-2010-015 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-015
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now set q1 = q2 = q3 = i, and we compute ei ∗ρ ej in the choosen basis of
H�(Z;C) to get

e1 ∗ρ e1 = −24h2 + (−2 + 6i)he1 − 4he2 + (−2 − 2i)he3,

e1 ∗ρ e2 = 12h2 + (−1 − 4i)he1 + (2 − 4i)he2 + he3,

e1 ∗ρ e3 = −2ihe1 − 2ihe3,

e2 ∗ρ e2 = −24h2 + (2 + 2i)he1 + 8ihe2 + (−2 + 2i)he3,

e2 ∗ρ e3 = 12h2 − he1 + (−2 − 4i)he2 + (1 − 4i)he3,

e3 ∗ρ e3 = −24h2 + (2 − 2i)he1 + 4he2 + (2 + 6i)he3.

We now define a linear map

(12) H�
ρ (Z;C)(i, i, i,0) → H�

CR

(
P(1,3,4,4);C

)
as follows. We send⎛

⎜⎜⎜⎜⎝
h

e1

e2

e3

e4

⎞
⎟⎟⎟⎟⎠ 
−→

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 −

√
2 −2i

√
2 0

0 −i
√

2 2i −i
√

2 0
0

√
2 −2i −

√
2 0

0 0 0 0 3exp(2πi
3 )

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

H

E1

E2

E3

E4

⎞
⎟⎟⎟⎟⎟⎟⎠

(the image of the other elements of the basis is uniquely determined by
requiring that (12) be a ring isomorphism). A direct computation shows
that (12) is a ring isomorphism and that it is an isometry with respect
to the inner products given by the Poincaré duality and the Chen-Ruan
pairing, respectively.

The case q1 = q2 = q3 = −i and q4 = 0 is analogous to the previous one.
We define a linear map

(13) H�
ρ (Z;C)(−i, −i, −i,0) → H�

CR

(
P(1,3,4,4);C

)
by sending⎛

⎜⎜⎜⎜⎜⎜⎝

h

e1

e2

e3

e4

⎞
⎟⎟⎟⎟⎟⎟⎠


−→

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 −

√
2 2i

√
2 0

0 i
√

2 −2i i
√

2 0
0

√
2 2i −

√
2 0

0 0 0 0 3exp(2πi
3 )

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

H

E1

E2

E3

E4

⎞
⎟⎟⎟⎟⎟⎟⎠
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and extending to the remaining part of the basis (in the unique way) such
that the resulting map is a ring isomorphism. Also, in this case a direct
computation shows that (13) is a ring isomorphism and that it respects the
inner pairings.

Remark 5.2.2. The values q1 = q2 = q3 = ±i were proposed in [16, Con-
jecture 1.9]: thus Theorem 5.2.1 agrees with this conjecture. The change of
variables is inspired by those of Nahm and Wendland [15] (see also [7], [9]).

The fact that one quantum parameter can be put to zero to get the
conjectured isomorphism is strange in regard to the conjecture, and some-
how unsatisfactory. The problem concerns the computation of the function
ε(q4) in the proof. In [2], we solve this problem so that the fourth quantum
parameter can be put to 1.

5.3. The case of |P(1, . . . ,1, n)|
The quantum parameter put to zero in the case of P(1,3,4,4) corresponds

to the isolated singularity (1/3)(1,1,1). Surprisingly, this phenomenon can
be observed in any dimension by considering the n-dimensional weighted
projective space P(1, . . . ,1, n) whose coarse moduli space has an isolated
singularity of type (1/n)(1, . . . ,1) at the point [0 : . . . : 0 : 1]. In this example,
a crepant resolution can be constructed for any n.

We identify the stacky fan (N,β,Σ) defined in (1) with
(
Zn, {Λ(β(vi))}n

i=0,

Σ
)

by means of the isomorphism Λ : N → Zn defined by sending v0 to
(−1, . . . , −1, −n) and vi to the ith vector of the standard basis of Zn, for
i ∈ {1, . . . , n}. The crepant resolution is defined as follows. Consider the ray
generated by

P := (0, . . . ,0, −1) =
1
n

n−1∑
i=0

Λ
(
β(vi)

)
,

and let Σ′ be the fan obtained from Σ (by refinement) by replacing the cone
generated by Λ(β(v0)), . . . ,Λ(β(vn−1)) with the cones generated by P and
the rays Λ(β(v0)), . . . , ̂Λ(β(vi)), . . . ,Λ(β(vn−1)) for any i ∈ {0, . . . , n − 1}. We
draw as an example the polytope for the case n = 3 in Figure 2. Define Z

to be the toric variety associated to Σ′, and define ρ : Z → |P(1, . . . ,1, n)| to
be the morphism associated to the identity in Zn. We have the following.

Proposition 5.3.1. For any n ≥ 2, there is an explicit ring isomorphism

H�(Z;C) ∼= H�
CR

(
P(1, . . . ,1, n);C

)
.
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Figure 2: Polytope of P(1,1,1,3) and a crepant resolution

Proof. One computes that H�(Z;C) ∼= C[b0, . . . , bn, e]/I , where I is gen-
erated by

−b0 + bi for 1 ≤ i ≤ n − 1,

−nb0 − e + bn, ebn, b0 · · · bn−1.

With h := (1/2n)(b0 + · · · + bn + e) = b0 + (1/n)e, one gets a better presen-
tation as

H�(Z;C) ∼= C[h, e]
/〈

hn + (−1)n
( e

n

)n
, he

〉
.

The Mori cone Mρ(Z) is generated by one class Γ1 := PD((h − (e/n))n−2e).
We will set the quantum parameter q1 to zero so that we do not have to
compute any nontrivial Gromov-Witten invariants.

Concerning the Chen-Ruan cohomology ring of X := P(1, . . . ,1, n), the
twisted sectors are indexed by the set T = {exp((2πik/n)) | k ∈ {0, . . . , n −
1}}. For g ∈ T \ {1}, one has X(g)

∼= P(n), whereas X(1)
∼= X . As a vector

space, we have

(14) H�
CR(X ;C) :=

⊕
g∈T

H�−2age(g)(X(g)).

Let
H,E1 ∈ H2

CR(X ;C)

be the image of c1(OX (1)) ∈ H2(X ;C) and 1 ∈ H0(X(exp(2πi/n));C), respec-
tively, with respect to the inclusion H�−2age(g)(X(g)) → H�

CR(X ) determined
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by (14). Then we have the following presentation:

H�
CR

(
P(1, . . . ,1, n);C

) ∼= C[H,E1]/〈Hn − (E1)n,HE1〉.

The ring isomorphism

H�
CR

(
P(1, . . . ,1, n);C

) ∼−→ H�(Z;C)

is obtained by mapping H 
→ h and E1 
→ − exp(iπ/n)(e/n).
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