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SUMMARY

Thegoal of the present studywas to improve theCERES-wheatmodel simulationof grainprotein concentration (GPC)
for winter durum wheat and to use the model as a basis for the development of a GPC Simplified Forecasting Index
(SFIpro). The performances of CERES-wheat, which is one of themost widespread crop simulationmodels, with (i) its
standard GPC routine and (ii) a novel equation developed to improve the model GPC simulation for durum wheat,
were assessed through comparisonwith field data. Subsequently, CERES-wheatwas run for a 56-year period in order
to identify the most important status and forcing variables affecting GPC simulation. The number of dry days during
the early growth stages and the leaf area index (LAI; green leaf area per unit ground surface area) at heading stage
(LAI5) were identified as themain variables positively correlated with CERES-wheat predicted GPC, and so included
in the SFIpro. At validation against observed data SFIpro was found to perform differently on the basis of observed
plant LAI. In fact, SFIpro was able to forecast GPC variability for intermediate values of LAI5 ranging from 1 to 2,
while it totally failedwhen LAI5was outside this range (LAI5 < 1 or LAI5 > 2). The results suggest that the relationship
between LAI andGPC is not linear and that themodel assumptions for GPC simulation in CERES-wheat are only par-
tially confirmed, being valid for an intermediate range of LAI.

INTRODUCTION

Durum wheat (Triticum turgidum L. var. durum) is the
only species able to provide the raw material for trad-
itional pasta making. It is a key crop for Italian agricul-
ture in terms of both national consumption and
exportation. Grain protein concentration (GPC) has a
positive effect on the rheological and cooking proper-
ties of pasta (Dexter & Matsuo 1977; Cubadda et al.
2007). More specifically, gluten plays a key role in
determining the quality of the derived products. By
increasing the GPC, the fraction of gluten also
increases and its quality improves (Dexter & Matsuo
1977). For these reasons, in global wheat trade the
higher the GPC, the higher the price paid to farmers.

However, the high variability of climatic condi-
tions in Mediterranean countries makes it difficult to
guarantee a stable GPC and the quality standards
requested by grain dealers (Borghi et al. 1997;
Troccoli et al. 2000). Further, farmers of southern
European regions suffer from competition with
imported wheat and quality has become an even
more important issue. In this respect, correct manage-
ment of nitrogen (N) fertilization through N applica-
tions late in the season (between booting [growth
stage BBCH4; Lancashire et al. 1991] and flowering
stages [BBCH6]), is effective in promoting GPC
(Strong 1982; Bly & Woodard 2003) and in improv-
ing grain quality. Modelling can support decision-
making concerning late fertilization by providing
an early assessment of the harvest quality in terms
of GPC.
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In most wheat models, such as CERES-wheat
(Ritchie & Otter 1985), SWHEAT (van Keulen &
Seligman 1987), AFRCWHEAT2 (Porter 1993) and
APSIM-N-wheat (Asseng et al. 2002), GPC is deter-
mined by soil N availability and plant N demand.
The latter is positively related to leaf area expansion,
and thus the ability of leaf biomass to store N.
Therefore, models assume a ‘source-limited’ nature

of grain protein deposition and leaf area index (LAI)
(green leaf area per unit ground surface area) is the
main descriptor of the source of N available for trans-
location. However, while wheat crop models perform
well in assessing yield, inconsistent results have been
observed for GPC (Weiss & Moreno-Sotomayer 2006).
Consequently, the current algorithms need to be
reviewed and GPC modelling remains a challenge.
CERES-wheat, as reported extensively in Basso et al.

(2016), is among the most used crop simulation
models, successfully applied to simulate worldwide
crop growth and yield forecasting in response to
climate and climate change, soil and management.
Based on that, the model CERES-wheat (DSSAT-CSM
v4) was recently applied in a long-term analysis of
durum wheat production in Central Italy, with the
aim of identifying the main system components with
a predictive power for yield, and then to formulate a
simplified yield forecasting index suitable for oper-
ational applications (Dalla Marta et al. 2015).
Starting from that point, and based on the good per-

formance of the model in predicting yield, the main
goal of the present study is to expand that research
by using CERES-wheat, a widely used crop simulation
model, as the basis for the development of a simple
forecasting index for grain protein content assessment
(SFIpro) in durum wheat. This overarching objective
was achieved by: (i) development of a new equation
for GPC simulation in durum wheat; (ii) identification
of the main variables affecting modelled GPC using a
long-term simulation study; (iii) development of the
SFIpro forecasting index, based on the results of
these long-term simulations; and (iv) assessment of
SFIpro performance, through comparison between
forecasted and observed GPC.

MATERIALS AND METHODS

Study area and crop model performance in simulating
grain protein concentration

The long-term modelling developed in the present
study was focused on Val d’Orcia (Central Italy,
43°02′N, 11°68′E, 320 m a.s.l.), where durum wheat

is the most traditionally grown crop. The area has an
average annual temperature of 13·6 °C and a cumula-
tive precipitation of 715 mm. Wheat is grown in
‘Typic Ustorthents fine, mixed, calcareous, mesic’
soils (Soil Survey Staff 2014), moderately deep,
weakly alkaline, with a silty–clay–loam texture.

The CERES-wheat simulation model (DSSAT-CSM
version 4.0) used in the present study is a predictive
and deterministic model, designed to simulate the
effects of cultivar, crop management, weather and
soil on crop growth, development and production
(Ritchie & Otter 1985). The model operates on a
daily timestep and the minimum meteorological
inputs include precipitation (mm), solar radiation
(MJ/m2), and maximum and minimum air tempera-
tures (°C) (Jones & Kiniry 1986). The daily weather
data for the period 1955–2011 were collected from
six weather stations located in Val d’Orcia; Table 1
shows the main physical and chemical characteristics
of the soil profile used to initialize the model.

In most wheat simulation models, including CERES-
wheat, GPC is obtained as the result of independent
functions for dry matter and N accumulation into the
grain, with the latter predicted through estimating N
uptake by plant and N distribution into grains. The
model assumes that under optimal growing condi-
tions, the rate and duration of starch deposition
during grain filling are mainly determined by factors
operating within or close to the grain itself, and are
therefore sink-limited (Fischer et al. 1977). On the
other hand, the rate and duration of protein deposition
are determined by factors external to the grain and
therefore are mainly source-limited (Jenner et al.
1991). The calculation of N uptake assumes limitation
either by crop demand or by N availability. Therefore,
N assimilation depends on N supply from the soil and
on leaf area expansion, and thus on the leaf biomass
able to store N and translocate it into the grain
during grain filling. The source-limited assumption

Table 1. Main chemical and physical characteristics
of soil from the study area, and input soil profile used
to initialize the simulation model CERES-wheat

Depth (cm)
Master
horizon

Clay
%

Silt
% pH

CEC
(cmol/kg)

N
(g/kg)

30 Ap 38 53 8·5 15·5 0·75
50 C 43 50 7·6 19·3 0·78
150 C 42 50 7·6 18·0 0·80

CEC, cation-exchange capacity; N, nitrogen.
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implies that grain protein accumulation depends on
the N content of above-ground biomass at the begin-
ning of the grain filling. In optimal conditions, N avail-
able in the biomass is translocated into the grain, and
during grain filling the model simulates grain N based
on sink size, which is a function of the daily rate of dry
matter accumulation and the number of grains per
plant.

The CERES-wheat model was previously calibrated
and validated for winter durum wheat cvar Claudio,
widespread in the study area, in a previous study
(Dalla Marta et al. (2015). The crop productive poten-
tial and the timing of the phenological stages (Zadoks
et al. 1974) were calibrated by the genetic coefficients
of the ‘Winter-Europe’ genotype adjusted on the basis
of the best fit between the simulated and measured
yields and onset dates of the main crop stages (Dalla
Marta et al. 2015).

However, significant differences between ordinary
and durum wheat have been observed in field
studies in relation to the qualitative response of the
crop in the Mediterranean environment. Cossani
et al. (2011) observed on average 5 g/kg more grain
maximum N concentration for cvar Claudio com-
pared with ordinary wheat. Therefore, as a first step
in the present study, the model routine for GPC was
revised to make it more appropriate for modelling
durum wheat and cvar. Claudio in particular, using
the CERES-wheat outputs for biomass dry matter and
N concentration. Building on the assumptions of the
GPC sub-model, a new equation for GPC simulation
was developed (Eqn (1)). This equation assumes that
the total available N (TN) from the biomass is translo-
cated into the grain and that its ratio with the grain N
sink (NS) determines the N concentration. Hence,

GPC ¼ ðTN=NS × 100Þ þ 0�5Þ × 5�7 ð1Þ
where 0·5 is the additional factor due to the genetic
difference between durum and ordinary wheat
(Cossani et al. 2011) and 5·7 is the conversion factor
from grain N to protein content (Spratt 1979).

Total available nitrogen is the total N available for
translocation from above-ground biomass into the
grain at the beginning of grain filling. In this respect,
leaves and stems are the most important N reserves
in wheat; therefore in the current work plant straw
was considered as the N source, disregarding any con-
tribution from spikes and roots. Therefore, in Eqn (1),
TN was computed as the total leaf and stem biomass
(g DM/plant) multiplied by the appropriate N concen-
tration simulated by the model. The biomass weight
per hectare at the beginning of grain filling was con-
verted into biomass per plant on the basis of an
average plant density of 500 stems/m2.

The size of the grain NS was computed as equal to
the grain weight increase per plant simulated during
the grain-filling stage, depending on the difference
between the grain dry matter at the watery ripe stage
and at the fully ripe stage (Weiss & Moreno-
Sotomayer 2006).

The performance of the CERES-wheat model var-
iants, i.e. with and without the new GPC equation,
in terms of GPC prediction was evaluated by a correl-
ation analysis between simulated and observed data
(Table 2). The variety trials of the Regional Agency
for Development and Innovation in the Agro-forestry
Sector (ARSIA) supplied the crop data for model cali-
bration. Data were available for 10 years (1998–
2009) on one field per year. Once calibrated,
CERES-wheat was validated using a dataset from
field monitoring carried out by the Siena Provincial
Agrarian Consortium (CAPSI) in collaboration with
the Department of Agrifood Production and
Environmental Sciences – University of Florence
(DISPAA). The data were available over three
growing seasons (2009–2011), for a total number of
20 fields (nine in 2009, seven in 2010 and four in
2011). The ARSIA and CAPSI datasets supplied infor-
mation concerning crop management (e.g. sowing,
plant density and fertilization plans), plant phenology
and harvest (e.g. yield, grain humidity and GPC). The
following fitting coefficients were calculated: root-

Table 2. Performance of CERES-wheat crop model, with and without the new equation for simulation of grain
protein concentration

R2 RMSE (g/plant) RRMSE (%) EF CRM

CERES-wheat 0·352 (P⩽ 0·01) 4·38 32·39 −3·24 0·30
CERES-wheat with new equation 0·423 (P⩽ 0·01) 2·79 20·61 −0·71 0·16

RMSE, root-mean-square error; RRMSE, relative root-mean-square error; EF, model efficiency; CRM, coefficient of residual
mass.
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mean-square error (RMSE; Fox 1981; from 0 to +∞,
optimum 0), relative root-mean-square error (RRMSE;
Jørgensen et al. 1986; from 0 to +∞, optimum 0),
model efficiency (EF; Nash & Sutcliffe 1970; from
–∞ to 1, optimum 1; Eqn (2)) and the coefficient of
residual mass (CRM; Loague & Green 1991; from
–∞ to +∞, optimum 0; Eqn (3)):

EF ¼ 1�
Pn

i¼1 ðSi �MiÞ2
Pn

i¼1 ðMi � �MÞ2
ð2Þ

CRM ¼
Pn

i¼1 Mi �
Pn

i¼1 SiPn
i¼1 Mi

ð3Þ

where S and M are the simulated and measured data,
respectively.

Development and validation of a simplified
forecasting index for grain protein concentration

After assessment of the model performance in simulat-
ing GPC with the new equation, it was used for a
long-term simulation aiming to identify the main vari-
ables affecting GPC in the CERES-wheat model.
Following previous work carried out on yield simula-
tion, the procedure described in Dalla Marta et al.
(2015) was adopted for evaluating the impact of
status (LAI) and forcing (weather indices) variables
on GPC. Accordingly, using the model initialization
described by Dalla Marta et al. (2015), CERES-wheat
was run over the 56-year period from 1955 to 2011,
with the new GPC equation. A correlation analysis
was carried out, using the output of the long-term
simulation (GPC and LAI) and the observed monthly
weather indices (Table 3), in order to describe the rela-
tionship between GPC and both LAI and the weather

indices. The values of the proposed prediction
factors are calculated at the key crop growth stages
of tillering, heading and grain filling, corresponding
to stages 2, 5 and 7, respectively, of the Biologische
Bundesanstalt, Bundessortenamt und Chemische
Industrie (BBCH) phenological scale for cereals
(Lancashire et al. 1991).

A backward stepwise multiple regression (SPSS.18)
was performed, with GPC as the dependent variable,
and LAI and weather indices (Table 3) as prediction
factors in order to develop a simplified forecasting
index (SFIpro) for GPC, of the form described in Eqn (4):

Y ¼ β0 þ β1 × X1 þ β2 × X2 þ � � � þ βn × Xn ð4Þ
where Y is the GPC at harvest taken from each year of
the long-term simulation output; β0 the intercept value;
β1, β2,…, βn the regression coefficients of the predictor
variables X1, X2, …, Xn, respectively.

The SFIpro was validated against field data col-
lected on ten fields per year during two growing
seasons (2010 and 2011 harvests) in order to assess
its potential as an operational tool and therefore to
study the ability of CERES-wheat to determine the
main variables affecting GPC. In monitored fields, dif-
ferent crop management were considered according
to the agronomic practices commonly adopted by
each farmer (Table 4). At harvest, ten samples were
collected following an X scheme with two repetitions
(i.e. five sampling points per field, one point in the
centre and four points around the centre, forming a
cross). Each sample consisted of plants collected
from an area of 1 m2. Grain moisture content was
measured after oven-drying (105 °C for 24 h), the
GPC and grain gluten concentration were determined
with an Infratec System 1241 Grain Analyser (FOSS,
Denmark), and the yield was recorded by a precision

Table 3. Correlations between grain protein concentration, weather indices and plant LAI during the crop cycle

Tillering Heading stage Grain filling
BBCH2 BBCH5 BBCH7

MTMAX (°C) ns Ns 0·295 (P⩽ 0·05)
MTMIN (°C) −0·446 (P⩽ 0·001) −0·265 (P⩽ 0·05) ns
WD (number of days) ns Ns 0·297 (P⩽ 0·05)
TP (mm) −0·466 (P⩽ 0·001) −0·283 (P⩽ 0·05) −0·298 (P⩽ 0·05)
NR (number of days) 0·473 (P⩽ 0·001) 0·288 (P⩽ 0·05) 0·342 (P⩽ 0·01)
LAI ns 0·575 (P⩽ 0·001) ns

ns, not significant; MTMAX, monthly mean maximum temperature; MTMIN, monthly mean minimum temperature; WD,
warm days (maximum temperature above monthly 56-years average); TP, monthly total precipitation; NR, days without rain-
fall; LAI, leaf area index.
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mini thresher. To better understand the model perfor-
mances, a second validation of SFIpro was carried
out separately on two groups of fields classified in
terms of the LAI values during the heading stage
(BBCH stage 5) (LAI5) recorded in field. Fields where
crop LAI was in the II and III quartiles were grouped
as intermediate LAI (LAIint) (1⩽ LAI5⩽ 2) (ten fields),
and fields where crop LAI was in I and IV quartiles
were grouped as extreme LAI (LAIext) (LAI5 < 1 and
LAI5 > 2) (four and six fields, respectively). Fields
belonging to the same growing season showed a het-
erogeneous distribution between LAIint and LAIext,
indicating that LAI5 is affected both by the seasonal
weather and by the different crop management
adopted by each farmer.

In order to investigate how SFIpro performance was
related to different LAI and thus the relationship
between GPC and LAI, correlation analyses between

forecasted and observed GPC and between observed
yield and observed GPC were performed separately
for the LAIint and LAIext groups.

RESULTS

Results concerning the performance of CERES-wheat
in terms of GPC simulation, with both the standard
and new equation, are shown in Table 2. The correl-
ation between observed and simulated GPC was sig-
nificant (P⩽ 0·01), but for operational use it cannot
be considered satisfactory for either the standard
model routine or the new equation. However, the
new equation is an improvement, enhancing the
values of all the measures of fit considered (Table 2).

Analysis of the long-term simulations shows that
CERES-wheat predictions of GPC are affected signifi-
cantly by weather conditions during tillering,

Table 4. Sowing date and fertilizers applied during the growing seasons 2009–2010 and 2010–2011

Field

Season 2009/10 Season 2010/11

Sowing DAS P (kg/ha) N (kg/ha) Sowing DAS P (kg/ha) N (kg/ha)

1 15 Nov 31 0 78 01 Dec 69 0 52
141 0 92 141 0 66

2 20 Nov 67 0 73 10 Dec 0 36 2
102 0 73 80 0 42

110 0 64
3 15 Nov 67 0 70 15 Dec 66 0 52

135 0 55 92 0 92
4 15 Nov 0 0 36 14 Nov 0 75 33

131 0 101 90 0 52
149 0 99

5 20 Nov 0 87 35 15 Dec 52 0 52
99 0 39 95 0 48

153 0 97
6 15 Nov 0 63 28 30 Oct 0 69 27

111 0 60 101 0 83
136 0 65 137 0 79

7 20 Oct 0 55 24 14 Nov 0 70 31
109 0 50 83 0 63
154 0 96 135 0 72

8 10 Nov 98 0 52 29 Oct 97 0 67
165 0 58 150 0 72

9 10 Nov 72 0 65 27 Oct 0 70 30
115 0 71 99 0 63

153 0 72
10 2 Nov 67 0 42 02 Nov 0 68 30

142 0 65 95 0 57
165 0 82

DAS, days after sowing; P, phosphorus; N, nitrogen.
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heading and grain-filling growth stages (Table 3). The
model identified drought conditions as a promoter of
GPC with significant negative correlations at all
growth stages with monthly total precipitation (TP)
(P⩽ 0·001 at BBCH2 and 7; P⩽ 0·05 at BBCH5) and
corresponding positive correlations with days
without rainfall (NR) (P⩽ 0·001 at BBCH2 and 7; P
⩽ 0·05 at BBCH5). The model produced different
impacts due to temperature depending on crop growth
stage.HigherGPCvalueswere simulatedwithcold con-
ditions, described by lowmonthlymeanminimum tem-
perature (MTMIN) at tillering and heading stages and,
conversely, with warm temperatures at the grain-filling
stage, with positive correlations between GPC and
monthly mean maximum temperature (MTMAX) and
warm days (WD –maximum temperature above
monthly 56-year average). Concerning status variables,
LAI significantly affected GPC with a positive correl-
ation, but only at the heading stage (LAI5) (P⩽ 0·001)
(Table 3).
The analysis showed that the main status and

forcing variables affecting GPC were LAI at heading
stage and rainfall distribution at tillering, respectively.
Then, accounting for only these variables the SFIpro
was described by the multiple regression as follows
(Eqn (5)):

Y ¼ �2�316þ LAI5 × 3�604þNR2 × 0�346 ð5Þ
where Y is the GPC, LAI5 is the LAI at BBCH stage 5
and NR2 is the number of dry days during BBCH
stage 2.
Unfortunately, the developed SFIpro failed at valid-

ation. In fact, the correlation between GPC assessed
through SFIpro and that observed in the field monitor-
ing was significantly negative (R2 = 0·406; P⩽ 0·01)
(Fig. 1), showing complete disagreement between
modelled and observed GPC.
One reason for this failure is that LAIint and LAIext

clearly showed different trends in the correlation
between modelled and observed GPC. In LAIext, a
highly significant and negative correlation was found
(R2 = 0·810; P⩽ 0·001) (Fig. 2), confirming the failure
of SFIpro, whereas for LAIint the SFIpro was able to
describe the GPC variability, showing a significant
positive correlation between observed and forecasted
data (R2 = 0·604; P⩽ 0·01) (Fig. 2). Different behav-
iour was also shown by LAIint and LAIext as regards
the correlation between yield and GPC observed
during field monitoring. In LAIint, no significant rela-
tionship was found between the two harvest compo-
nents (results not shown), while in LAIext the GPC

was negatively correlated to yield (R2 = 0·595; P⩽
0·01) (Fig. 3).

In the field data, grain gluten concentration closely
tracked the GPC trend with a R2 = 0·973 (P⩽ 0·001)
between the two variables (data not shown), confirm-
ing the ability of GPC to describe this key determinant
of harvest quality, and the relevance of the modelling
of the dynamics underlying protein deposition and
accumulation in optimizing crop management.

DISCUSSION

Although the CERES-wheat model has previously been
parameterized for winter durum wheat cvar Claudio
regarding phenology and yield, the model uses a
GPC algorithm, which was originally developed for
common wheat (the Triticum aestivum genotype)

Fig. 1. Scatter plot between grain protein concentration
(GPC) values assessed by SFIpro and those observed. Data
given on dry matter basis.

Fig. 2. Scatter plot between grain protein concentration
(GPC) values assessed by SFIpro and those observed in
LAIint (fields group with 1⩽ LAI⩽ 2) fields (solid circles)
and LAIext (LAI < 1 and LAI > 2) fields (empty circles). Data
given on dry matter basis.
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(Nuttal et al. 2015). However, durum wheat is richer
in protein, specifically gluten, as this is crucial for
pasta making. Compared to common wheat (T. aesti-
vum), the literature shows that, in Mediterranean
areas, durum wheat has a significantly higher
average grain N concentration under the same cli-
matic conditions (Cossani et al. 2011). Therefore, the
current work developed a new equation (Eqn (1)) to
account for such issues, resulting in improved simula-
tion of GPC compared to the standard GPC model
routine. In fact, application of the new equation
reduced the mean squared error, mainly thanks to a
reduction of underestimation. Nevertheless, perform-
ance was still poor (R2 = 0·423), confirming that simu-
lation of GPC for durum wheat remains problematic,
in accordance with the findings of other authors
(Asseng et al. 2002; Weiss & Moreno-Sotomayer
2006).

The results of a long-term simulation study showed
that in the model water-limited conditions in early
crop development and during heading, enhanced
GPC, as well as heat and water stress during the
grain-filling stage. However, the scientific literature
provides inconclusive results concerning the impact
of temperature on GPC during vegetative growth,
especially when long-term analyses are considered.
For example, Orlandini et al. (2011) found no signifi-
cant correlation between GPC and average monthly
temperature. Smith and Gooding (1996) and
Garrido-Lestache et al. (2005) found that the tempera-
ture trend in the pre-anthesis period was not able to
explain the variability in GPC. Ludwig and Asseng
(2006) suggested that higher temperatures could
cause either an increase or a decrease in GPC.

CERES-wheat, in common with other wheat crop
growth models, assumes that protein deposition is
based on N uptake by the plant, which in turn is esti-
mated on the basis of soil N availability and crop
demand (Nuttal et al. 2015). The latter is determined
by the model in relation to leaf biomass or leaf area.
Therefore, the higher the value of plant LAI, the
greater the GPC simulated by the model. However,
a positive relationship between LAI and GPC is only
partially confirmed in the scientific literature. On
one hand, studies have identified wheat leaves as
the main source of amino acids for grain protein syn-
thesis (Dalling 1985), reporting that total leaf N at
anthesis is positively related to GPC (Wang et al.
2003; Li et al. 2005). On the other hand, Orlandini
et al. (2011) and Wang et al. (2004) found a negative
correlation between LAI retrieved by remote-sensing
indices and GPC, while others again found no signifi-
cant interaction between these two variables
(Freeman et al. 2003; Liu et al. 2006; Xue et al.
2007). Bonfil et al. (2004) and Smith and Gooding
(1999) suggested that a higher biomass production
and vegetative proliferation promoted by meteoro-
logical conditions would dilute the N within the
plant, and a grain with a low protein level would be
harvested. In this situation, LAI and total N content
in the leaf biomass at heading stage would not be con-
sistently successful in predicting GPC. Neither the
standard nor the new model assumptions for the simu-
lation of GPC take this issue into account.

For these reasons, SFIpro, built using data from
CERES wheat model simulations, completely failed
the GPC assessment when applied to the complete
observed dataset. However, by separately analysing
the performance of SFIpro on a portion of the observed
dataset, differentiating according to the LAI measured
at the field level, the results achieved were very differ-
ent. The SFIpro was able to assess GPC trend when the
observed LAI values were within an intermediate
range. Thus, in the case of LAIint (1⩽ LAI⩽ 2),
CERES-wheat assumptions for GPC simulation were
confirmed, and increasing values of LAI were asso-
ciated with an increase in GPC.

On the other hand, SFIpro completely failed the
GPC assessment for LAIext (LAI < 1 and LAI > 2). In
this case, a high LAI was accompanied by low mea-
sured GPC, contrary to model assumption. Similarly,
with a low LAI, high GPC was observed. These
results are reflected in the observed inverse relation-
ship between GPC and yield that was observed for
extreme (LAIext), but not intermediate (LAIint) LAI.

Fig. 3. Scatter plot between observed grain protein
concentration (GPC) and yield of LAIext (LAI < 1 and LAI > 2)
fields. Data given on dry matter basis.
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As already discussed, weather conditions that discour-
age vegetative proliferation, and therefore leaf devel-
opment, can lead to a reduction in grain size and
weight, with a lower yield but a relative increase in
the GPC, with the converse applying under conditions
of strong vegetative proliferation. In this regard,
Meinke et al. (1998) pointed out the inability of the
models to predict the N percentage of the kernel due
to its sensitivity to slight dry matter changes. In particu-
lar, Cossani et al. (2011) highlighted how in durum
wheat the impact of a yield increase on GPC is more
evident, observing that in the Mediterranean environ-
ment an increase in grain weight is accompanied by a
more pronounced decrease in grain N compared with
common wheat.
Finally, these results suggest that SFIpro being based

on the model simulations has shown the same difficul-
ties in capturing the inverse relationship between yield
and GPC. An increase in LAI beyond a threshold pro-
moted the yield, so that the benefits for grain protein
accumulation, related to the greater total N content
in leaves, were minimized. Similarly, very low LAI
values, leading to a reduction in grain weight and
yield, were able to promote the GPC despite lower
N available for the grain protein deposition. It is pos-
sible that this nonlinear relationship between LAI
and GPC could be the basis of the disagreement in lit-
erature discussed above, concerning the correlation
between the remotely sensed LAI and GPC.

CONCLUSIONS

The aim of the current research was the development
of a simplified forecasting index for the assessment of
GPC in durum wheat, based on the identification of
the main status and forcing variables affecting GPC
implemented in the CERES-wheat model. The model
showed significant correlations between GPC and
the number of dry days during tillering and LAI at
heading stage, and so these two variables were
included in the developed forecasting index.
However, during validation, the index performed
well in forecasting GPC when crop LAI5 (i.e. LAI at
the heading stage) ranged between 1 and 2, while
poor performances were obtained where LAI5 was
lower (LAI5 < 1) or higher (LAI5 > 2).
These results suggest that the relationship between

LAI and GPC is nonlinear and that the CERES-wheat
assumption of ‘source-limited’ protein deposition in
grain is only partially confirmed, being valid for an
intermediate range of LAI. For this reason, further

research is required in order to better understand and
formalize the relation between LAI and grain protein
accumulation so improving the model’s potential to
assess in advance this parameter, which is one of the
main factors determining the quality of durum wheat.
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