# DATING OF LATE PLEISTOCENE TREE-RING SERIES FROM JAPAN

# J van der Plicht<sup>1</sup> • M Imamura<sup>2</sup> • M Sakamoto<sup>2</sup>

**ABSTRACT.** We have radiocarbon dated series of tree rings from 2 fossil trees (named ND-113 and the Fuji tree) buried in fossil volcanic avalanche deposits in Japan. They are dendrochronologically floating, dating beyond the tree-ring part of the <sup>14</sup>C calibration curve. The trees show about 350 and 400 annual rings, respectively, which are dated in intervals of 2 to 10 yr. Both sequences are wiggle-matched to the calibration curve IntCal09. This resulted in an age range of 16,534–16,204 cal BP for ND-113, and 23,678–23,290 cal BP for the Fuji tree.

### INTRODUCTION

For the construction of atmospheric calibration curves for radiocarbon, tree rings form the most important archives (e.g. Baillie 1982). This is particularly true for tree rings absolutely dated by dendrochronology. Since the early work by Suess (1970), Stuiver and Kra (1986), and others, calibration of the <sup>14</sup>C timescale based on dendrochronology has come a long way. The presently recommended calibration curve IntCal09 (Reimer et al. 2009) contains tree-ring data back to around 12,500 cal BP.

Beyond this dendro limit, the IntCal09 curve is based on marine data (Reimer et al. 2009). For tree rings, there is the promise of kauri wood from New Zealand, with a potential significant extension of the denro part of the IntCal curve (Balter 2006).

Today, tree-ring sequences from the Late Pleistocene do exist, including some that are dated by <sup>14</sup>C (e.g. Kromer et al. 2004). This is also the case for the above-mentioned kauri wood (Turney et al. 2007). However, these sequences are not dated absolutely by dendrochronology, and are therefore floating chronologies.

Here, we report on 2 such floating chronologies from Japan, dated by <sup>14</sup>C. One of the trees lived about 3.5 centuries, the other 4. The results are matched to the marine-derived part of the calibration curve IntCal09 to provide an absolute timescale. We selected these trees from Japan because they were available and they span a long time, which is relatively unique and potentially contain century-scale wiggles.

## LOCATION

Two Japanese boreal conifer samples of the Late Glacial period were prepared for <sup>14</sup>C dating. The Fuji tree is a Japanese cypress (*Chamaecyparis obtuse*), found in 1969 on a hillside ( $35^{\circ}13'N$ ,  $138^{\circ}37'E$ ) near Mount Fuji, in the central part of Honshu Island, Japan. The tree shows ~400 annual rings with parts of the core and the sapwood lost. The tree was buried in a mud flow from the old Fuji volcano. The outer part (30 rings) of the tree has been <sup>14</sup>C dated before to  $18,900 \pm 300$  BP by liquid scintillation counting (Fukuhura and Wada 1997).

The tree ND-113 is a tree of the genus *Picea* from a fossil forest, found in 1998 at the Oyazawa-Noda archaeological site ( $40^{\circ}47'N$ ,  $140^{\circ}40'E$ ) in the northeastern part of Honshu Island, Japan. This tree shows ~350 annual rings, with the bark being conserved. It was found under a 1-m-thick layer

<sup>2</sup>National Museum of Japanese History, Sakura, Japan.

© 2012 by the Arizona Board of Regents on behalf of the University of Arizona Proceedings of the 6th International Radiocarbon and Archaeology Symposium, edited by E Boaretto and N R Rebollo Franco RADIOCARBON, Vol 54, Nr 3–4, 2012, p 625–633

<sup>&</sup>lt;sup>1</sup>Center for Isotope Research, Groningen University, Groningen, the Netherlands. Also: Faculty of Archaeology, Leiden University, Leiden, the Netherlands. Corresponding author. Email: J.van.der.Plicht@rug.nl.

of pyroclastic flow deposit from the Towada Volcano. The eruption that formed this pyroclastic flow deposit was a huge one with an estimated Volcanic Explosivity Index (VEI) of 6.7 (Hayakawa 1985), leaving a large caldera lake. An accelerator mass spectrometry (AMS) date for this event was reported recently as 13.1 ka BP (Horiuchi et al. 2007).

The location of the trees in Japan is shown in Figure 1. A section of one of the trees, ND-113, is shown in Figure 2.



Figure 1 Geographical locations of the trees Fuji and ND-113 in Japan



Figure 2 Section of the ND-113 tree from Honshu Island, Japan

## METHODOLOGY

Wood samples were measured by both AMS and the conventional method (proportional gas counting) in Groningen (laboratory code GrA and GrN, respectively). The method chosen (AMS or conventional) was done solely on the basis of the amount of wood sample available.

The ND-113 tree was divided into 34 decadal tree-ring blocks. These samples were all large enough to be measured conventionally. The wood was pretreated by the standard AAA (acid-alkali-acid) method, combusted into pure  $CO_2$ , and subsequently dated by proportional gas counting (Mook and Streurman 1983). The Fuji tree shows small rings, requiring <sup>14</sup>C dating by AMS for all samples from this tree. Originally, the Fuji wood was cut into 40 decadal tree-ring blocks. Later, additional blocks with higher temporal resolution (2 and 5 yr) were prepared.

All AMS samples were pretreated by AAA. After the chemical pretreatment, the samples were combusted and turned into  $CO_2$  by an elemental analyzer (EA), coupled on-line with a stable isotope mass spectrometer. Next, the  $CO_2$  was reduced to graphite by reacting under excess H<sub>2</sub> gas (Aerts-Bijma et al. 2001). The graphite was pressed into target holders, which are placed in the ion source of the AMS. The Groningen AMS facility is based on a 2.5MV Tandetron accelerator, and measures the <sup>14</sup>C concentration in the graphite (van der Plicht et al. 2000). The <sup>14</sup>C dates are reported in conventional yr BP, which includes correction by isotope fractionation using the <sup>13</sup>C isotope. For both the conventional and AMS dates, the  $\delta^{13}$ C values are measured by isotope ratio mass spectrometry (IRMS).

# **RESULTS AND ANALYSIS**

By fitting the data sets to the calibration graph, an absolute date can be obtained for the records. This is done by "wiggle-matching," i.e. matching the data—which is a floating chronology—to the calibration curve, to form the absolute chronology. The wiggle-matching has been performed using the computer code OxCal version 4.1 (Bronk Ramsey 2001) with the IntCal 09 calibration curve (Reimer et al. 2009). The OxCal program uses Bayesian statistics to obtain the best fit, and also calculates the statistical uncertainty of the match.

The Fuji tree comprises close to 400 annual rings. Originally, decadal samples were taken; later on, more detailed studies were done based on 2-, 3-, or 5-yr temporal resolution. This "zooming in" was done when there were indications for wiggles. It is practically impossible to analyze all samples with a 2-yr temporal resolution. The results show good comparability within measurement error.

For almost all rings, duplicate samples were analyzed. In addition, some AMS runs were repeated in order to obtain better statistics. The measured data are averaged; results are shown in Table 1. The table shows the GrA numbers, sample name, rings analyzed, (averaged) <sup>14</sup>C age and error (1  $\sigma$ ) in yr BP, and the  $\delta^{13}$ C value. The last column shows the result of the wiggle-matching: the calibrated age obtained by OxCal in cal BP. The Fuji tree was determined to have lived from 23,678 to 23,290 cal BP. The matching error is 16 calendar years (1  $\sigma$ ).

|      |                                    | J                                           |                                                                                                                             |                                                                                                                |                                                                                                                                                                |
|------|------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name | Rings                              | <sup>14</sup> C (yr BP)                     | σ                                                                                                                           | δ <sup>13</sup> C (‰)                                                                                          | cal BP                                                                                                                                                         |
| A1   | 1–10                               | 19,300                                      | 65                                                                                                                          | -21.78                                                                                                         | 23,290                                                                                                                                                         |
| A2   | 11–20                              | 19,450                                      | 65                                                                                                                          | -21.60                                                                                                         | 23,300                                                                                                                                                         |
| A3   | 21-30                              | 19,375                                      | 65                                                                                                                          | -22.15                                                                                                         | 23,310                                                                                                                                                         |
| A4   | 31-40                              | 19,320                                      | 60                                                                                                                          | -21.72                                                                                                         | 23,320                                                                                                                                                         |
| A5   | 41–50                              | 19,305                                      | 60                                                                                                                          | -22.25                                                                                                         | 23,330                                                                                                                                                         |
|      | Name<br>A1<br>A2<br>A3<br>A4<br>A5 | NameRingsA11-10A211-20A321-30A431-40A541-50 | Name Rings <sup>14</sup> C (yr BP)   A1 1–10 19,300   A2 11–20 19,450   A3 21–30 19,375   A4 31–40 19,320   A5 41–50 19,305 | NameRings $^{14}C$ (yr BP) $\sigma$ A11–1019,30065A211–2019,45065A321–3019,37565A431–4019,32060A541–5019,30560 | NameRings $^{14}C$ (yr BP) $\sigma$ $\delta^{13}C$ (‰)A11-1019,30065-21.78A211-2019,45065-21.60A321-3019,37565-22.15A431-4019,32060-21.72A541-5019,30560-22.25 |

Table 1 <sup>14</sup>C measurements for the Fuji tree.

Table 1 <sup>14</sup>C measurements for the Fuji tree. (Continued)

| GrA         | Name       | Rings   | <sup>14</sup> C (yr BP) | σ  | δ <sup>13</sup> C (‰) | cal BP |
|-------------|------------|---------|-------------------------|----|-----------------------|--------|
| 26409,26481 | A6         | 51-60   | 19,445                  | 65 | -22.09                | 23,340 |
| 26410,26482 | A7         | 61-70   | 19,380                  | 65 | -22.04                | 23,350 |
| 26411,26483 | A8         | 71-80   | 19,500                  | 65 | -21.42                | 23,360 |
| 26415,26485 | A9         | 81-90   | 19,450                  | 65 | -21.39                | 23,370 |
| 26486,26889 | A10        | 91-100  | 19,450                  | 60 | -21.12                | 23,380 |
| 33218,33733 | C1         | 101-105 | 19,327                  | 40 | -20.98                | 23,388 |
| 26413,26487 | A11        | 101-110 | 19,440                  | 70 | -20.93                | 23,390 |
| 33219,33735 | C2         | 106-110 | 19,407                  | 40 | -21.55                | 23,393 |
| 33220,33736 | C3         | 111-115 | 19,435                  | 40 | -21.25                | 23,398 |
| 26427,26489 | A12        | 111-120 | 19,645                  | 65 | -21.40                | 23,400 |
| 33221,33734 | C4         | 116-120 | 19,547                  | 40 | -21.32                | 23,403 |
| 33223,33738 | C5         | 121-125 | 19,390                  | 40 | -21.24                | 23,408 |
| 26426,26490 | A13        | 121-130 | 19,595                  | 65 | -21.55                | 23,410 |
| 33224,33739 | C6         | 126-130 | 19,475                  | 40 | -21.27                | 23,413 |
| 33225,33740 | C7         | 131-135 | 19,525                  | 40 | -21.13                | 23,418 |
| 26424,26492 | A14        | 131-140 | 19,665                  | 65 | -21.50                | 23,420 |
| 33228.33753 | C8         | 136–140 | 19,560                  | 40 | -21.35                | 23.423 |
| 33229,33754 | C9         | 141-145 | 19,400                  | 40 | -21.47                | 23,428 |
| 26423,26493 | A15        | 141-150 | 19.555                  | 65 | -21.69                | 23,430 |
| 33230.33755 | C10        | 146-150 | 19.632                  | 40 | -21.69                | 23.433 |
| 33231       | C11        | 151-155 | 19,505                  | 55 | -21.54                | 23,438 |
| 26421.26495 | A16        | 151-160 | 19,650                  | 50 | -21.80                | 23,440 |
| 33233.33758 | C12        | 156-160 | 19.607                  | 40 | -21.82                | 23.443 |
| 33234,33759 | C13        | 161–165 | 19,565                  | 40 | -21.52                | 23,448 |
| 26419,26496 | A17        | 161-170 | 19,785                  | 65 | -21.72                | 23,450 |
| 33235,33760 | C14        | 166–170 | 19.627                  | 40 | -21.78                | 23.453 |
| 33238.33762 | C15        | 171-175 | 19,500                  | 40 | -21.39                | 23,458 |
| 26417,26497 | A18        | 171-180 | 19,735                  | 65 | -21.61                | 23,460 |
| 33239,33782 | C16        | 176-180 | 19.612                  | 40 | -21.91                | 23,463 |
| 33240       | C17        | 181-185 | 19,490                  | 55 | -21.58                | 23,468 |
| 26429,26499 | A19        | 181-190 | 19,715                  | 65 | -21.94                | 23,470 |
| 33241,33784 | C18        | 186-190 | 19,577                  | 40 | -21.95                | 23.473 |
| 33243,33785 | C19        | 191-195 | 19.652                  | 40 | -21.43                | 23,478 |
| 26430,26500 | A20        | 191-200 | 19,715                  | 65 | -21.90                | 23,480 |
| 33244,33743 | C20        | 196-200 | 19.502                  | 40 | -21.96                | 23,483 |
| 33245,33764 | C21        | 201-205 | 19.567                  | 40 | -21.68                | 23.488 |
| 26431.26564 | A21        | 201-210 | 19.635                  | 65 | -22.08                | 23,490 |
| 33247,33765 | C22        | 206-210 | 19,580                  | 40 | -21.18                | 23,493 |
| 33249,33766 | C23        | 211-215 | 19,600                  | 40 | -21.88                | 23,498 |
| 26433,26570 | A22        | 211-220 | 19,590                  | 60 | -22.06                | 23,500 |
| 33250,33768 | C24        | 216-217 | 19.627                  | 40 | -21.62                | 23,502 |
| 29236.29263 | B1         | 219-220 | 19.667                  | 45 | -21.53                | 23,504 |
| 29223,29265 | B2         | 221-222 | 19,700                  | 50 | -21.70                | 23,506 |
| 29268.29224 | B3         | 222-223 | 19.715                  | 55 | -22.01                | 23,508 |
| 26420.26565 | A23        | 221-230 | 19.815                  | 65 | -21.62                | 23,510 |
| 29225.29269 | B4         | 225-226 | 19.923                  | 55 | -21.92                | 23,510 |
| 29228.29271 | B5         | 227-228 | 19.926                  | 50 | -21.83                | 23,512 |
| 29229       | <b>B</b> 6 | 229-230 | 19.670                  | 95 | -22.13                | 23,514 |
| 29237.29261 | B7         | 231-232 | 19.782                  | 45 | -21.97                | 23,516 |
| 29227,29272 | <b>B</b> 8 | 233–234 | 19,696                  | 55 | -22.30                | 23,518 |

| GrA         | Name        | Rings   | <sup>14</sup> C (yr BP) | σ  | δ <sup>13</sup> C (‰) | cal BP |
|-------------|-------------|---------|-------------------------|----|-----------------------|--------|
| 26450,26566 | A24         | 231-240 | 19,655                  | 60 | -22.38                | 23,518 |
| 29238,29273 | B9          | 235–236 | 19,857                  | 45 | -22.31                | 23,520 |
| 29239,29274 | B10         | 237–238 | 19,757                  | 45 | -22.42                | 23,522 |
| 29241,29276 | B11         | 239-240 | 19,842                  | 45 | -22.65                | 23,524 |
| 29242,29278 | B12         | 241–243 | 19,852                  | 45 | -22.65                | 23,527 |
| 29248,29279 | B13         | 244–245 | 19,775                  | 45 | -22.17                | 23,529 |
| 26451,26568 | A25         | 241-250 | 19,650                  | 60 | -22.02                | 23,530 |
| 29249,29281 | B14         | 246247  | 19,842                  | 45 | -22.14                | 23,531 |
| 29251,29281 | B15         | 248–249 | 19,815                  | 45 | -22.15                | 23,533 |
| 29252,29283 | B16         | 250-251 | 19,720                  | 45 | -22.06                | 23,535 |
| 29253,29331 | B17         | 252-254 | 19,643                  | 50 | -22.36                | 23,538 |
| 29243,29294 | B18         | 255-256 | 19,763                  | 55 | -22.80                | 23,538 |
| 29246,29295 | B19         | 257-258 | 19,763                  | 50 | -22.01                | 23,540 |
| 29247,29296 | B20         | 259-260 | 19,763                  | 50 | -22.33                | 23,542 |
| 29256,29297 | B21         | 261–262 | 19,643                  | 55 | -22.51                | 23,544 |
| 29257,29299 | B22         | 263–264 | 19,790                  | 50 | -22.04                | 23,546 |
| 26453,26563 | A27         | 261-270 | 19,630                  | 60 | -21.85                | 23,548 |
| 29258,29300 | B23         | 265-266 | 19,873                  | 55 | -21.94                | 23,548 |
| 29259,29301 | B24         | 267–268 | 19,796                  | 55 | -22.32                | 23,550 |
| 29262,29304 | B25         | 269–270 | 19,816                  | 55 | -22.24                | 23,552 |
| 33251.33769 | C22         | 271-275 | 19,660                  | 45 | -22.92                | 23,556 |
| 26455,26573 | A28         | 271-280 | 19.665                  | 60 | -22.51                | 23,558 |
| 33253.33744 | C23         | 276-280 | 19.647                  | 40 | -21.95                | 23,561 |
| 33745       | C24         | 281-285 | 19.730                  | 90 | -22.15                | 23,566 |
| 26456.26574 | A29         | 285     | 19.760                  | 60 | -22.34                | 23.568 |
| 33746       | C25         | 286-290 | 19,590                  | 55 | -21.87                | 23.571 |
| 33256.33770 | C26         | 291-295 | 19,660                  | 40 | -21.11                | 23.576 |
| 26457.26575 | A30         | 291-300 | 19.835                  | 65 | -22.30                | 23.578 |
| 33258.33771 | C27         | 296-300 | 19,580                  | 40 | -22.04                | 23,581 |
| 33260.33773 | C28         | 301-305 | 19.802                  | 40 | -21.76                | 23,586 |
| 26460.26576 | A31         | 301-310 | 19.765                  | 65 | -22.50                | 23.588 |
| 33261.33775 | C29         | 306-310 | 19.797                  | 40 | -21.43                | 23,591 |
| 33263       | C30         | 311-315 | 19.770                  | 55 | -21.50                | 23,596 |
| 33264,33778 | C31         | 316-320 | 19.745                  | 40 | -21.51                | 23,601 |
| 33265,33780 | C32         | 321-325 | 19.720                  | 40 | -21.36                | 23,606 |
| 26462 26579 | A33         | 321-330 | 19.915                  | 60 | -22.37                | 23,608 |
| 33267 33748 | C33         | 326-330 | 19,740                  | 40 | -21.64                | 23.611 |
| 33268 33749 | C34         | 331-335 | 19.745                  | 40 | -21.48                | 23,616 |
| 26463 26580 | A 34        | 331-340 | 19 880                  | 65 | -21.56                | 23,618 |
| 33269 33750 | C35         | 336-340 | 19,665                  | 40 | -21.30                | 23,671 |
| 33270 33779 | C36         | 341-345 | 19 730                  | 40 | -21.69                | 23,621 |
| 26461 26578 | A32         | 341_350 | 19 795                  | 65 | -22.05                | 23,628 |
| 26465 26583 | Δ35         | 341_350 | 19 700                  | 60 | -21.86                | 23,020 |
| 26466 26584 | Δ36         | 351_360 | 19 755                  | 60 | -21.80                | 23,020 |
| 26467 26585 | Δ37         | 361-370 | 19,755                  | 60 | -21.87                | 23,030 |
| 26470 26586 | A38         | 371_380 | 19,015                  | 65 | _21.00                | 23,040 |
| 26471 26588 | A30         | 381-300 | 19,760                  | 65 | _21.01                | 23,050 |
| 207/1,20300 | <b>Л</b> ЈЈ | 501-570 | 19,700                  | 05 | -21.70                | 23,000 |

Table 1 <sup>14</sup>C measurements for the Fuji tree. (Continued)

The ND-113 tree was dated conventionally. The ~350 rings were sampled with decadal resolution, yielding 34 samples. The results are shown in Table 2. The table shows the GrN number, sample name, rings analyzed, <sup>14</sup>C age and error (1  $\sigma$ ) in yr BP, and the  $\delta^{13}$ C value. The precision varies depending on sample size, requiring measurement in different proportional counters. The last column shows the result of the wiggle-matching: the calibrated age obtained by OxCal in cal BP. The ND-113 tree was determined to have lived from 16,534 to 16,204 cal BP. The matching error is 44 calendar yr (1  $\sigma$ ).

| GrN   | Rings   | <sup>14</sup> C (yr BP) | σ   | δ <sup>13</sup> C (‰) | cal BP |
|-------|---------|-------------------------|-----|-----------------------|--------|
| 26246 | 9–18    | 13,375                  | 100 | -28.51                | 16,534 |
| 26247 | 19–28   | 13,310                  | 75  | -27.41                | 16,524 |
| 26248 | 29–38   | 13,150                  | 60  | -27.22                | 16,514 |
| 26249 | 39–48   | 13,215                  | 55  | -26.71                | 16,504 |
| 26250 | 49–58   | 13,195                  | 55  | -26.77                | 16,494 |
| 26251 | 59–68   | 13,160                  | 50  | -26.98                | 16,484 |
| 26252 | 69–78   | 13,365                  | 55  | -26.91                | 16,474 |
| 26253 | 79–88   | 13,365                  | 55  | -25.81                | 16,464 |
| 26254 | 89–98   | 13,240                  | 55  | -26.11                | 16,454 |
| 26255 | 99–108  | 13,335                  | 55  | -25.68                | 16,444 |
| 26256 | 109–118 | 13,280                  | 55  | -26.45                | 16,434 |
| 26257 | 119–128 | 13,320                  | 70  | -26.65                | 16,424 |
| 26258 | 129–138 | 13,265                  | 60  | -26.75                | 16,414 |
| 26259 | 139–148 | 13,325                  | 60  | -26.93                | 16,404 |
| 26260 | 149–158 | 13,295                  | 80  | -27.15                | 16,394 |
| 26261 | 159–168 | 13,240                  | 65  | -26.99                | 16,384 |
| 26262 | 169–178 | 13,230                  | 60  | -27.13                | 16,374 |
| 26263 | 179–188 | 13,280                  | 55  | -26.43                | 16,364 |
| 26264 | 189–198 | 13,260                  | 65  | -26.80                | 16,354 |
| 26265 | 199–208 | 13,240                  | 55  | -26.94                | 16,344 |
| 26266 | 209–218 | 13,310                  | 55  | -26.91                | 16,334 |
| 26267 | 219–228 | 13,220                  | 55  | -27.17                | 16,324 |
| 26268 | 229–238 | 13,230                  | 55  | -27.03                | 16,314 |
| 26269 | 239–248 | 13,280                  | 55  | -27.16                | 16,304 |
| 26270 | 249–258 | 13,245                  | 55  | -26.82                | 16,294 |
| 26271 | 259–268 | 13,305                  | 35  | -26.64                | 16,284 |
| 26272 | 269–278 | 13,245                  | 55  | -26.20                | 16,274 |
| 26273 | 279–288 | 13,220                  | 55  | -26.73                | 16,264 |
| 26274 | 289–298 | 13,215                  | 55  | -26.42                | 16,254 |
| 26275 | 299–308 | 13,140                  | 45  | -26.86                | 16,244 |
| 26276 | 309–318 | 13,185                  | 40  | -26.41                | 16,234 |
| 26277 | 319–328 | 13,160                  | 55  | -26.68                | 16,224 |
| 26278 | 329–338 | 13,225                  | 55  | -27.01                | 16,214 |
| 26279 | 339–348 | 13,105                  | 50  | -26.88                | 16,204 |

Table 2 <sup>14</sup>C measurements for the ND-113 tree.

The statistical precision of the individual AMS dates (Fuji tree) is 0.4–0.5%. Because of the multiple analyses performed, this has been reduced to typically 40–60 BP. The precision of the conventional dates (ND-113 tree) ranges from 40 to 100 BP, depending on sample size. There was not enough wood available for high-precision dating. All <sup>14</sup>C determinations have been rounded to the nearest 5.

### DISCUSSION

Pleistocene floating tree-ring sequences of tree rings spanning centuries potentially provide important information on aspects of natural <sup>14</sup>C variations and <sup>14</sup>C timescale calibration. The tree found near Mt. Fuji has 400 rings and has been thoroughly dated by AMS. It is wiggle-matched to the calibration curve IntCal09 (Reimer et al. 2009). The results of the wiggle-match are shown in Figure 3. The overall trend of the Fuji data is consistent with IntCal09. This particular tree dated to ~23,500 yr ago. The averaged <sup>14</sup>C dates (Table 1) are plotted individually, the IntCal09 curve with its error envelope is shown as well, as given by the OxCal program.



Figure 3 Radiocarbon-dated tree-ring series from the Fuji tree, matched to the IntCal09 calibration curve.

The relevant part of the IntCal curve is derived from marine data. Thus, it is subject to reservoir corrections. Any change in reservoir corrections obviously changes the wiggle-match date of the Fuji tree. More important for the discussion here, IntCal09 it is a smoothed curve for the relevant time range, based on a limited amount of data. For the time range of the Fuji tree, the IntCal09 data set shows only 6 data points from the Cariaco data set (Reimer et al. 2009).

The Fuji record is a truly terrestrial one, and is not smoothed but shows significant variations in the atmospheric <sup>14</sup>C content. There appear to be wiggles in the data, but it is not possible to draw conclusions on solar variations because that requires both a better precision and a longer tree sequence. Nevertheless, the data are instrumental for the assessment of calibration curve variability in the IntCal data set (P J Reimer, personal communication).

Tree ND-113 is a floating sequence of ~350 yr, dating to ~16,400 yr ago. The result of the wigglematching to IntCal09 is shown in Figure 4. Also, this part of IntCal09, to which our atmospheric data set is matched, is marine derived. The most remarkable feature is the large wiggle at 16,500 cal BP. There are 4 measurements that are consistent; it is not an outlier. At present, there is no explanation for this large wiggle. It is in any case lacking in the marine data set used for IntCal09 (Reimer et al. 2009). In terms of  $\Delta^{14}$ C, the amplitude of this wiggle is 35‰.



Figure 4 Radiocarbon-dated tree-ring series from ND-113, matched to the IntCal09 calibration curve.

It is interesting to note that a similar excursion in another floating tree-ring series from Japan is observed, albeit at younger age of 15,600 cal BP (Horiuchi et al. 2007). Also, this wiggle is a negative excursion in  $\Delta^{14}$ C of about 35‰.

Our analysis shows that <sup>14</sup>C dating of floating Pleistocene long-lived tree-ring series contributes to our knowledge of natural <sup>14</sup>C variations and to ongoing calibration work in general. More work is in progress as such trees are found at different locations. Another example from Japan is a tree dating to 22,000 BP, reported by Sato et al. (2010).

Floating tree-ring series are also available from other regions. Of course, there is kauri wood from New Zealand (Balter 2006; Turney et al. 2007). Further, we are presently analyzing the Paleolithic site Kurtak in Siberia (Haesaerts et al. 2005). Trees have been found there that date back to 32,000 BP. However, these trees lived only ~100 yr, which is significantly younger than the trees from Japan presented here.

### CONCLUSION

We have <sup>14</sup>C dated series of tree rings from 2 Late Pleistocene trees from Japan. They show  $\sim$ 350 and  $\sim$ 400 annual rings for the ND-113 tree and Fuji tree, respectively. Both tree-ring sequences date beyond the tree-ring part of the <sup>14</sup>C calibration curve, and are dendrochronologically floating. Tree ND-113 has been dated by the conventional method, while the Fuji tree was dated by AMS.

Both sequences are wiggle-matched to the calibration curve IntCal09. This resulted in an age range of 16,534–16,204 cal BP for ND-113, and 23,678–23,290 cal BP for the Fuji tree. The matching errors are 44 (ND-113) and 16 (Fuji) calendar years. Our results are useful in assessing the variability in the IntCal data set.

#### ACKNOWLEDGMENT

The authors acknowledge the analysis of the <sup>14</sup>C data set by Groningen BSc student G J Dijkgraaf. They are also grateful to Sei-ichiro Tsuji for providing the ND-113 sample, and to Hideki Wada for the Fuji sample. This work was supported by a Grant in Aid of the Japan Society for the promotion of Science (No. 09301017).

#### REFERENCES

- Aerts-Bijma AT, van der Plicht J, Meijer HAJ. 2001. Automatic AMS sample combustion and CO<sub>2</sub> collection. *Radiocarbon* 43(2A):293–8.
- Baillie MGL. 1982. *Tree-Ring Dating and Archaeology*. London: Croom-Helm.
- Balter M. 2006. Radiocarbon dating's final frontier. Science 313(5793):1560–3.
- Bronk Ramsey C. 2001. Development of the radiocarbon calibration program. *Radiocarbon* 43(2A):355–63.
- Fukuhara T, Wada H. 1997. Radiocarbon age determination at Shizuoka University (1). Geoscience Reports of Shizuoka University 24:15–26. In Japanese with English abstract.
- Haesaerts P, Chekha VP, Damblon F, Drozdov NI, Orlova LA, van der Plicht J. 2005. The loess-palaeosol succession of Kurtak (Yenisei basin, Siberia): a reference record for the Karga Stage (MIS3). *Quaternaire* 16(1): 3–24.
- Hayakawa Y. 1985. Pyroclastic geology of Towada Volcano. Bulletin of the Earthquake Research Institute University of Tokyo 60:507–92.
- Horiuchi K, Sonoda S, Matsuzaki H, Ohyama M. 2007. Radiocarbon analysis of tree rings from a 15.5-cal kyr BP pyroclastically buried forest: a pilot study. *Radiocarbon* 49(2):1123–32.
- Kromer B, Friedrich M, Hughen KA, Kaiser F, Remmele S, Schaub M, Talamo S. 2004. Late Glacial <sup>14</sup>C ages from a floating, 1382-ring pine chronology. *Radiocarbon* 46(3):1203–9.
- Mook WG, Streurman HJ. 1983. Physical and chemical aspects of radiocarbon dating. In: First Symposium on

<sup>14</sup>C and Archaeology, Groningen. PACT 8:31-55.

- Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. *Radiocarbon* 51(4): 1111–50.
- Sato T, Sakurai H, Suzuki K, Takahashi Y. 2010. <sup>14</sup>C age measurements of single-year tree rings of old wood samples 22,000 <sup>14</sup>C years BP. *Radiocarbon* 52(3): 901–6.
- Stuiver M, Kra R, editors. 1986. Calibration issue. Radiocarbon 28(2B):805-1030.
- Suess HE. 1970. The three causes of the secular C-14 fluctuations, their amplitudes and time constants. In: Olsson IU, editor. *Radiocarbon Variations and Absolute Chronology*. Nobel Symposium 12th Proceedings. New York: John Wiley and Sons. p 595–606.
- Turney CSM, Fifield LK, Palmer JG, Hogg AG, Baillie MGL, Galbraith R, Ogden J, Lorrey A, Tims SG 2007. Towards a radiocarbon calibration for Oxygen Isotope Stage 3 using New Zealand kauri (Agathis Australis). Radiocarbon 49(2):447–57.
- van der Plicht J, Wijma S, Aerts AT, Pertuisot MH, Meijer HAJ. 2000. Status report: the Groningen AMS facility. *Nuclear Instruments and Methods in Physics Research B* 172(1–4):58–65.