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A CONSTRUCTION OF APPROXIMATELY 
FINITE-DIMENSIONAL NON-ITPFI FACTORS 

B Y 

ALAIN CONNES AND E. J. WOODS 

A von Neumann algebra is said to be approximately finite-dimensional if it is 
of the form 

where Mn ç Mn+1 for each n and each Mn is a finite-dimensional matrix 
algebra. A factor is said to be ITPFI if it is of the form 

M = ® (Mn,o>n) 
n = l 

where each Mn is a type I factor (and o)n is a state on Mn) [2]. The existence of 
factors which are approximately finite-dimensional but not ITPFI is an interest­
ing problem. The first construction of such factors was given by Krieger [8]. 
However in [8] it is only proved that the factors are not "weakly equivalent" to 
any ITPFI factor. The first proof that these factors are not ITPFI was .given by 
Connes [3]. Alternatively one could now use Krieger's theorem [9] that unitary 
equivalence implies "weak equivalence" to complete the argument. However 
Krieger's construction is rather involved, and the arguments of both Krieger [8] 
and Connes [3] were quite delicate. We give here a new construction for which, 
in the context of the flow of weights, the argument is rather elementary. 

Section 1 reviews the relevant aspects of the flow of weights [4], and gives 
some terminology. Section 2 contains the technical lemmas. In Section 3 we 
discuss the examples. 

1. Preliminary material. Let M be a factor, A u t M the group of all au­
tomorphisms of M with the topology of pointwise norm convergence in the 
predual, and I n t M the subgroup of inner automorphisms of M. The flow of 
weights of M is an ergodic action of Rf on some measure space (XM, JLLM). The 
construction of [4] gives not the measure space, but the measure algebra whose 
elements are equivalence classes [</>] of integrable weights <t> of infinite 
type. The flow is then defined by FM(À)[<£>] = [À<£>]. Let a G AutM. The equa­
tion Mod a[(f>] = [(()0a] defines a Borel (and hence continuous) homomorphism 
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from the polish group Aut M into the polish group of automorphisms of the 
measure space (XM, fxM). Clearly a e Int M implies that Mod a - 1. If M is a 
factor of type III0 then the flow of weights FM(g)M(A) for M®M is given by the 
action of FM(k)®l on the measure algebra of the FM(À)®FM(À -1) invariant 
sets on XM x XM. 

All Borel spaces considered in this paper are standard (i.e. Borel isomorphic 
to a Borel subset of the unit interval). A transformation S on a measure space 
(X, fx) is called non-singular if it is invertible and both S and S~x are 
ix -measurable. Given a non-singular S, the orbit of x under S is the set 

Os(x) = {Six:jeZ}. 

The full group of S is the set [S] of all non-singular transformations T such 
that for a.e. x, TxeOs(x). A set W<=X such that /x(S/WrnSfcW) = 0 for all 
j=£k is called a wandering set for S. S is said to be dissipative if there is a 
wandering set W such that X= Ur=-~ s'w-

2. The technical lemmas. Let M be a von Neumann algebra, x,yeM. The 
automorphism a of M®M defined by the equation cr(x(8)y) = y®x is called 
the Sakai flip. 

LEMMA 2.1. Let M be an ITPFI factor, a the Sakai flip on M®M. Then 
o-G ïnt (M(g)M) 

Proof. Let M = ® " = 1 ( M n , w J be given on ®(Hn , fin) where <on(x) = 
(*n n , n n ) . Then M®M = ®n(Mn®Mn, o>n®o>n) acts on K = 
®n(Hn®Hn,Çln®£ln). Let il/e(M®M)*, e>0. We can assume that 
(8>n (12n®Hn) is a separating vector for M®M (see Lemma 3.15 of [2]). Hence 
there is a vector WeK such that i/r(x) = (x^ , ^ ) . By Lemma 3.1 of [1] there 
exists m<oo and * (m)G®^ = 1 (H n ®H n ) , | |¥(m) | |=l , such that | | ^ - ^ e | | < e 
where 

<Pe=¥(m)®( ® (On®fln)Y 
\n = m + l / 

Let i/re be the state defined by ^ e , and let crm be the Sakai flip on ®™=1(Mn® 
Mn). Then i^e°cr = ifc°(a-m® 1). Hence 

| | ^o < r -^o(a V n ®l) | |<2e 

Since crm is inner, it follows that cr:=limm^00orm(8)l e Int (M®M). QED. 

LEMMA 2.2. Let i^, S be non-singular transformations on the standard measure 
space (X, JLL). If S is dissipative and R leaves invariant (modulo JLC) all S-
invariant measurable sets, then R e [S], 

Proof. We first note that if (JE, v) is a countably separated measure space 
and f:E-*E satisfies f(B) = B (modulo v) for all measurable B^E, then 
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f(x) = x (a.e. v). Namely let (Bn)n e N separate points in E. Then 

{x:f(x)ïx}<zU{Bn\f(Bn)} 
n 

which is a set of measure zero. 
Now let W be a wandering set for S such that X = 1 ] ^ ^ SkW. Let Pk be 

the projection of X onto SkW defined by Pkx = y if x = SJy for some / such 
that yeSkW. Let A be any measurable subset of SkW. Then U p ^ SPA is 
S-invariant and it follows that (PkRPk)A = A (modulo JU,). Now clearly R e [S] 
if and only if PkRPk(x) = x (a.e.) for all L QED. 

The following theorem uses the base and ceiling function construction of a 
flow. For this purpose it is more convenient to have the flow as an action of R 
rather than R^. Hence we shall use S M ( ^ ) ^ ^ M ( ^ X ) -

THEOREM 2.3. Let M be a factor of type III0 whose flow of weights can be built 
under a constant ceiling function with a base transformation T such that TxT1 

is dissipative. Then the Sakai flip craint {M®M) and hence M is not ITPFL 

Proof. Clearly Mod a acts on XMxXM = (BxI)x(B x I) by <r(x, s, y, t) = 
(y, t, x, s). Let E be any TxT~l invariant set in B x JB, aB the flip on BxB. 
Then Exlxl is an S M ( ^ ) ® S M ( - ^ ) invariant set in XMxXM. Now assume 
Mod a = 1. Then aB must preserve JB, hence aB e [Tx T~l] by the preceding 
lemma. But this implies that for a.e. (x,y)eBxB there exists an integer 
n(x, y) such that 

0B(X, y) - (y, x) = (Tn(x*\ T-" (x 'y)y), 

i.e. y G OT(X). But OT(X) is countable. QED. 

3. The examples. It remains to demonstrate the existence of approximately 
finite-dimensional factors of type III0 satisfying the conditions of Theorem 2.3. 
For this we first need the existence of ergodic transformations T such that 
TxT~x is dissipative. It is a classical result in ergodic theory that such 
transformations exist [6]. As a specific example, one can use the Markov shift 
obtained from a two-dimensional random walk. (These transformations pre­
serve an infinite measure.) The existence now follows from the fact that any 
flow arises as the flow of weights of some approximately finite-dimensional 
factor [4, 9]. (The proof of this in the general case is not so easy. However for 
measure preserving flows the argument is not difficult (see for example [7]).) 

We remark that crelnt (M®M) is not a sufficient condition for M to be 
ITPFL Namely let M be an approximately finite-dimensional factor whose flow 
can be built under a constant ceiling function with a base transformation T 
which preserves a finite measure. If T is a Bernoulli shift then M is not ITPFI 
[5]. But then TxT~x is ergodic, and it follows easily that Modern 1. Hence 
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creïnt(M<8)M) [4]. In fact if T is any ergodic transformation preserving a 
finite measure, it follows from the proof of part (2) of lemma 1 of [7] that 
Mod a = 1 (see also [10]). 
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