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1. Introduction

Let {A;}¢>0 be a dilation group on R" defined by A; = t© = exp((logt)P), where P is
an n X n real matrix whose eigenvalues have positive real parts. We assume n > 2. There
is a non-negative function r on R™ satisfying r(A:z) = ¢r(x) for all ¢ > 0 and x € R™.
We may assume the following:

(i) the function r is continuous on R™ and infinitely differentiable in R™ \ {0};
(ii) r(x +vy) < Co(r(z) + r(y)) for some Cy > 1, r(x) = r(—x);

(iii) if ¥ = {z € R": r(x) = 1}, then ¥ = {# € R": (B0,0) = 1} for a positive
symmetric matrix B, where (-,-) denotes the inner product in R";

(iv) we have dz = t7~1do dt, that is,

oo
(o) da = / / FA0)D do(0) dt
RX o Jx
for appropriate functions f, where do is a C'*° measure on X and v = tr P;
(v) there are positive constants c1, ¢, ¢3, ¢4, a1, a2, $1 and f2 such that

x|t < r(z) < eolz|*? ifr(z) 21,

cslz|? < r(x) < eqlx|® if r(z) < 1.

(See [2,9,14] for more details.)
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Let K be a locally integrable function on R™ \ {0} satisfying

K(Aix) =t77K(z) forallt>0andxz e R"\{0};

and
/ K(z)dz =0 for all a,b with a < b.
a<r(xz)<b
Define
7f(@) = pv. [ F)K (- ) dy
Let

Dy={xeR": 1< r(z) <2} and Ko(z)=K(x)xp,(z), (1.1)

where xg is the characteristic function of a set S. If Ky € Llog L(R™), T is bounded on
LP(R™) for 1 < p < oo (see, for example, [11]). Also, the following results are known.

Theorem A. Suppose that A; = tF and r(x) = |z|, where E denotes the identity
matrix and |z| denotes the Euclidean norm for x; also suppose that Ky € Llog L(R"™).
The operator T is then of weak-type (1,1).

Theorem B. Suppose that
Ay = (tM 21,12, ..., 1Yy,

where x = (11,...,2,) and 0 < oy < ag < -+ < . Also, suppose that X = S"~1 =
{Jz| =1} and Ky € Llog L(R™). Then T is of weak-type (1,1).

Theorem A is due to Seeger [12]. In low-dimensional cases, a version of Theorem A
was proved in [4,6]. (See [3,5,7,10,13,15,16] for relevant results.) Theorem B is a
particular case of a result of Tao [15]. In [15], the weak-type (1,1) boundedness was
proved for singular integrals on general homogeneous groups. Note that the proof given
in [15] does not use the Fourier transform.

Remark 1.1. In Theorem B, the assumption that X = S”~! can be relaxed. We note
that the method of [15] can prove a version of Theorem B where X' is only assumed to
be an ellipsoid in statement (iii) above. We use this fact in § 8.

In this paper we prove the following result.

Theorem 1.2. Suppose that n = 2 and Ky € Llog L(R™). The operator T is then of
weak-type (1,1).

There exists a non-singular real matrix @ such that Q~'PQ is one of the following
Jordan canonical forms:

a 0 a 0 a f
() el ) e
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where «, 5 > 0. Since the case where P = P; is handled by Theorem B and Remark 1.1,
to prove Theorem 1.2 we must consider the cases P = P, and P = P5. In §8, we shall
give an argument that derives Theorem 1.2 from results for P having the form of (1.2).

In §2, we give an outline of a proof of Theorem 1.2. We shall see that Theorem 1.2
follows from Proposition 2.2. A proof of Proposition 2.2 for P, will be given in §§3-6.
We shall give a proof of Proposition 2.2 for P; in §7. The framework of our proof of
Theorem 1.2 is similar to that of Theorem B in [15], but we need some new arguments in
§§4-8, which do not occur in [15]. In Appendix A, for completeness we shall give proofs
of four results of §§2 and 3 by applying the methods of [15]. Although we assume n = 2
in §§ 3-8, several results can extend to higher dimensions. In this paper, C, C, Cs will
be used to denote non-negative constants which may be different in different occurrences.

2. Outline of proof of Theorem 1.2

We normalize ||Ko|/z10gz = 1, where Kj is as in (1.1). We may assume that K is real
valued. Let 0, f(x) =t~V f(A; 'z). Then

K(x) = 1 /°° 8:Ko(x)dt
~log2 J, t '

Let ¢ be a non-negative function in C§°(R) supported in [4,2] such that

> 277tp(277t) = Tog2 for ¢ # 0.

j=—00

We decompose K as K = Z;’i_m S; Ko, where

S;f=277 /Oo ©(277)6, f dt.
0

We note that
1S flli < C|lfl, (2.1)

where C' is independent of j.
Let B be a subset of R™ such that

B={zecR":r(z—a)<s}

for some a € R™ and s > 0. Then we call B a ball with centre a and radius s and we write
B = B(a,s). If s =2F for some k € Z (the set of all integers), then B(a,2F) is called a
dyadic ball. Also, we write a = x5, k = k(B). Let CB(a,s) = B(a,Cs) for C > 0.

We have to show that

[{z € R": |Tf(z)| > A} < CA7Y|f[ly for all A >0,

when || Ko||L10g . = 1. We may assume that A = 1. By Calderén-Zygmund decomposition
of f at height 1, we have
B
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where the balls B range over a collection of disjoint dyadic balls and
lglls < ClIfll1, l9llec < C; (2.2)
> IBI< Clflh (2.3)
B
supp(bg) C CB, (2.4)
ol < C|B|, (2.5)
(2.6)

JR

We may assume that the functions bg are real valued and smooth. Also, we may assume

that the family of the balls {B} is finite. We have
{z eR": |Tf(z)| > 1} C GLUG2UG3,

s>C
Here C is a sufficient large positive constant. Since T is bounded on L?, by Chebyshev’s

where
G = {z e R": |Ty(x)| > 3},
Go={z B X | Y (b Sumpnea)(o)] > § .
s<C' B
Gs = {x eR": Z Z(bB * Si(B)+sKo) ()| > é}
B

inequality and (2.2) we have
[G1] < Cllgll3 < Cliglh < Cl -

The set G is contained in E = |Jz; C1B for some C; > 0, since we have (2.4) and

supp(S; Ko) is contained in {2771 < r(z) < 2712}, So,
|Ga| < E| < Ol

by (2.3). Therefore, to prove Theorem 1.2 it remains to show that |Gs| < C|f||1. This
> H <aYB, e
B

follows from the estimate

Hx e R": Z szsB(ﬂU)(bB * S(B)+sKo) ()

s>C' B

where the function g is defined as
Y (r) = Po(As—rw) (¥ — B))

with a non-negative function 1 in C§°(R™) such that supp(o) C {d;* < r(z) < d1},
11if 2/dy < r(x) < di/2 for a sufficiently large positive number d; and

Yo(r) =
H'(/JOHOO S 1.
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Let B be a finite family of disjoint dyadic balls B such that
> IBI< 1. (2.8)
BeB
As in [15], the following result implies (2.7) (see § A.1).

Proposition 2.1. Let 1 < p < 2 and s > C, where C is as in (2.7). Let B be as
in (2.8). For each B € B, let bp be a smooth real-valued function satisfying (2.4)—(2.6).
There then exist a positive number € and an exceptional set F, such that

|Es| < C27¢° (2.9)
and

1/2
< 02-“( N ||fB|5) (2.10)

BeB

Z Vo5 (bp * Sk(B)+s/B)

BeB

Lr(ES)
for all real-valued functions fg in L?>(R™), where ES denotes the complement of E.
Also, as in [15], Proposition 2.1 can be derived from the following.

Proposition 2.2. Let p, s, B and {bg}cp be as in Proposition 2.1. There then exist
constants C; > 1 and € > 0 such that if

> Xxewe| < C27, (2.11)
BeB o0
then we have
1/2
> wrenltn + Sumyeado)| <02 ( 3 IBl1flR) (212)
p

BeB BeB
for all real-valued functions fg in L?(R").
To prove Propositions 2.1 and 2.2, we use the following version of [15, Lemma 9.2].
Lemma 2.3. Let C;, Co, C3 be positive constants. Let S = B(xg,us), us = C127%,
0 <6 <1, and r(zs) < Cq, where s is a positive integer. Define
Y .s(x) = Us(Ay—rm—s(x — zB)), (2.13)

where Ug(z) = W(Augl(ac — xg)) with a fixed non-negative function ¥ in C§° such that
[¥]|os <1, supp(¥) C {r(z) < 1} and ¥(z) =1 if r(z) < 2. Then we have

Hx eR™: Z Y .s(z) > 0353275|S|}

BeB

a2
gCQ CS7

where c is a positive constant and B is as in Proposition 2.1.

See §A.2 for a proof of Lemma 2.3 and § A.3 for a proof of Proposition 2.1 using
Proposition 2.2 and Lemma 2.3.

Remark 2.4. From Proposition 2.1 and arguments in [5], we can prove some weighted
weak-type (1,1) estimates for the singular integral operator T under certain conditions.
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3. Proof of Proposition 2.2: preliminaries

To prove Theorem 1.2, it remains to show Proposition 2.2. To obtain (2.12), by duality
it suffices to show that

R 1/2
( D BT ISE 5y (b5 * (%sBF))II%) < C27°||Fly (3.1)
BeB

for real-valued functions F, where p’ = p/(p — 1), bp(z) = bp(—z) and S7 is the adjoint
of Sjl

SiG(x) =277 /O h ©(2771)G(As) dt.

To prove (3.1), by the TT* method, it suffices to show that

> 1Bl a5 (0B * Sk(p)+sSi(p)+s (0B * (h2:8F))) || < C272F| F||,. (3.2)
BeB p
Note that
SjrsSiys =2710F 8,55,
Therefore, we can rewrite (3.2) as
ITF|lp < C27°||Flly,  T=2""" t5p5Tptsp, (3.3)

BeB

where T’z is the self-adjoint operator defined as
TgF = |B| 'bp * SoSi(|B| *bp + F).
Define the smooth function ap supported on the ball B(0,C') by
ap(v) = bp(dp(v)),
where dp is the mapping defined as
dp(v) = xp + Ak v. (3.4)
Then by (2.4)—(2.6) we see that

supp(ag) C BO,C), sl <C, /aB(v) dv = 0. (3.5)

Also, note that
SoSGF(x) = / P(t)F(Azx) dt,
0

where ¢ is a non-negative function in C§° with support in [%,4]. Thus, we can rewrite
the operator Tz, up to a constant factor, as

Ty F(x) = / / / a5(0)3()an (W) F(ds(w) + Ay(z — dp(@) dwdvdt. (3.6

We need the following result [15].
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Lemma 3.1. Let f be a continuous function on R? such that

supp(f) C B(0,Cy), / f@)de=0, |l <Co

Then there exist functions f1, fo such that

2
=1
supp(f;) € B(0,C1), |fil1 <C5 fori=1,2,

for some constants C}| and C% with C| > Cy.

Let
Ui (@) = T (Ayrem (@ — 2)),
where T is a non-negative function in C§°(R") such that supp(¢+) € {d; ' < r(x) < da}
and Y+ (z) = 1if 2/ds < r(z) < do/2, where ds is a constant satisfying do > 2d;. We
note that ’(/JE is positive on the support of 5. Let Cy > da, where C is as in (2.11). By
Lemma 3.1 we can find functions ak, a% supported on B(0,C) such that

2
ap = Z@wia%(:ﬁ), llaisl < C fori=1,2. (3.7)
i=1
Let ,
afy = lag|+ ) lap].
i=1
Then
af >0, supp(af) € B(0,C), lagl < C. (3.8)

Let o™ be a non-negative function in C§° such that supp(¢™) C [%,8], ¢ > 0 on supp()
and ot (t) = t7"2p* (¢t71). Define the self-adjoint operator T} by

T4 Fa) = / / / ab(0) et ()b (w) F(dp(w) + Ar(z — dp(v))) dw d dt.

Set
T =277 "Wl g T s . (3.9)
BeB
Then
|TpF(x)| < CTSF(z) for all B, |TF(z)] < CTYF (),

if F' is non-negative.
As in [15], we can show that

ITTF|, <C|F|l; foralll<p<qg<oo (3.10)
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under the condition C} > da, where C is as in (2.11) and ds is as in the definition of wg
(see §A.4).
The estimate (3.3) follows from
|T?F||, < C27||F||,, for some ¢ > 0. (3.11)
To see this, by the TT* method, the self-adjointness of T and (3.11) we first note that

ITF|l, < C27/2| F 2. (3.12)

Next, by (3.10) we have | TF||, < C||F|l4, 1 < p < ¢ < 0. Interpolating between this
and (3.12) under the condition 1 < p < 2, we have (3.3) for some € > 0.

It remains to prove (3.11). Since T?: L? — L? by (3.10), it suffices to prove (3.11) for
p = 1 if we take into account interpolation. Expanding T2, we thus have to prove

2
Hzm > <H wgsBiTBiwszJ F

Bi1,B2€B Ni=1

< C27%|| Fllso-
1

By duality and self-adjointness this follows from

2
9—27s Z <<H¢2331T3i¢253i>FB, GB>

BeBy i=1

<02 (3.13)

for all real-valued smooth functions Fp, Gp satisfying | Fp|lec < 1, ||GBllso < 1, where
By = {B = (B, By) € B?: k(By) < k(B)}. (3.14)

The inner product in (3.13) can be written, up to a constant factor, as

][ 6utonFatantinteo,ar,aatv.0) dro duwdt o (3.15)
thus,
2
Hp(xo, w1, 72, t,v,w) = [ [ (W2, (wi—1)ap, (v:)@(t:)ap, (wi)ibae , (x:)),
=1

where 79 € R%, v = (v,12) € R2 x R? w = (wy,ws) € R2 x R2, t = (t1,ts) €
(0,00) x (0,00) and we may assume that v,w € B(0,C)?, t € [C~!, C]?; dw = dw; dws,
dv = dwy dvg, dt = dty dig; z1, T2 are defined as follows:

x1 =dp, (w1) + A, (xo — dp, (v1)), xo = dp,(wa) + Ap, (1 — dp,(v2)).  (3.16)

We note that each z;, ¢ = 1,2, is a function of x¢ and By, vy, wy, tp for all £ with 1 < ¢ < 3.
We also write y = (y1,y2) = v; € R2.
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4. Proof of Proposition 2.2 for P,: basic estimates

Suppose that P = P, where P, is as in (1.2). Then
Ay =t Lo .
logt 1

Mp = 200BOT)9a(k(B2) ) (1 4 |k(By) — k(Bs)|) (4.1)

Let

for B = (B1, Bs) € B?. Let Dy(x2) be the matrix such that the first column vector is
O, w2 and the second column vector is Oy, 2, where z3 is as in (3.16). The following two
estimates imply (3.13):

> /// Gp(20)Fp(22)Hp(1 (22 M 5" det(Dy(x9))) dag dw dt dv| < C27¢227%,
BeBy

(4.2)

> /// Gp(20)Fp(22)Hp(a(2° M 5" det(Dy(29))) dag dw dt dv| < C27¢227%,

BeBy
(4.3)

where Hp is as in (3.15); (; is a non-negative function in C§°(R) such that supp({;) C
[-1,1], G(() =1for t € [—%, %], ¢> = 1—(y; ¢ is a small positive number to be specified
in the following.

Let Dy, +,(w2) be the matrix such that the first column vector is 9,, 22 and the second
column vector is 0 x5 for i, j = 1,2. To prove (4.2) and (4.3) we use the following lemma
and results in its proof.

Lemma 4.1. Let Mg be as in (4.1). Suppose that B € By, where By is as in (3.14), and
that t; € [C71,C), 41 € supp(i/J;Bl), v € B(0,C), £ = 1,2, where z; is as in (3.16).
Then we have the following:

[det(Dy(w2))| + 5~2%%10),, det(Dy(2))| + |8, det(Dy(a))

xTo < CMB, (44)
57129 det(Dy, 1, (w2))| + 571270y, det(Dy, 1, (22))

|
| <CMp (4.5)
fori,j, k=1,2, and

2 B, (we )| + 571 2°%10y, bas B, (wer )| + |01, e B, (@) < C g, (w0r) (4.6)

fori,j=1,2,0< 0 <0, 0=1,2.
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Proof. We note the following formulae, which hold for general A; = t*:

O ok = t; ' PAy,.ty (v0—1 — dp, (ve)) if £ <k, (4.7)
Oz, =0 if 0>k, (4.8)
07wy = —t7°PAp1, (0 — dp, (v1)) + 7 P? Ay, (z0 — d, (11)), (4.9)
Or, Opy w9 = 04,01, w0 = 17 "ty ' P2 Ay 1, (20 — dp, (v1)), (4.10)
07 w2 = —t;°P A, (v1 — dp, (v2)) + t5 2P Ay, (21 — dp, (v2)), (4.11)
Oy vy = —Ay y,oemnei,  ,E=1,2 (4.12)
04,0y, w1 = —t7 ' PA, srmpei,  O0p,0ym1 =0, i=1,2, (4.13)
O, 0y, w9 = =t PA, o€, i,j=1,2, (4.14)

where {e;} is the standard basis. Let

Then
det(Dt(l‘g)) = <8t11‘2,L8t2$2> = <XV7 A;k(Bl)+SLA2k(BZ>+SY>7 (415)

where X = Aszml)fg@tlxg, Y = A27k(32)756t2$2. We note that

—h)log2 1
5y LAy = 2hogme <(m _1) o8 0) . (4.16)

By the assumptions and (4.7), we have |X| < C and |Y| < C. Thus, by (4.15) and (4.16),
we have

|det(Dt(x2))| < CMB
Similarly by (4.7), (4.15), (4.16), (4.9)—(4.11) we have

10y, det(Dy(x2))] < C Mg,

since k(B1) < k(B2).
Next, by (4.14) we have

(04, 2, L0y, 0y, w0) = —t5 (X, Abrisyyss LAgkimy) Aby 1, Pes),
where X is as above. Thus, by (4.7) and (4.16) we have

(D, 2, Ly By, 00)| < Cs20k B 2k(BUs) < Cigo=as \pp
since k(B1) < k(B2). Also, by (4.14) we have

<8t18yi3727 L6t2.232> = —t1_1<PAt1t2 €, A;k(Bl)LAQk(BQHS Y>,
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where Y is as above. Therefore, arguing as above, we have
(04, Oy, w2, Ly, 2)| < C(s + |k(Ba) — k(By)|)20rB) g (k(B2)+9)
< Cs27% Mp.
From these estimate it follows that
|0y, det(Dy(z2))] < Cs2™** Mp.

Collecting results, we obtain (4.4).
Similarly, by (4.12) and (4.7) we see that
|det(Dy, 1, (22))] < C(s + [k(B1) — k(By)|)20+ P22 :B)+)

<
< Os27% Mp. (4.17)

By (4.14) and (4.7) we have
(01, Oy, w2, Ly, 2)| < C(s + |k(Bj) — k(By)])22 k(B Fs)g0k(B)
< Cs27* Mp. (4.18)
If m = min(k, j), from (4.9)—(4.12) it follows that
(Oy, 22, Ly, 0, 22)| < C(s + |k(Byn) — k(By)|[)20 - Bm)Fs) g0ak(B1)

Cs27“Mp. (4.19)

NN

The estimates (4.18) and (4.19) imply
|04, det(Dy, ¢, (z2))] < Cs2”**Mp. (4.20)

Thus, (4.5) follows from (4.17) and (4.20).
To prove (4.6), we recall that ¥o:p,(xe) = o(Ay-rmy-s(xpr — xp,)). By (4.12) we
have
ay,iA27k(Bg)fs($@/ - sz) = _Az—k(Bz)—sAtl___telzk(Bl)ei, =12

Therefore,
|8yiA2—k(Bg)—s($[' —xp,)| < Cs27%. (4.21)

By (4.7) and (4.8) we see that

t7 Ay sy - PAy g, (x50 —dp,(v;)) if 1< <P,
at,.AQ*k'(Be)fs(fEEI — ng) = J 2~ k(Be) tj--ty (:EJ 1 B; (UJ)) 1 J
9 0 if j > 0.

Also, we note that
|Ay-kp-s(xj—1 — dp, (v7))| < C, j=1,2,
by the assumptions. Therefore, we have
|0, Ag-rBp)—s (T — xB,)| < C, (4.22)

since k(B;) < k(Bg) if 1 < j < ¢ < {£. From (4.21), (4.22) and the chain rule, we
have (4.6). O
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5. Proof of Proposition 2.2 for Ps: proof of (4.2)

In this section we prove (4.2). It suffices to show that

S [ TLwk s Gaia)a, (v, ()60 (2705 det(Dy2))) i s o
€Bo =1
’ < C0272%°  (5.1)

uniformly in ¢; € [C~Y, O] for i = 1,2. We fix ¢.
Let
Vp(x) =7 (Ay-sm (z — ),

where ¢/ is a non-negative function in C§°(R") such that
supp(¥") € {dy ! <r(z) <ds},

1&‘*‘(1‘) = 1if 2/d3 < r(x) < d3/2. We assume that ds > 2ds, where ds is as in the
definition of 15. Let S = B(xs, 27%%) C B(0,C), 0 < §p < 1, where the positive integer
sis asin (5.1). Let ¢ s be as in Lemma 2.3. Define

Us(z) = > ¥p,s(z). (5.2)
BeB, xEsupp 1[1;53
For z € R? we consider the condition

Us(z) < $327%|S|  for all balls S = B(zg,27%%) C B(0,C), (5.3)

where the positive number ¢y and the ball B(0,C) will be specified below. Then we have
the following version of [15, Lemma 12.2].

Lemma 5.1. Let E = {z € R?: x does not satisfy (5.3)}. Then
|E| < 027

for some €y > 0.
To prove Lemma 5.1 we use the following covering lemma [1].

Lemma 5.2. Let G = {B(ax,uy): A € A} be a family of balls such that supyc 4 ux <
00. There is then a subfamily G' = {B(cj,7j): j = 1,2,...} of G such that G’ is at
most countable, balls in G' are disjoint and for any B(ax,uy) € G we can find a ball
B(cj,rj) € G' satisfying B(ax,ux) C B(c;,dr;) for some positive constant d independent
of G.

Proof of Lemma 5.1. By applying Lemma 5.2 to the family of balls

G ={S = B(zg,27%%): S ¢ B(0,0)},
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we have a subfamily of disjoint balls {S;}¥., in B(0,C), N < C2°%7, such that if
S; = C1S; with a constant C; > 2d, for any S in G there exists i € {1,2,...,N} for
which it holds that

VYp,s(x) <¢Pp g, (z) forall B, (5.4)

where ¢ g is defined as in (2.13) with S; in place of S. From (5.4) it follows that
Us(r) < Ug (z) for somei€ {1,2,...,N}, (5.5)
where Ug is defined as in (5.2) with S, in place of S. We see that (5.5) implies
N
E C U{J; Ug,(z) > Cs%27%|S;]}.
i=1
Therefore, the conclusion follows from an application of Lemma 2.3. g
Let the set E be as in Lemma 5.1. Writing
1 = (xe(z0) + XEe(%0)) (XE(21) + XE-(21))

and expanding the right-hand side, by (3.8) we can see that to prove (5.1) it suffices to
show the following two estimates:

2
2 / / / 11925, (i) xp(@o)af, (v)af, (w) dog dvy dwy < C27°20° (5.6)
B i=1

for £ = 0,1, where we note that z; is independent of vy and wsq, and
2
> [T, (i) i), (o), () g o o
B |det(Dy(22))|<27%Mp ;1
< 0272275 (5.7)
for some € > 0, where the balls B range over By.

Proof of (5.6). First, let £ = 0. Since Cy > ds, where C] is as in Proposition 2.2 and
do is as in the definition of ¢ %, by (2.11) and (3.8), the left-hand side of (5.6) is bounded
by I, where

=027 Z/%tgl (zo)Xx E(20) dzo.
B
By (2.11) and Lemma 5.1, we have
I< C2275/XE(330)dm0 <C2¥¢|EB| < 2215908,
Next, let £ = 1. As above, by (2.11) the left-hand side of (5.6) is bounded by II, where

II=C2" Z /// zb;Bl (zo)XE(xl)agl (vl)agl (wq) dzp dvy dwy.
B
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By a change of variables, we see that

/¢$Bl (zo)xE(z1) dzo :tl_’y/l/);_sBl (Zo)x&(z0) dzo,

where
To = Atl—l (xo — dp, (w1)) + dp, (v1).

We observe that z/);;Bl (Zo) < CQ;;BI (o) if d3 and s are sufficiently large, where d3 is

as in the definition of QZJE. (We may assume that s is sufficiently large.) We assume that
C4 > ds, where C is as in Proposition 2.2. By (2.11), (3.8) and Lemma 5.1 we then have

1< 02732/1@31 (z0)xE(70) dxo
By

< CQQWS/XE(%) dzg
< 022’}/8276082 )
Combining the results for £ = 0 and ¢ = 1, we have (5.6). O

Proof of (5.7). We consider the variables z¢, v, w in the range where |det(Dy(z2))| <
27% Mp and the integrand in (5.7) does not vanish for each B € By. We use results in
the proof of Lemma 4.1. By (4.15) we have

det(Dy(x2)) = (Asi(sy+e LM Agri+: X, Y).
Note that L* = —L. Therefore, the condition |det(D;(z2))] < 27%*Mp and (4.16) imply
[(W,Y)| < C27°°(1 + [k(Bz) — k(B1))), (5-8)
where W = (¢(k(B2) — k(B1)) X1 — X2, X1), X = (X1, X5), c=log2.
First we assume that | X;| > C127°%, |k(Bg2) — k(B1)| = C22°° €3 > €1 > 0. Let

Z = X1 — Xo/(c(k(B2) — k(B1))). Then |Z| ~ | X1, if Cs is sufficiently large. Therefore,
by (5.8) we see that

(L, X1 (e(k(By) — k(B1)Z) ™). Y)| < CJX1| 127 < 027529 (5.9)

We note that
|X1(C(k(B2) — k?(Bl))Z)_1| < 2—¢€25

Thus, (5.9) implies
l(e1, V)| < C27%5295 4 0275,

Therefore, recalling the definition of Y, we have

|<A:2P*€1, A27k(32)7s(l‘1 — de (’UQ))>| < 02_652515 + C272*
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and hence

9959615 | 0925 4 0| Ay-. (v2)]

|<AI2P*617A2—I€(B2)—S($1 — JUBQ)>| <C
<0270 (5.10)

for some d; > 0.
Next, we assume that |X;| > C12795, |k(Bs) — k(B1)| < C22°2%. By (5.8) we then
have
(W, Y)| < C27%%22°,

We write X = S + R, where
S=1"PA, 1,0 rsp-s(x0 —xp,),  R=—t7"PA0(v1)
and decompose W as W = U + @, where
U = (c(k(Bz) — k(B1))S1 — 82,51), @ = (c(k(B2) — k(B1))R1 — Ry, By).

Here S = (S1,55), R = (Ry, Ry). We note that |R| < C2-%'¢ for any o’ € (0, ). There-
fore,
(U< [(W,Y)] + [(Q V)] < C270%2%° 4 027 "2,

Also, if | X1| > C12797%, ¢ € (0, ) and C is sufficiently large, we see that |S;| > C27<°
and hence |U| > C275. Thus, if U’ = U/|U|, we have

|<U/, Y>‘ < 02—6326282618 + 02—0/826232618.
As above, from this expression it follows that
(A, PU", Aymrimy - (21 — 2,))| < C2702° (5.11)

for some do > 0 with do > €.
Let

V ={x e B(0,C"): [(A},P*er,z)| < C2 %5,
Vi, = {z € B(0,C"): [(A;,P*U}, x)| < C27%%}

for sufficiently large constants C,C’ > 0, where Uy = (c(k — k(B1))S1 — S2,51), Uj, =
Uk/|Uk|, keZ.
By (5.10) and (5.11) we see that if | X;| > C127¢%, then

A27k:(52)7s(x1 — 1’32) S S(Bl,xo), (512)

where

S(By,xg) =V U ( U Vk>.

|/<7—]<)(Bl)|<c'2262S
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We may assume that §; and J are sufficiently small. By Lemma 5.2 we have

velJ2ts, Y olIsi <o
i i

ViclJ2tsy, YISk < o2
J

J

(5.13)

for some balls S, Sj’-C in B(0,2C") with radius 27%% for some &y € (0,1). In (5.3) we take
this dp and C' = 2C". By (5.12) and (5.13) we see that

Uy p, (21) 021/132, (1) +C > Zsz%S;g (z1).

‘k—k(Bl)‘<C22€2‘s J

Therefore, summing up in By under the condition Ay x5, —s(z1 — xp,) € S(B1,20) and
1 € E°, with the other variables (B, x9 € R?, vi,w; € B(0,C)) fixed, by (5.3)
and (5.13) we have

Z¢;Bz(x1) <CZUS]-(331)+O Z ZUsf(xl)
Bs ;

|k7k(31)‘<022623 J

<0 PS4+ C > > s Sk

J |[k—k(B1)|<Ca2¢2 j
532’}/52—515 _1_02625832’)/32—525

<C
< C2357° (5.14)

for some €3 > 0.
Let

(SQMB |X1| 012_518; v, W € B(O,C)},

Rp = {(z0,v,w): |det(Dy(22))] < 2
| <27%Mp, |Xi1| < C1279%; v,w € B(0,0)}.

R = {(z0,v,w): [det(Dy(x2))
To prove (5.7), we split the integral as follows:

2

/// H(%tBi (mi71>XE°($i71)aJBgi (Ui)aJErzi (ws)) dzo dv dw
|det (D¢ (22))|<27%*Mp ;4
= IB + IIB,

where

Ip = ///R H 1/)2 sB; (Ti—1)xEe (Tie 1)(1'5 (Uz)ag (w;)) dzo dv dw,

B =1

/// H 1/)25 (zi-1)xpe (Ti- 1)aB (vz)aB (w;)) dag dv dw.

5’11
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From (3.8) and (5.12) it follows that
2
Ip < C/// H(w;Bi(xi—l)XEC(xi—l))
Ay k(By)—s (T1—3B,)ES(B1,%0) ;1

1=

X agl (vl)agl (wy) dzg dvy dwy.

Therefore, by (5.14), (3.8) and (2.8) we have

Z Ip < C27%3%278 Z /’lp;Bl(l‘o) dzg

BeBy B1€B
< 0279910 Y~ 2% By

B,eB
< 02752275, (5.15)
To estimate 11, by (3.8) we first see that

Il < C/// ‘ V3.5, (20)V3 g, (1) xEe (21)af (v1)af (wr) dzo dvy dw;.
Xi|<Ci27¢€1s

(5.16)
A change of variables implies that

/ U, (@)W g, (21 xe (1) dag
| X1|<Cr27¢1s
=t / by g, (Z0)¥: , (o) X< (x0) o,
| X1]<Cr27 €18
where Zg is as in the proof of (5.6) and

Xl = <€17t1_1A27k(Bl)—sPAt1t2 (To — dp, (1)1))>

We have ¢3. 5 (o) <~C’l/~12tBl (z0) if d3 and s are sufficiently large as in the proof of (5.6).
Also, the condition | X1| < C127°**¢ implies

|<a, AQ_k(Bl)_s(xo — .’ﬂBl)>| <C274® (517)

for €; € (0, ), where a = A}, P*e;. Therefore, by (5.16) and (3.8) we have
IIp < C/ @ZBI (xo)XEc(xo)w;Bz (w9) dzo- (5.18)
[{a,A,—k(By)—s (@o—TB,))|<C27 18

Arguing as in the proof of (5.14), if g € E°, we see that

> Ui g, (m0) < C274527¢ (5.19)
Bi: [{a,A,_k(By)-s (wo—TB;))|<C27°1°
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for some €4 > 0. Thus, from (5.18), (5.19) and (2.8) it follows that

Z IIp < C27%4%27° Z /wzth(CEo)dl”o

BeBy Bo€eB
< 027945270 N~ 273 By
BoeB
< 027452275, (5.20)
By (5.15) and (5.20) we have (5.7). O

6. Proof of Proposition 2.2 for P»: proof of (4.3)

In this section we prove (4.3). By (3.10) it suffices to show that

D

BeBy

/// Gg(20)Fp(22)Hp(a(2° M 5" det(Dy(22))) dag dw dt dv

< C27((275T )%, 1).

Recalling the definition of TF in (3.9) and expanding (T+)?, we can see that this follows
from

‘ /// Gp(w0)Fp(22) HpCa(2°° My " det(Dy(2))) dag dw dt dv

<C27% //// HE (20,21, 2, t,v,w) dzo dwdt dv (6.1)

for all B € By, where

2

HE (w0, 21,22, t,0,w) = H(wztgi (zi1)af (vi)et (ti)af, (wi)vd. g (x4)).
i—1

If we fix all the variables but y, ¢, then (6.1) follows from the estimate

[ Foan e oaal <o [[apwrteowe 62
which is uniform in the fixed variables, where
2
L(y,t) = [ [ (Wos . (wi-1)v20 b, (2:) B(t:))(2(2°° M5 " det(Dy (x2))), (6.3)
i=1
2
LH(y,t) = [ [ g, (@ie )0 g, (w2) ™ (82)). (6.4)
i=1

To prove (6.2), by (3.7) it suffices to show

‘// Fp(x2)L(y, )8y, al, (y) dy dt‘ <02~ // ab, ()L (y,t) dy dt (6.5)
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for ¢ = 1,2. Fix i. Applying integration by parts, we can see that the left-hand side
of (6.5) is majorized by

‘//FB z2)a', (y)0y, L(y, t dydt‘ ’//aB1 L(y, t)0y, Fp(z2) dy dt|. (6.6)
To estimate this, we need the following.
Lemma 6.1. Let L and L™ be as in (6.3) and (6.4), respectively. Then we have
[L(y,8)] + 5712%(0y, L(y, )] + |04, Ly, £)] < C2L*(y,1)
for ally, t and j, k =1,2.
Proof. We note that
57129919, (2" M5 " det(Dy(22)))] + |06, (2(2°° M5 " det(Dy(2)))| < C2°° (6.7)

on the support of L. This follows from (4.4) and the chain rule. The estimates (4.6)
and (6.7) imply the conclusion of Lemma 6.1. O

By Lemma 6.1, we can estimate the first term of (6.6) as follows:

‘//FB z2)al, (¥)y, L(y, )dydt‘ < 05200~ // y) LT (y,t) dydt. (6.8)

An estimate needed for the second term of (6.6) follows if we prove that

L(y,t)0y, Fp(zo) dt| < C27° | LT (y,t) dt (6.9)
/ <o f

uniformly in y. To prove (6.9), we use the following [15].
Lemma 6.2. Suppose that det Dy(x2) # 0. We then have the equality
0y Fis(3) = (V4(Fp(2)(1,1)), Dy(3) " (B, 22)),
where Vi(g1,g2) = (0,91, O1,92) and Fp(z2)(1,1) = (Fp(z2), F(x2)).

Fix y. By Lemma 6.2, we can write the left-hand side of (6.9) as

/L(%?«‘)Wt(FB(xz)(l,1))7Dt(562)71(3yi$2)>dt :

Integration by parts implies that this is equal to

/ Fis(22) (1, 1), Ve (L(y, £) Dy (22) ™~ (Dy,2)) ]

Therefore, by Lemma 6.1, to prove (6.9) it suffices to show that

| Di(2) " (By,2)| + [Ve(Di(a2) "1 (9y,22))| < 2727 (6.10)
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on the support of L(y,t). By Cramer’s rule, (6.10) is a consequence of the estimates

det(Dy, +.(x2)) .
Oy, ———SL T2 L Cg27 82208 k=12
Tk detDt(xg) S ) Js )<

J

det Dy(z2)

which follows from (4.4), (4.5) and the estimate |det D;(x2)| > C27% Mg on the support
of L. This proves (6.10) with e = o/ — 36 for any o’ € (0, «). Thus, we have (6.9) with
€ = o — 36. Combining this with (6.8), we have (6.5) with e = o’ — 34, choosing J to be
sufficiently small. This completes the proof of (4.3).

7. Proof of Proposition 2.2 for Ps

In this section we consider the case P = P3, where Ps is as in (1.2). Then A; = t“Uy,
where
U, ( cos(fBlogt) sin(ﬂlogt))
"7 | —sin(Blogt) cos(Blogt) ] "
Let
Mpg = 20(k(B1)+s)ga(k(B2)+s) (7.1)

for B = (By, Bz) € B2. Let Dy(22), Dy, +,(x2), for i,j = 1,2, be as in §4 with P = Ps.
The following lemma can then be proved in the same way as Lemma 4.1 by noting

U, € SO(2).

Lemma 7.1. Let Mg be as in (7.1) and let B € By, where By is as in (3.14). Let
te € [C71,C), v, € B(0,C), 241 € supp(w;BZ), ¢ = 1,2. Then the following estimates

hold:
|det(Dy(x2))] + 2°%10y, det(Dy(x2))| + |8, det(Dy(x2))| < CMsp, (7.2)
29°|det(Dy, ¢, (x2))| 4 2°%|0y, det(Dy, 1, (x2))| < CMp (7.3)
fori,j,k=1,2, and
o B, (er)| + 2%%10y, b2 B, (20 )| + |01, 1020 B, (20| < Cife g, (2er) (7.4)

fori,j=1,2,0<0 <, 0=1,2.

To prove Theorem 1.2 for Pj, it suffices to prove Proposition 2.2 for P3. So, we have to
prove estimates analogous to (4.2) and (4.3) in the case of P3 with Mp in (7.1). To prove
an analogue of (4.2), we show analogues of (5.6) and (5.7). An analogue of (5.6) can be
shown in the same way as in the case of P,. To prove an analogue of (5.7), by (4.15) for
P53 we note that

det(Dt(mg)) = <A;k(52)+5L*A2k(B1)+5X, Y>
= g(k(Bi)Fs)agk(B2)+s)e(rr_ py L*Uynisy+s X, Y),
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where X and Y are as in (4.15) with P = P3. Suppose that § = 27k/log2 for some
k € Z. Then U,; is the identity matrix for all j € Z. So we have

det(Dy(x4)) = 2F(BFs)agk(Ba)ts)a 1+ x vy,

Therefore, if |det(D;(z2))| < 27%*Mp and the integrand in (5.7) does not vanish, noting
that L* = —L, we see that [(LX,Y)| < C27%. If

—1
S =t PAtthQ—k(Bl)—s(xo — !L‘Bl)

as in the proof of (5.7), this implies [(LS,Y)| < C27% for § € (0,a). Also, from the
inequality | X1| > C127%% ¢; € (0,), it follows that |S;| > C27< if C is sufficiently
large. It follows that

(LS/|LS|,Y)| < C27%%241%,

This estimate along with the definition of Y implies
‘<A:2P*(LS/|LS|), A27k(32)75($1 — de (’1)2))>‘ < 02_632618.
It follows that

(A3, P*(LS/|LSI), Ay-rcar— (€1 — wp,))| < 02729 4 O Az-s (v2))|

<C
<0279 (7.5)
for some 01 > 0, if | X1| > C1275. Therefore, if we fix the variables except for By, then
Ay—r(5y)-s (71 — p,) lies in a C2791% neighbourhood of a line. Also, if |X;| < C1274%,
results similar to those in § 5 hold (see, for example, (5.17)). Thus, an analogue of (5.7)
in the case of P53 can be proved as in §5 (see (5.15), (5.20)).

To prove an analogue of (4.3) we first note the following.

Lemma 7.2. Let L and L be defined as in (6.3) and (6.4), respectively, with every-
thing adapted for the present case. Then we have the pointwise estimates

| Ly, )] + 2718y, L(y, )] + 8, L(y, )| < C2°L* (y, 1)

for j,k=1,2.

We can prove this by using Lemma 7.1, in the same way as we proved Lemma 6.1 by
applying Lemma 4.1.

By Lemmas 7.1 and 7.2 we can prove an analogue of the estimate (6.5) for the present
situation, which will prove an analogue of (4.3) as in §6.

We have just proved Theorem 1.2 for P assuming 8 = 27k/log2 for some k € Z.
Now we remove the restriction on 3. Let D; = Ay, A > 0, and rp(z) = r(z)*/*. Then,
D; = exp((AMogt)Ps) and rp(Dx) = trp(x), K(Diz) =t~ K(x) for x € R?\ {0},
t > 0. Also, we can easily see that D;, rp and K satisfy all the conditions in Theorem 1.2
assumed for A;, r and K. Furthermore, if we choose A such that \G = 27k /log 2 for some
k € Z, then the proof of Theorem 1.2 given above under the restriction of 8 applies to
the proof of Theorem 1.2 for Dy, rp and K. This proves Theorem 1.2 for a general Ps.
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8. Reduction to the Jordan canonical forms

We choose a non-singular real matrix @ such that Q~'PQ is one of the three matrices
in (1.2). Let R = Q71 PQ. Then Q1 4,Q = t®. Put D, = tf. Set K;(z) = (det Q) K (Qx).
Then K;(Dix) =tV K;(z) for z € R*\ {0}, t > 0. Put 71(z) = 7(Qx). Then ry(Dix) =
tri(xz) and r(z) = 1 if and only if (Q*BQz,z) = 1, where B is as in statement (iii)
of §1. We note that Q*B(Q is positive and symmetric. Also, we have

/ Kl(a?)dx:/ K(z)dz =0 forall a,bwith0<a <b.
a<ri(x)<b a<r(x)<b

Furthermore, if Fy = {x € R?: 1 < rq(x) < 2}, then K1 (x)xg,(z) € Llog L(R?).
Define

T f(x) = p-V-/f(y)Kl(w —y)dy.

Theorem B, Remark 1.1 and what we have already proved then imply the weak-type
(1,1) estimate for T7:

{z € R?: [T1f(2)] > A} < AT ]I, (8.1)

since K1, Dy and ry satisfy all the requirements needed in the proof. We note that
Tif(z) = T fo(Qx), where fo(x) = f(Q 'z). Using this and changing variables in (8.1),
we can see that T' is of weak-type (1,1).

Appendix A
A.1. Proof of (2.7) from Proposition 2.1

First, by dilation invariance we may assume that ¢ < Y |B] < 1 in (2.7) for
some constant ¢ > 0. For s > C, we decompose Ky as Kg = H® 4+ L) with
L) = Kox{|r,|<2:¢/2}, Where € is as in Proposition 2.1. Then we have to prove

{ Z Z%sB(bB * Sk(B)-‘rsH(S))‘ > é}‘ < 0, (A1)
s>C' B

H Z Z%SB(Z?B s Sk(B)+sL(S))’ > é}‘ <Gy (A2)
s>C' B

for some positive constant C;. The estimates (A1) and (A 2) imply (2.7). The estimate
(A1) follows from

S S waen(bs * SppyHD)||| <C (A3)

s>C' B 1
by Chebyshev’s inequality. To see this, we note that the estimates (2.1) and (2.5) imply
120 (b * Skpy 4 H) [ < CIBI | HD 1. (A4)

Since

Z |H®)||; < C||KollL1ogz = C,
s>C
(2.8) and (A 4) imply (A 3).
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To prove (A 2) we note that |
to show that

s> Bs| < C. Thus, by Chebyshev’s inequality it suffices

1D waenlbn * Skipy4s L) <C, (A5)
s>C'! B Lr(F°)
where F' = | J .~ Es. The estimate (A 5) follows from
Z Pos (g * Sp(p)rs L) < 027 /? (A6)
B Lr(EQ)

by the triangle inequality. We can prove (A 6) by Proposition 2.1 with fg = L(*) for all
B, since

1/2
(Z |B] IIL(S)H%) <COLP o < 2772,
B

A.2. Proof of Lemma 2.3

We prove
Z YBs|| <C27%S], (A7)
BeB 1
> ps < Cs274|8], (A8)
BeB BMO

where BMO is the space defined by using the balls with respect to the function r. The
estimates (A7) and (A 8) imply the conclusion of Lemma 2.3, since we have

{I71> A < Cexp(=AN/ | fllBmo) [ £1[1/2

for some A > 0, which follows from the John—Nirenberg inequality [8].
Proof of (A7) is straightforward:

> Uss

BeB

<Y msl <C > 27|8||B| < C27°8],
1 Ben BeB

where the last inequality follows from (2.8).
To prove (A 8), it suffices to show that

s%pZ(’)R(wBﬁ) < Cs27%8|,
B

where

0R<f>=|R|-1/R\f—fR|, fR=\R|_1/Rf~

Fix a ball R = B(xg,u). Take i € Z such that 2! < u < 2¢+1L.
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Case 1 (¢ > k(B) + s). If Or(¢p,s) # 0, then RN C2°B # () for some C' > 0, and
hence
r(zp — zg) < C(u + 28B)T9) L Cu,

which implies B C C'R. Therefore, since Og(vp,s) < C|R|~'27%|B||S|, we have
Y. Or(Ups)<C ) |RI7'2°I8]|B| < €275
B: izk(B)+s BCCR
Case 2 (k(B)+s—90s <t < k(B)+s). If Or(¢¥p,s) # 0, there exists x such that
r(x —xgr) <wuand r(Ay-rp)-«(z —xp) — x5) < C27%. Thus,
< CQT(Z‘ — l‘R) + Cor(rp + Agrs)+:Ts — )
< C(U + 2k(B)+s—§s)
< Cu,

r(xB + AgkByrsTs — IR)

where Cy is as in statement (ii) of §1. It follows that B + A+ C CR, where
B+4+a={r+a:x € B}, acR" For j € Z, define a family of disjoint balls

Z; ={B € B: Or(¥B,s) # 0, k(B) = j}.

Then
3 Or(Yps)<C > > |R'27B[|S|

B: k(B)+s—ds<i<k(B)+s i—s<j<i—s+ds BEL;

<C ) |R[T'2|CR - Ayl [S]
i—s<j<i—s+0ds

< C8s279)S).
Case 3 (k(B) <1i < k(B) 4+ s — ds). As in Case 2 we have
r(xp + Agkmy+sTs — TR) < C2M(B)+5=0s
if Or(¢p,s) # 0. This implies
B+ Agiipy+es C Blag, C2FPB)+s=0s),

Thus, we have
card(Z;)2"7 < €270 +s09)
if j <i<j+s—0s, where Z; is as above. Since Or(¢¥p,s) < C, it follows that
> Or(¥s)< Y. Y. Or(Yss)

B: k(B)<i<k(B)+s—ds i—s+0s<j<i BETL;

<C Z card(Z;)

i—s+8s<j<i
< Cs27%|8].
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Case 4 (i < k(B)). As in Case 3 we have card(Z;) < C27%|S| for j > i. Now we
have

On(wns) < IR [ fons(e) ~ visto)] dod.
RXR
Note that
[V5.5(2) = ¥BsW) < ClA,Z1p-nm-. (x —y)| < C20 MBI +D/6n

for z,y € R, where (31 is as in statement (v) of § 1. Therefore,

> OR(l/JBS > Y Or(¥s.s)

B: k(B)> j>i BETL,
Canrd 2(55 Jj—s+i)/B1

Jj>i

< 02788
Combining results in Cases 1-4, we have (A 8).

A.3. Proof of Proposition 2.1 from Proposition 2.2 and Lemma 2.3
For B € B and a constant D > 0, let

h(B) = card({B' € B: CoD2°B C CoD2°B'}),

where B is as in Proposition 2.1 and Cj is as in statement (ii) of § 1. Note that

U 283‘ ’{ Z XCoD2:B =2 3275}‘ <02’

h(B)>s327s BeB

for some € > 0, where the last inequality follows from Lemma 2.3 with S = B(0,2CyD).
We can put E, = Uh(B)}s?’QW D2°B in Proposition 2.1.
Let
By ={BeB: 127 <h(B)< (£{+1)27}

for £ =0,1,...,s%—1. We show that By satisfies (2.11) in place of B if D is large enough.
Then, if we also take D satisfying D > d;, where d; is as in the definition of ¥z, by the
definition of E the estimate (2.10) follows from s* applications of (2.12) and the triangle
inequality.
Let
B ={Be€By:x2c D2°"'B}

for an arbitrary x and the constant D satisfying D/2 > C7, where C; is as in Proposi-
tion 2.2. We show that card(B*) < C27%. We may assume that B* # (). Let By have the
minimal radius 270 in B* and let B; have the maximal radius 2t in B%. For jo < j < j1,
we note that

card({B € B: k(B) = j}) < C27°. (A9)
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Take m € Z such that 2™~! < C2 < 2™. Suppose that j; > jo + 2 + m. Then we have
h(Bg) = h(B;1) +card({B € B*: jo+2+m < k(B) < j1}). (A10)

To show this, let © € D2°7'By N D2°7'B, B = B(2,27), jo+2+m < j < j1, By =
B(w,2%). If y € CyD2° By, then

r(y —2) < Cor(y —w) + Cir(w — x) + Cor(x — 2)
C3Dp2ots 4 C2p2iots=1 1 ¢yp2its—!
C3D2Iotstl 1 CyD2Its—1

CoD27F5,

which implies CyD2°By C CyD2°B. Similarly, this argument implies CyD2°By C
CoD2°B;. Thus, if CoD2°B; C C()D2SB/, then

CoD2°By C CoD2°B; C CyD2°B’.
From these results (A 10) follows. By (A 10) we have
card({B € B": jo +2+m < k(B) < j1}) < h(Bo) — h(B1) < 27°.
Combining this with (A 9), we have card(B*) < C27* as claimed.

/

INCININ

A.4. Proof of (3.10)

By interpolation and duality, to prove (3.10) it suffices to show the claim with ¢ = oo.
To achieve this, by the positivity of the operator we may assume that F' is identically
equal to 1. Therefore, we must show that

27 Y T g

BeB

<C
P

Since we are assuming C > dy, where C] is as in (2.11) and dy is as in the definition of
¥}, by (2.11) and Hélder’s inequality we have

1/p
9—7s Z ’(/];;BTE/IZ);;B < C’2—vs/p< Z (T§¢;B)p> ) (A11)

BeB BeB

Since ||Tg F||, < C||F||, uniformly in B by (3.8) and Minkowski’s inequality, using the
pointwise estimate (A 11), we see that

HWS > dpTEvp

BeB

1/p
< cms/p( )3 ||T§w;3||5)
4

BeB

1/p
< cww( ) ||¢;B|g)

BeB

1/p
< 02—73/1’( > 2”|B|)

BeB
< 07

where the last inequality follows from (2.8). This completes the proof of (3.10).
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