
/. Austral. Math. Soc. Ser. B 27 (1986), 453-472

BOUNDARY VALUE CONTROL PROBLEMS INVOLVING
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Abstract

In this paper, we consider the hyperbolic partial differential equation wn = wrr + \/r
wr - v2/r2 w, where v > 1/2 or v = 0 is a parameter, with the Dirichlet, Neumann and
mixed boundary conditions. The boundary controllability for such problems is investi-
gated. The main result is that all " finite energy" initial states can be steered to the zero
state in time T, using a control fe L2(0,T), provided T > 2. Furthermore, necessary
conditions for controllability are also presented.

1. Introduction and problem formulation

In this paper, we consider controllability for the hyperbolic partial differential
equation

^ + 2fotl)W = 0, (r ,0e(0, l)x(0,r) , (1.1)

where Bjp ̂  denotes the Bessel differential operator of order v = 0 or v > \ given

by

The control force / e L2(0, T) for some T > 0 enters in the boundary condition

a | ^ ( r , 0 + o w ( r , 0 =/( / ) , / > 0, (1.2)
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454 K.-D. Werner [2]

where a2 + a2 ¥= 0, aa > 0. We require t//(0 + ) to be bounded since B[o X) has a
discontinuity at zero. We pose for (1.1) the initial conditions

w(r,0) = wo(r)(EHB, jf(r,0) = vo(r) e H, (1.3)

where HB denotes the "energy space" to be defined in Section 2 and
H = {x: Jrx(r) e L2(0,1)}.

In this problem, a = 0 corresponds to the Dirichlet problem; a = 0 to the
Neumann problem; and a > 0, a = 1 (without loss of generality) to the mixed
boundary value problem. For brevity, these three problems are to be called
problem 1, problem 2, and problem 3, respectively.

The term "control problem" refers to:
Let T > 0 be given and let (wQ, v0) e HB X H be a given initial state. Then, find
a control / e L2(0, T) such that the solution of (1.1)-(1.3) also satisfies the
terminal conditions

w(r,T) = wT(r), -Jf(r,t) = vT(r),

where wT and vT are given elements in i/fl and H, respectively.
Because of the time reversibility of (1.1), there is no loss of generality if we

assume wT = vT = 0, i.e. we consider our control problem to have zero terminal
conditions

w(r,r)-^(r,r)-0. (1.4)

Our main result is:

THEOREM 1.1. Let v = 0 or *» Ss \ be fixed. IfT>2, then the control problem is
solvable with a control f e £2(0, T) such that

where K is a positive constant independent of w0 and vQ. If T < 2, then the control
problem is not solvable in general.

In most physical processes, control is applied at the boundary of the spatial
region in which the process evolves. The equation wn = -Bf01)w is a wave
equation, which is of importance in the study of structural vibrations of a circular
membrance and tubular catalytic reactions, where the wave speed depends only
on the radius r. These examples are particular cases of the control problem
considered in this paper.
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[ 31 Boundary value control 455

Graham and Russell [4], Russell [11]-[16], Lagnese [5], Littmann [9], and other
authors have presented certain results concerning boundary and distributed
control for systems governed by linear hyperbolic partial differential equations in
various spatial regions in which the process evolves. Our controllability result
stated in Theorem 1.1 is of the same type as the main result on boundary control
of the wave equation reported in [4] and [21]. However, the treatment of our
control problem is rather different from that of [4] and [21]. More precisely, an
existence and uniqueness theorem for our evolution problem is to be estimated
under weaker assumptions. Note that controllability results of the same type as
ours are also available in [4], [11] and [21], where the domains are, however,
assumed to take specific forms. Furthermore, stronger conditions on the initial
data are also required in [11]. Note that results concerning boundary control in
unspecified or star-complemented regions are reported in [13] and [16] by using
different approaches from ours. However, in the cases of the Neumann and mixed
boundary control problems, these approaches give rise to only sufficient condi-
tions for controllability. Our approach, however, shows that the sufficient condi-
tion is, in fact, also necessary. In the case of the Dirichlet boundary control
problem, our technique needs to be slightly modified. As a result, we obtain only
the same sufficient condition for controllability. However, we shall show that this
sufficient condition is not necessary.

In Section 2 we rewrite the evolution problems in variational form. This enables
us to define weak solutions of (1.1)—(1.3) by using the method of transposition. In
Section 4 we show that each of the control problems is equivalent to a collection
of trigonometric moment problems solvable by the theory of nonharmonic
Fourier series developed in [11] and [12], together with certain results concerning
the separation of eigenvalues of the operator 5("01) (B denotes the closure of B).
The proof of Theorem 1.1 and the proofs of results concerning necessary
conditions for controllability depend on special properties of the eigenvalues and
eigenfunctions of B{01) and the spectral representation of the energy spaces HB.
Some of the preparatory results reported in Section 3 (see also [20]) may also be
of interest by themselves.

2. Existence, uniqueness and regularity results of the evolution problems

We shall follow the treatment given in [7, Chapter IV]. First, we introduce some
notation and hypotheses.

Consider the Bessel differential operator B{01) of order v > 0 given by
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Let the domain of B"o X) be defined by

D(B'w) = { x(r)\x(r) = r>u(r), u(r) e C°°(0,1),

M'(0) = aw'(l) + au(l) = 0,a2 + a2 * 0,aa > 0}. (2.1)

The requirement u'(0) = 0 is only necessary in the case when v = 0, since we
need to show B[Otl)\p ^H= {x(r): yfrx(r) e L2(0,l)}.

The domain D(B*01)) is dense in the separable Hilbert space H, because
Co°°(0,1) is dense in H (see Theorem 2 of [22, page 8]).

We define the "energy space" #fi-01 for each of the three boundary-value
problems as follows: HB. = HB = closure of the domain (2.1) with respect to
the norm

11*11"- = ({' 'O*'^) I2 + !*(') I2 + "2/r2 W') I2)
The technique of the construction of the energy space outlined in [19, Section

17] leads to our definition in the cases a = 0 or a = 0 in the domain (2.1). For
the mixed boundary condition, (i.e. a = 1, a > 0), the technique has to be
modified, as indicated in the Appendix, in order to obtain a similar definition.

It is important to note that the space HB depends on the parameter v > 0 and
the chosen domain. However, we shall use the same symbol HB throughout the
paper.

Identifying H with its dual, and denoting by H'B the dual of the separable
Hilbert space HB, we have

HB<z H<z HB

and HB is dense in H since Q°(0,1) c HB is dense in H.
With the operator B^0V), we associate for Dirichlet and Neumann boundary

conditions the symmetric bilinear form

{rp'(r)V(r) + v2/rp(r)^{r)) dr,

p , * e HB, (2.3)

and for the mixed boundary condition (i.e. a > 0, « = 1 without loss of general-
ity),

f (rp'(
•'o

e HB. (2.4)

Therefore, the operator 5('01) is symmetric in each case and from (2.2) and (2.3)
(resp. (2.4)) a Garding-type inequality

a(p,p) +\\P\\2
H>\\P\\HB, Vpei/ f i (2.5)

follows.
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For our second-order evolution problem, we have verified that all the assump-
tions of Theorem 1.1 in [7, Chapter IV] are valid. Thus, we have

THEOREM 2.1. Under the assumptions (2.3) (resp. (2.4)) and (2.5) there exists a
uniquey <= L2(0, T; HB) with oy/at G L2(0, T; H) satisfying

d2y/dt2 + B^y = g e L2(0, T; H),

the initial conditions

y(r,0)=yo(r)£HB, ^ ( / - , 0 ) = yi(r) e H

and the homogeneous boundary condition

a^-(\,t) + ay{l,t) = 0, a2 + a2 * 0, aa > 0,
or

together with the requirement thaty(Q + ,t) is bounded. Furthermore, the mapping
{ g< yo' yi} ~* { y> <$y/^t} is a linear continuous map of L2(0, T; H) X HB X H
into L2(0, T; HB) X L2(0, T; H).

In [8, Chapter 3] the result is extended to

y e C([0, T],HB) = {y: y is continuous from [0, T] -» HB),

Since we can reverse the direction of time in equation (1.1) it is clear from
Theorem 2.1 that for h e L2(0, T; H) there exists a unique p e L2(0, 7; i/B)
satisfying 9p/3r e L2(0, T; / / ) ,

the zero terminal conditions

p(r,r)=^(r,r) = o

and the homogeneous boundary condition.
We proceed now with the principle of transposition outlined in [1] and [7].
By use of Theorem 2.1 we construct an isomorphism that we transpose to solve

the nonhomogeneous boundary value problem (1.1)—(1.3). For this purpose, we
introduce the set

X = { p|p e L2(0, T; HB), ^ e L2(0, T; H),

o2p/ot2 + Bfo)P = h G L2(0, T; H), p(r, T) = ^(r, T) = 0,

p(0 + , / ) bounded, a-£(l,t) + ap(l , / ) = 0,a2 + a2 # 0,aa > o | .
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Endowed with the norm \\p\\x = ||32p/9/2 + fl(o,i)Pllz.J<o,7-;//) = \\h\\L2^T.Hy the
space A1 is a Hilbert space and, by virtue of Theorem 2.1,

p -+ 32p/9'2 + £(O,DP (2-7)

is an isomorphism of X onto I2(0, T; H).
Let p - * L ( p ) b e a continuous linear form over the Hilbert space X. Applica-

tion of the Riesz representation theorem combined with the isomorphism (2.7)
yields the existence and uniqueness of h e L2(0, T; H) such that

L{p)= j r T /A(- ,O,0( - ,O + ̂ ,i)P(-.o\ dt, VpeX (2.8)

Specializing to our linear form over X using Green's formula, we obtain

LEMMA 2.2. There exists a unique function w £ L2(0, T; H) such that for p e X,

f1 f

= /J £rwhdtdr+j\(p(r,0)oo{r)-^(r,0)Wo(rj}dr

Mfc1'')*' ^°'« = 0' (2.9)
f

ora > 0, a = 1,

// w assumed additionally that in the case of the Dirichlet boundary condition
{i.e. a = 0)

is defined for all p e l

PROOF. By virtue of (2.8), it remains to show that the integrals over (0, T) are
well defined. First, under the additional assumption for the Dirichlet problem, the
chosen linear form is well defined on X and it is a continuous linear form
thereon. From the eigenfunction expansion of (2.6) for the Neumann or mixed
homogeneous boundary condition as described in Section 3, we obtain, for v = 0
or v > \,

y - i
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using J\~ = 0(j) (see Lemma 3.1 in Section 3) together with Parseval's

equality

where hy y(f) = (/»(-,/),/„ y ( ) ) w with fVJ in H orthonormalized eigenfunctions.
(If v = 0 in the case of the Neumann problem, then \ 0 x = 0 and we shall adopt
the convention sin^A0 11/ ]jX01 = /.) Since / e L2(0,T), we conclude that the
linear functional

Tf(t)P(l,t)dt(

is continuous on X. This completes the proof.

We summarize the above results in

THEOREM 2.3. Let v = 0 or v > \ be fixed, {w0, v0) G HBX H andf G L2(0, TX)

with T replaced by Tx > T. Then, there exists a unique function w e L2(0,7\; H)
such that for all solutions p of the equation (2.6) as described in Theorem 2.1
together with the zero terminal conditions

the following equation is valid:

f1 fTl w(32p/9'2 + *(cmp) dtdr = C [Ti rwhdtdr

+ (2.9) or (2.10), (2.11)

where it is assumed that in the case of the Dirichlet boundary condition

is a well defined continuous linear functional on X.

Note that, (2.11) is, in fact, a definition of weak solutions of problem (1.1)—(1.3).

REMARK 2.4. (i) Using Green's formula, we can verify as in [7, pages 194-195,
Remark 7.2, page 320] that the function w{r,t) satisfies (1.1)—(1.3) in a gener-
alized sense. Indeed, the choice of the linear functional was motivated by that.

(ii) It is easy to derive an eigenfunction expansion for w{r, t) similar to that
for the Neumann problem given in [7, Chapter IV, Remark 7.3].
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(iii) Smooth solutions of (1.1)—(1.3) satisfy the integral relation (2.11). This is of
importance for the proof of our main result, since the function h is specialized to
be in C°°([0,1] X [0, 7\]).

As interpreted in Theorem 2.3, the solution w of (1.1)—(1.3) is an element of
L2(0, T; H) and thus w(-, T), dw/dt(-, T) are not necessarily defined at the fixed
T as required in the statement of the control problem. Therefore, we replace
condition (1.4) by the following.

Let Tx> T and / be extended from [0, T] to [0, 7\] by setting f(t) = 0,
/ e (T, 7\]. Furthermore, let w(r, t) be the solution obtained from Theorem 2.3.
Then (1.4) is replaced by

w ( r , 0 = 0, ( ' . 0 e (0,1) X l r . r j . (2.12)

Clearly, (1.4) and (2.12) are equivalent in the case of classical solutions of
(1.1M1.3).

3. Properties of eigenfunctions and eigenvalues of B^0l).

This material is required for effective representation of our controllability
result.

Let v = 0 or v > 1/2 be arbitrary but fixed. We consider from now on the
operator B[01), which is the closure of B{01) as defined in [19, Section 17].

It is known that the spectrum of 2?(o?1) consists, in each of the three cases, only
of the eigenvalues X, which, together with an associated eigenfunction / , satisfy

d2f/dr2+-rfr +(*-"2A2)/=0, (3.1)

where / is subject to the homogeneous boundary condition at r = 1 and /(0 + )
is bounded. Such solutions are Jv(\l^,,jr)> t n e Bessel functions (first kind) of
order v. In [2], it is shown that the numbers X which satisfy (3.1), (3.2) can be
identified as

*,,, = /^,y, 7 = 1,2,....

Here nPj, j = 1,2,..., denote any of pvp yr<J or y,j, where these are respec-
tively the yth nonnegative roots of the equations

Jp{ Pv j) ~ 0 (Dirichlet boundary condition, a = 0, a > 0),

Jv'(yy ) = 0 (Neumann boundary condition, a = 0, a > 0)

and

y,,jJJ(y,j) + o.Jp(y¥j)
 = 0 (mixed boundary condition, a = l ,o > 0).
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In [2], it is further shown that the complete set {/„,,}, j = l,2,..., of

normalized (in H) eigenf unctions are given by

/ + 1 ( p , , 7 ) | 1 J r ( / » r , / ) , (3.3)

/,,,(/•) = &[(l - v*/y*J)j?{y,jY1/2Jw{yrtJr), v > h, (3.4)

/ , » = V2 [(l +(c2 - ra)A,2>,a(Y,J)]-
l/2/.(Y,./) (3.5)

respectively.
The solution of the second-order evolution problem of Theorem 2.1 in terms of

eigenfunctions is then given by

y(r,t) = w

+ -£-£g,j(r) sinpfJ(t - T)JTW (r),

where

Certain results concerning the roots of the eigenvalues for each of the problems
1,2,3 are summarized in

LEMMA 3.1. For each j = 1,2,..., and fixed v = 0 or v > \, let pr = J\,j
denote any ofpvj, yv} or yf<J. Then, it is true that

lim (M,.y+i - /*,,,) = w, (3-6)
y-oo

/»,,, = 0(j), (3.7)

Z)^ Urn >/Mr>> = 1/TT, (3.8)

limsup limsup v v y' y v ; = - , (3.9)
y—*oo x—• oo ¥

where </>(«) = the number of \iv j < u. Let v > \. For all three cases of homoge-
neous boundary conditions (except in the case a = \, a = 1), the inequalities

are valid. If v = \, (3.10) « a/50 true in the case of a = 0. For f/ie Dirichlet and
mixed boundary condition with a = \ all inequalities in (3.10) become equalities.
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For v = 0,

y ~ 1)"" *y°-j * y " 4 T ' - V ° . > + 1 " ^ > *' y°-1 = 1; (3-12)
yo.j=J« + « + ViU)/J, je*> (3-13)

vv/iere g is a constant and </'1(y) is a suitable bounded function in N.

PROOF. For each fixed v > \ and for the corresponding choice of \iv -, the
inequalities (3.10), the asymptotic gap statement (3.6) and the density statement
(3.8) are proved in [3], Theorems 1.1,1.4 and 1.2, respectively.

Case v = 0: a) ju0 y = pOj-; (3.6) and (3.11) are known (see [18, page 43]).
b) p0J = y0J: see [17, page 314] for the first inequality in (3.12).

Since J^(r) = -Ji(r) implies yQ<J = px}, the validity of (3.6) and the second
inequality in (3.12) follows from part a).

c) fi0j = yOj: (3.13) follows from equation (57) of [10, page 406].
The expression (3.6) follows then directly from (3.13).

The first inequalities in (3.11), (3.12) and the expression (3.13) imply (3.8) in
the case of v = 0. The statement under (3.9) for each v considered follows from
(3.6), since <j>(x) is proportional to x/w and hence <j>(x + y) — <j>(x) -* [y/v] for
x —> oo ([x] = greatest integer less than or equal to x).

Because all intervals between two successive positive roots ]iv • are equal or
greater than IT, it follows that

/*, ,>>(. /-!)"•> 7 = 1,2,.. . ,

except in the cases of (3.11) and (3.13), where in the latter case such a result is not
known. But pvj > (j - 1)TT together with the first inequality in (3.11) (resp.
(3.13)) in the exceptional cases imply that pvj = O(j) for each v > 1/2 or v = 0.
This completes the proof.

To establish our controllability result, we need lower bounds for the eigenfunc-
tions frJ and /„', at r = 1.

LEMMA 3.2. a) For the eigenfunctions/„ j in (3.3), it is true that:

b) |/0,,(l)l = v/2, |/,,,(1)| ^ v/2/(l + v/yyl) s c.j {v >
where fvj, j = 1,2,..., are the eigenfunctions of (3.4).

https://doi.org/10.1017/S0334270000005075 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005075


[ l i ] Boundary value control 463

c) In (3.5),

PROOF, a) From the recurrence relation, /„'(*) = v/x /„(*) - Jv+X{x), which is
valid for v > 0 and x e R, we obtain

v+I{pvjr) + p/p,,jrJw(prJr)]}.

Hence, since /„(/>„,) = 0, we get \fv'tJ(l)\ = y/2prJ.
b) v = 0, a direct computation gives |/0>y(l)| = V2~.

Since yv} > j>,,,i for all j e N and for each v > 5, we obtain

c)

since y,^ Ss yFjl for all y e N.
The proof is complete.

The next two lemmas are important for the characterization of the controllable
states.

LEMMA 3.3. Let A be a positive definite self adjoint operator with pure point

spectrum and let HA denote the energy space. Let 0 < \ l < X2 < • • • denote the

{multiple) eigenvalues of A and {*,}, j = 1 ,2 , . . . , be the corresponding system of

orthonormalized eigenvectors in the Hilbert space H. Then

I °° 2

HA = I x\x e H, £ Ay|(x,x,)J < °o
Furthermore, {xy\^1 / 2 }, _/ = 1,2,..., is a complete orthonormal system in HA and
the operator A1/2 defines a unitary mapping from HA onto H, i.e. \\Al/2x\\H = \\X\\HA

andD(Al/2) = HA, R(Al/1) = H.

PROOF. Theorem 21.2 (a) of [19].

Note that A01 = y£x = 0 is an eigenvalue of 5(o,i) w* t n Neumann boundary
condition. Thus, B°o X) is not positive definite and hence we cannot apply Lemma
3.3. Nevertheless, the following result is valid.
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LEMMA 3.4. Let fOj, j = 1,2,..., be the eigenfunctions defined in (3.4) andyl}

the corresponding eigenvalues. Then,
00 2

w e HB?a„
 is equivalent to £ yij(wo>foj\ < °°•

7 - 1

The proof of the Lemma is given in the Appendix

4. Proof of Theorem 1.1

Using the definition of weak solutions of the boundary value problem (1.1)-(1.3)
given in Theorem 2.3, we transform the control problems into a sequence of
equivalent moment problems. These are solved using the theory of nonharmonic
Fourier series. In that process, we obtain our controllability result reported in
Theorem 1.1.

Let w(r, t) be the weak solution of (1.1)—(1.3). Then, the expansion of the
initial data (w0, v0) G HB X H in H is

where

Let Jj > T and let g = g(0 e C°°[0, 00) with compact support in (T, 7\) (cf.
end of Section 2). Define a function g, y G C°°((0,l) X [0,oo)) by

g,j(r,t)=g(t)f,Jr), y = l ,2, . . . . (4.1)

Consider the equation

g,,7, (r,t) e (0,1) X l r , ^ ] ,

with zero terminal data p(r, Tj) = dp/dt(r, 7"j) = 0 together with the homoge-
neous boundary condition (1.2) and the boundedness condition p(0 + , /) < 00
for t ^ 0. Its unique solution is given by

di.

,t) = PrJ(r,t) =

' i ( i x V J r ) g ( r ) d r , a 2 = - J l

Here, we again adopt the convention that siny0lt/y01 = t, since X01 = y$x = 0.
Thus p G C°°((0,1) X [0, 7\]) satisfies the hypotheses of Theorem 2.3. The addi-
tional assumption needed in the Dirichlet problem is also satisfied for that p.
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Substituting p, dp/dt together with the expansions of vv0, v0 into (2.11), it
follows that

f1 fTlrw(r,t)griJ(r,t)dtdr = O

for all functions g,yJ as described in (4.1), and hence (2.12) is satisfied if and only
if the functions / e L2(0, T) solve the corresponding moment problems, which
consist of the equations

f Tf(t) exp(±pr t)dt = a{vVyJ + ipw,jW,j)/fr'j(l) (Dirichlet), (4.2a)

(T f{t) exp( ±yv t) dt = a(-vr y + iy. jWp , ) / / , , , ( l ) (Neumann) (4.2b)

f v = 0, j = 1: fTf(t) dt = -oo0i/ /oi(l) , P tf(t) dt = aw0>1//0>1(
V •'o •'o

and

j f r / ( O exp(±yr>/) A = a(-i;r>y ± iY,.ywr>_,)//rj(l) (mixed). (4.2c)

For abbreviation, we denote o(vPJ - iprJwryJ)/fv'j(l) and o(vVJ +
'Pr,j

w,,j)/f,',j0) by c ^ and d^ respectively. Here the " + sign" in exp(±pv jt)
refers to c^ and the "-sign" in c\p(±ppJ) refers to df,]]. Similarly, c^2], d^
and c^, d^ are used, respectively, to denote the right-hand sides of the moment
problems (4.2b) and (4.2c).

The solvability of such a moment problem depends on the value of T and
properties of nv listed in Lemma 3.1.

LEMMA 4.1. IfT<2, each of the moment problems (4.2a)-(4.2c) has no solution
in general.

PROOF. This is a special case of a result proved by Levinson [6, page 3] where
T < 2irD. Since D = \/ir (cf. (3.8)) in our case, the assertion follows from this
result.

LEMMA 4.2. Let T > 2 and v = 0 or v > \ be fixed. Let the sequences {cJ'J},
{̂ »!}}» 7 = 1> 2 , . . . , / = 1,2,3, be elements in the Hilbert space l2. Then, each of
the moment problems (4.2a)-(4.2c) has a solution f e L2(0, T) such that

>. | 2 ) , (4.3)
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where the positive constants Kt, K, are determined by the asymptotic gap m {cf.
(3.6)) and the positive number T — 2. (K,, Kt are independent of the particular
sequences {c*1}}, {d^} for a fixed v = 0 or v > \).

PROOF. [11, pages 549-555] under the assumption that the properties
(3.6)-(3.10) of Lemma 3.1 are satisfied.

As a consequence of that lemma, we can prove the following theorem concern-
ing solutions of the moment problems (4.2a)-(4.2c).

THEOREM 4.3. If for T > 2 and for v = 0 or v > \ fixed

t \vyj
2 = a2<ao, (4.4)

7 = 1

£ \r,,j">,,j\2 s b1 < oo (4.5)
y-i

then each of the moment problems (4.2a)-(4.2c) has a solution / e L 2 ( 0 , T).
Furthermore,

where the positive constant Kt, i = 1,2,3, is independent of the coefficients vv p wr j .

PROOF. Let / e L2(0, T) be the solution of the corresponding moment problem
(4.2a), (4.2b) or (4.2c), which exists by Lemma 4.2 since the sequences {c^} ,
{*/£'}}, j = 1,2,..., / = 1,2,3, are elements in l2 by virtue of Lemma 3.1.
Combining (4.3) and the right-hand sides of each of the moment problems
(4.2a)-(4.2c) we have, respectively,

\\0 T) < Kx I
7 = 1 V ' 7 = 1

i °° / 2 2\ °°

7 = 1 J "J 7 = 1

oo . 2 ?\ °°

7 = 1 V 7 = 1

iL |//,7(Dr(kJ

Thus, from the uniform lower bounds for the numbers /,'y(l) and /,,iy(l) as
described in Lemma 3.2, we obtain the inequalities

2 1 = 1,2,3,
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where Kt is independent of w,j, vy y Here, we recall that the Fourier-Bessel
coefficients wyJ, vv j of w0, v0 (and hence {cJ'J-}, {dty}) depend on fvj which, in
turn, vary with the considered boundary conditions.

This completes the proof.

P R O O F O F T H E O R E M 1.1. Condition (4.4) is equivalent to v0 e H. Lemma 3.3, or
Lemma 3.4 in the Neumann problem with parameter v = 0, indicates that
w0 G HB implies condition (4.5). Thus, Theorem 4.3 shows that the moment
problems (4.2a)-(4.2c) are solvable for / e L 2 (0 , T), provided T > 2. But this is
equivalent to controllability, as we have seen in the derivation of the moment
problems.

The proof is complete.

R E M A R K 4.4. Theorem 1.1 is all one can obtain, in general, from the use of the
inequalities (4.4) and (4.5). Indeed, Lemma 3.3 (Lemma 3.4 in the case of v = 0
and N e u m a n n boundary condition) shows that if the inequality (4.5) is satisfied,
then w0 as given by its Fourier-Bessel expansion lies in HB. We note that (4.4) is
equivalent to v0 e H.

T h e next lemma shows that for our control problem with Dirichlet boundary
condition and zero initial data, there exists a control / e L2(0,T) such that the
terminal state (w(r, T), dw/dt(r,T)) does not he in HB X H. Due to the time
reversibility in (1.1), this is a direct consequence of the following Lemma.

LEMMA 4.5. Consider the Dirichlet boundary control problem. Let v = 0 or v > \
be fixed. Then, there exist initial states (w>0, vQ) £ HB X H which can be steered to
the terminal state w(r, T) = dw/dt(r, T) = 0 by a control f e L2(0, T), provided

T> 2.

PROOF. Consider the initial state given by wo(r) = 0 and

"0(0= t«.j:,j{X)f..j(r), (4.6)

where ay^ =y-(1+<0/2 and e > 0. Then, the expansion coefficients wVJ are all
zero and those of v0 are

by using Lemma 3.2(a). Thus, for the moment problem (4.2a), we have cv • = aav .
Hence for the control / to lie in L2(0, T) with T > 2, we see from Lemma 4.2
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that it is sufficient to have

EkJ2= Erl-'<oo,
7 - 1 7 = 1

which is true for any e > 0. Since the coefficients in the expansion (4.6) have the
asymptotic relation (4.7), it follows that for some constant Ku > 0,

7 - 1 7 = 1

if e e (0,2]. For such a choice of e, (4.6) and wo(r) = 0 represent a state (w0, v0)
for which v0 £ H. But this state is controllable in the sense that the moment
problem (4.2a) has a solution / e L2(0, T). This completes the proof.

The main point in Lemma 4.5 is that, in the Dirichlet boundary control
problem, the inequalities (4.4) and (4.5) are more restrictive than the requirements
{ c ^ } , {d^j} e 12 given in Lemma 4.2. By contrast, for Neumann and mixed
boundary control problems, the order of convergence of the series (4.4) and (4.5)
is the same as in (4.3). This is a consequence of the uniform lower bounds for the
corresponding eigenfunctions frj- at r = 1 given in Lemma 3.2. Therefore, by
noting that the condition for controllability in these two cases is the square
summability of the coefficients appearing on the right-hand side of (4.2b) and
(4.2c) respectively, we see that for the control / to lie in L2(0, T) with T > 2, we
must have

L k J 2 < °° and T,\y,,jKj\ < oo or £ hr^,/ < °o

respectively. This implies that v0 G H and wQ e HB, by virtue of Lemma 3.3 and
3.4. Combining these with Theorem 1.1, we have the following conclusion.

THEOREM 4.6. Consider the Neumann (resp. mixed) boundary control problem.
(w0, u0) G HB X H is a necessary and sufficient condition for the existence of a
control f G L2(0, T), T > 2, such that each control problem has a solution.

LEMMA 4.7. In the Dirichlet boundary control problem, the conditions w0 G H
and u0 G H'B (= dual of HB) are necessary for the existence of a solution of the
control problem with a control f G L2(0, T), T > 2.

PROOF. The controllability condition
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implies by virtue of the inequality in Lemma 3.2(a)
00

E(k./A./+k,/)<oo.

Hence w0 e H and vo& H'B> which completes the proof.

5. Appendix

We start with the modification of the energy space in the case of a = 1, a > 0
in the domain D(B{0l)). For x, y e D(B("01)), we have associated with 2?("01) the
bilinear form (2.4). Hence, we define for x, y e D(B{01})

||* ||? - o*2(l) + f\(\x'{r) |2 + |x(r) |2 + F V a |*(r) |2) * ,

||x ||2 s £ r(|*'(r) |2 + \x(r) f + v>/r2\x(r) |2) dr.

We assert that these two norms are equivalent. To show this, we note that for
0 < a < 1 fixed L2(a, 1) = L2(a, 1; {r ) (with equivalent norms) implies i/H0.1)
= Hl(a,\,Jr) (norms are equivalent). Then, by Lemma 23.2a) of [19], there
exists for x(t) e Hl(a, b) (-00 < a < b < oo) a constant c > 0 such that

\x(t)\ ^ c||x||wl(a,ft).

Therefore, with x (0 G H\a, 1; \/r), a > 0, we have

sup | x ( 0 | < c1||x||H'(a,i;vF) (5.1)

which yields

|
This, in turn, implies that

| | X | | 2 < | | X | | 2 + C2||X||2 = (1 + C2)| |X||2.

Since Hxllj > \\x\\ the norms are equivalent for x e D(B{0l)). Thus, a limit process
shows that || • || and || • ||t are equivalent for arbitrary

x e HB = closure of D(B{O1)) in the norm || • ||.

REMARK 5.1. The construction of the energy space outlines in [19, Section 17]
would lead to the closure of D(B{01)) in the norm || • \\v

REMARK 5.2. Before we return to the proof of Lemma 3.4, we need to show that
the functions

/ ' ( l ) ( 2 / ^ 2 U ) ) 1 / 2 A U ) J = 2,3,... , (5.2)
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form an orthonormal system in H. For brevity, we suppress the index "0" and
write yf, fj instead of yQJ, fOj. From expression (48) of [2, 7.10.4], we recall that

Thus, since //(I) = 0, the recurrence relation Jp-i(r) + Jv+I(r) = 2v/rJy(r),
v e N, r G R, implies J0(yj) + y2(^,) = 2/y}J^y}) = 0, 7 = 2 ,3 , . . . . Therefore,

Jiiyj) a n ( * t n e assertion follows by substituting (5.2) into (5.3).

PROOF OF LEMMA 3.4. (a) w0 e HBom =*> 1%.^^, fj)H\2 < 00. Since HB c
H, we can expand wo(r) in terms of eigenf unctions as follows:

7 - 1

Now,

rwQ{r)fj{r)dr = -^jf1 ^ ( 0 ( 7 £(rdfj(r)/dr)) dr,

y = 2 ,3 . . . . , (5.4)
The eigenf unctions ^ ( r ) are analytic in R and B°0l)fj e i/. Thus, the Cauchy-
Schwarz inequality shows that the integrals

are finite. In order to show that

Jo ii^oi^f/ir))^ = rwo(r)f/(r^ ^ = wo(l)//(l) = 0, (5.5)

we proceed as follows:
(i) By Lemma 23.2 of [19], wo(r) e HB is continuous in [a, 1], a > 0 (after a

possible modification in a set of measure zero). Therefore, wo(l) exists (cf.
expression (5.1)). Thus, by using the fact that f/(l) = 0 we obtain

;
(ii) H>0 G //B implies that w0 cannot have a singularity of type r~P, ft > 1 at

r = 0. Hence, f/(0) = 0 implies limr^o(nvo(r)^'(r)) = 0.
Combining (5.4) and (5.5), we obtain

rwttr)fj'(r) dr, 7 = 2 , 3 , . . . .

By using Remark 5.2 and Bessel's inequality, it follows that the Fourier-Bessel
coefficients of w^r) with respect to {//(r)/y,} are square summable. These
coefficients are
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Hence,

(b) In order to prove that £™_i^/|(w0, fj)H\2 < oo =» w0 e HBaoW we introduce

the spaces

H = H~{\) and HBo = HBo nH.
<• > " ( 0 . 1 ) " ( 0 . 1 )

We also define

H i l i ) x ) ( r ) f o r * e ^>(*(OD) = # n ^(B(°OD)-
Then, the operator B°01) is positive definite and we can apply Lemma 3.3. Thus

(l?<o.i))1/2 is a unitary operator from H ^ = D((Bf>0l))
1/2) onto H and

i/B?oi)= |

Therefore, tv0 e # C 7/ and E"_i>'/|(wo,/y>|2 < oo implies that w0 e /rBo o c
Hso . If wn = constant, then it is obvious that wn e HBo and

«(0.1) 0 ' U O(O.l)

E ( ^ > 2 < oo. Thus, the proof is complete.
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