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Abstract

In this paper we consider two spectral refinement schemes, elementary and double iteration,
for the approximation of eigenelements of a compact operator using a new approximating
operator. We show that the new method performs better than the Galerkin, projection and
Sloan methods. We obtain precise orders of convergence for the approximation of eigenele-
ments of an integral operator with a smooth kernel using either the orthogonal projection
onto a spline space or the interpolator projection at Gauss points onto a discontinuous
piecewise polynomial space. We show that in the double iteration scheme the error for the
eigenvalue iterates using the new method is of the order of hir(hir)k, where h is the mesh
of the partition and k = 0 ,1 ,2 , . . . denotes the step of the iteration. This order of conver-
gence is to be compared with the orders hlr{h')k in the Galerkin and projection methods
and h2r(hlr) in the Sloan method. The error in eigenvector iterates is shown to be of the
order of hlr(hir)k in the new method, h'{hr)k in the Galerkin and projection methods and
h2r(h2r) in the Sloan method. Similar improvement is observed in the case of the elemen-
tary iteration. We show that these orders of convergence are preserved in the corresponding
discrete methods obtained by replacing the integration by a numerical quadrature formula.
We illustrate this improvement in the order of convergence by numerical examples.

1. Introduction

Let X be a complex Banach space and let T be a bounded linear operator defined
on X. We are interested in numerically solving the following eigenvalue problem:

T(f> = k<t>, keC, 0^<f>eX.

If Tn is a sequence of bounded linear operators on X approximating T, then we solve
the following eigenvalue problem:

Tn<pn = K<t>n. (1.1)
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The eigenelements kn and <pn provide approximations to k and <f>, respectively. If
Tn is of rank n, then (1.1) is equivalent to a matrix eigenvalue problem of size
n. In order to reach the desired accuracy one may have to choose n very large,
which becomes expensive. Hence spectral refinement schemes such as the Rayleigh-
Schrodinger scheme, elementary iteration and double iteration are used in practice. In
the refinement schemes a matrix eigenvalue problem of relatively small size is solved
only once. The eigenelements Xn and </>„ of this small sized eigenvalue problem
provide the 0-th iterate. In order to compute the iterates A.J-A) and 0<*\ at each step
of the iteration, we need to solve only a system of linear equations of size n, the
coefficient matrix being the same at each step. Hence it is economical to obtain
the desired accuracy by computing a sufficient number of iterates in the refinement
schemes instead of increasing n. Refinement schemes have been extensively studied in
the literature (see [1, 3, 6, 10]). The aim of this paper is to investigate some refinement
schemes using a new method proposed by Kulkarni [9]. The method is applicable to
a wide variety of problems and performs better than the existing methods such as the
Galerkin, projection and Sloan methods.

If T is a compact linear operator and nn is a sequence of bounded projections on X
converging to the identity operator / pointwise, then in the classical Galerkin method
Tn is chosen to be Tn

G = nn Tnn. In the projection method and in the iterated Galerkin
method proposed by Sloan, Tn is Tn

p = nnT and Trf = Tnn, respectively. Recently
the following new approximating operator has been introduced by Kulkarni [9]:

Tn
M = nn Tnn + nn T(I - nn) + (/ - nn)Tnn.

Since T is compact, it follows that T" converges to T in norm. The aim of this paper
is to investigate elementary iteration and double iteration using this new operator T".
Our results can be easily extended to the Rayleigh-Schrodinger scheme and other
refinement schemes.

We first show that the iterates in elementary and double iteration using the new
method converge faster than the corresponding iterates in the Galerkin, projection and
Sloan methods. These results are applicable to an integral operator with a continuous
kernel. Next we consider T to be an integral operator with a smooth kernel. The
projection nn is either the orthogonal projection or the interpolatory projection at
Gauss points. The range of nn is a space of piecewise polynomials of order r with
respect to a partition of the interval with mesh h. For k = 0, 1, 2 , . . . , let fx^
and rjr^ denote the iterates in the double iteration scheme. We prove that in the
new method |/z<*> - A.| = O(h4r(h3r)k) and ||^*' - <f>\\ = O(h3r(h3r)k). We also
show that in the Galerkin and the projection methods I//.'** — k\ = O(h2r(hr)k) and
| |^w - 0|| = O(hr(hr)k), and in the Sloan method |/*« - A.| = O(h2r(h2r)k) and
II&ik) ~ <t>\\ = O(h2r(h2r) ). We show that even in the case of elementary iteration
the new method exhibits higher orders of convergence than the Galerkin, projection
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and Sloan methods. It is to be noted that the new method is superior to the existing
methods even when the kernel is only continuous.

Here is an outline of the paper. In Section 2 we describe the elementary and the
double iteration schemes. In Section 3 we prove sharper estimates for the eigenvalue
iterates in the elementary and the double iteration schemes. These sharper estimates,
apart from giving higher orders of convergence, also provide a justification for the
observed fact that in the new method and in the projection method the error in the
eigenvalue iterates is smaller than the error in the corresponding eigenvector iterates.
In Section 4 we prove our main results. In Theorems 4.3-4.4 we obtain orders of
convergence for the iterates in the elementary iteration using the new method. In
Theorem 4.5 we obtain orders of convergence for the iterates in the double iteration
using the new method. In Tables 1-3 we list the orders of convergence for the iterates
in the elementary and the double iteration for the new, Galerkin, projection and Sloan
methods. In practice it is necessary to replace the integrals appearing in the definition
of the inner product by a numerical quadrature formula. In Section 5 we show that
the orders of convergence given in Tables 1-3 are still valid after taking into account
the errors introduced by the numerical quadrature formula. In Section 6 we illustrate
our results by numerical examples.

2. Preliminaries

Let BL(X) denote the space of all bounded linear operators on X along with the
operator norm. For 7 e BL(X), let p(7) and a(7) denote the resolvent set and the
spectrum of 7, respectively:

p(T) = [z e C : (T-ziyl eBL(X)} and <r(7) = C\p(7).

Consider the following eigenvalue problem:

T4> = k<t>, A e C , <peX,

Let Tn be a sequence of operators in BL(X) such that || Tn || is bounded, || ( 7 - Tn) T\\ ->0
and ||(7 - 7n)7n|| - • 0. Following [1] we denote the above convergence by Tn -4 7.

Let A ̂  0 be a simple eigenvalue of 7, e such that 0 < € < dist(A, a (7) \ {A})
and F% is the positively oriented circle with center A and radius e. Let

P = ~T~. I (T-ziyldzIn i Jrt

denote the spectral projection associated with 7 and A.
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Since Tn -4 T, there exists n0 such that for n > n0, Fe c p(Tn) and

or(I\) = sup{||(7; - zIT'W • z 6 Tf, n > n0] < oo.

Let

be the spectral projection associated with Tn and the part of the spectrum of Tn

inside 1%. Then ||Pfl|| < a(r€)e < p, say.
For all n large enough, a(7n) D Int(r%) = [kn] and A.n is a simple eigenvalue of Tn.

Let 7n0n = An«/>n, 116,11 = 1. Then

is the reduced resolvent associated with Tn and Xn.

T*4>1 = ^n4>?,< (4>n, </£) = 1- The spectral projection Pn is then given by

= (x,(t>t
n)<pn, xeX.

Thus || Pn || = | |0 ; ||. Since || (Pn - P) P \\ -*• 0, it follows that || Pn<j> - <j> || - • 0. Hence

and for all n large enough, 1/2 < |{0, 0')|.
We define

4>

Then 4>(n) is an eigenvector of T associated with k and (<f>M, </>*) = 1. Note that for
all n large enough, ||</>(n)|| < 2. We also have Sn(Tn - kj) = (Tn - knI)Sn = I - Pn.

We consider the following two iterative refinement schemes (see [1, 6, 10]).

Elementary or fixed point iteration

*-? = K, 4>f) = <t>n, a n d f o r * = l , 2 , . . . ,

The following error bounds are well known (see, for example, [1]).

THEOREM 2.1. (a) If Tn converges to T in norm, then there is a positive integer
nx such that for all n > n\ and for k = 0,1, 2, . . .

- k\, \\4>ik)-<t>(n)\\)<ot\\(T-Tn)TUP\\T-TJ)k,

where a and /J are constants, independent ofn and k.
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(b) IfTn —> T, then there is a positive integer n\ such that for all n > n\ and for
* = 0 ,1 ,2 , . . .

«*> - k\, |Af + 1 > - X|, ||</>f> - 0 ( n ) | | , ||
<a\\(T - Tn)T\\{finax{\\(T - Tn)T\\,UT - Tn)TJ))k,

where a and f) are constants, independent ofn and k.

Double or modified fixed point iteration

^ = xn, * « > = *,
and for k - 1 , 2 , . . .

We quote the following result from [1].

THEOREM 2.2. IfTn^> T, then there is a positive integer n^ such that for alln >nx

andfork = 0, 1 , . . . , max{|/z<4) - M, HVf > - 4>w\\) < (/8||(r - rn)r | | ) t + 1 , wAerejS
w a constant, independent ofn and k.

3. Modified estimates

We prove below some sharper estimates for the error |A.* — X\ in the elementary
iteration scheme and for l/zj^ — X\ in the double iteration scheme. In numerical
experiments it has often been observed that the error in the eigenvalue iterates is
smaller than the error in the corresponding eigenvector iterates. Our modified estimates
provide justification for this observation when we choose Tn to be either the new finite
rank operator

Tn
M = nnTnn + nnT(I - yzn) + (/ - nn)Tnn

introduced in [9] or the approximating operator in the projection method.
Note that if Tn converges to T in norm or if Tn ->• T, then for all n large enough,

| |7*-rn | |<rand| | />n | | = ||0n*||</>.

THEOREM 3.1. Let Tn converge to T in norm, and let A.* and <f>lk) be the iterates in
elementary iteration. Then there is a positive integer n\ such that for all n > n\
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Also, for k = 1, 2, . . .

% T n \ \ ) k - \ (3.2)

I I** - 0(«)ll < <*\\(J - Tn)T\\{0\\T - TH\\)k,

where a and ft are constants, independent of n and k.

PROOF. AS the estimates for || </><*> — <f>M\\ are the same as in Theorem 2.1 (a), we
only prove the estimates for \k^ — A.|.

Since Tn converges to T in norm, it follows that kn ->• A., Pn\R(P) : R(P) -*• R(Pn)
is bijective and for all large n, ||(/>n|«(/»))~1|l 5 2(seeOsborn [11]).

Hence, for all large n, \kn\ > |A.|/2. Since kn is a simple eigenvalue of Tn, we have
TnPn = PnTn= knPn. Consider

(k - kn)<t> = (Pn\R(P)r
] Pn(T<(> - PnTn<t>) = (

Hence

\k - K\ <

which proves (3.1).
It can be easily seen that

^ - (^(n)), 0B), =

Hence by using bounds for H^*"1' — 0(n)|| from Theorem 2.1 (a), we obtain

IA* - A,| < £• | |p, | | | |7-B(r - r n ) | | | |0»-» - 0(n)y

- rj)*-\

which proves (3.2).

THEOREM 3.2. Ler rn A- T awrf let ̂  and f^ be the iterates in double iteration.
Then there is a positive integer n\ such that for all n > n\ and for k = 0, 1, 2 , . . .

l/^-A-l < c\\Tn{T-Tn)nW\\{T-TH)T\\)k, (3.3)

ll^f -0(n)ll<(/3||(7'-rn)r||)
i+1,

where c and fi are constants, independent ofn and k.
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PROOF. Let c = max{4p/|A|2, (2/|A.|2 + 4tp/\X\3)}. Recall that ^ 0 ) = k^ = Xn.
Hence the bound for |/x^0) — A.| is proved in Theorem 3.1, whereas the bound for

/^ - </>(„) || is proved in Theorem 2.2.
Since X ^ 0 and 11(7- 7n)7| | -*• 0, choose nx such that for n > n,,

11(7- - 7n)7|| < \/p and ||(7 - 7n)7|| < \k\/2tpP.

We have A»> - X = <(7 - Tn)W<*-» - 0(n)), 0n*>. Hence

l*f - X\ < \\Pn\W\T- TJWrf,?-" - 0(n)|| < pt{p\\iT - Tn)T\\)k.

Thusforn > n,, A.« - A.| < pt(fi\\(T - Tn)T\\) < \X\/2 and hence | ^ | > |A.|/2.
Now

M * - >. = ((r -

Thus

- Tn)T\\ (JL + ¥L\ (ft\\iT - Tn)T\\)k

< c\\Tn(T - Tn)7*11 (/3||(T - Tn)T\\)k.

This completes the proof of (3.3).

We later show that for particular choices of Ta, \\Tn(T - Tn)T\\ has a higher
order of convergence than \\(T - Tn)7||. Also, \\Tn(J - Tn)\\ has a higher order of
convergence than || T — Tn \\. In such cases Theorems 3.1-3.2 provide sharper estimates
for eigenvalue iterates than the estimates obtained from Theorems 2.1-2.2.

Let T be a compact linear operator and (nn) be a sequence of bounded projections
defined on X, that is, each nn is in BL(X) and n\ = nn. In the classical Galerkin,
projection and Sloan methods, T is approximated by 7n

G = nnTnn, Tn
p = nnT and

Tn
s = Tnn, respectively. It is easy to check that T"n

c 4- 7, | |7 - 7n
p|| -»• 0 and

7/ 4- 7. Since

Tn
M = nnTnn + nnT(I - nn) + (/ - nn)Tnn,

it follows that | |7 - Tn
M\\ = ||(/ - 7rn)7(/ - nn)\\ -> 0. Theorems 2.1, 3.1 and 3.2

are thus applicable to the above four methods.
Note that

\\(T - TH")T\\ = O(\\V - n

\\T-Tn
p\\ = | | ( / -^ )7 | | , | | (7- 7n

5)7|| = ||7(7 - nn)T\\
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and

| | ( 7 - Tn
c)T\\ < \\U -nn)T\\\\T\\+\\7tn\\\\T(l -nn)T\\ = 0(| |(/ - 7rn)7||).'

The comparison of the above bounds suggests that the iterates defined by the
elementary and the double iteration schemes using the new method should converge
faster than the corresponding iterates obtained by using the Galerkin, projection or
Sloan methods. These results are applicable to an integral operator with a continuous
kernel.

In the next section we consider T to be an integral operator with a smooth kernel.
We choose Xn = R(nn) to be a space of piecewise polynomials. The projection nn

is either the orthogonal projection or the interpolatory projection at Gauss points. We
obtain precise orders of convergence in terms of powers of the mesh h of the partition
and show that the iterates using the new method converge at a much faster rate than
the iterates obtained using the Galerkin, projection or Sloan methods.

4. Main results

Consider the integral operator

(Tu){s) = f k(s, t)u(t) dm(t), s e [0,1],
Jo

where the kernel k(-, •) e C([0, l]x[0,1]). Then T : L2[0, 1] -> L2[0, 1] or T :
C[0, 1] —• C[0, 1] is a compact linear operator. Let r > 0 and let C[0, 1] denote the
space of r times continuously differentiable functions. If k(-, •) 6 Cr([0, l]x[0, 1]),
then R(T) C C[0, 1]. For u e Cr[0, 1], «(r) denotes the r-th derivative of u. We set

t), s, te [0,1], | |*IUt) = k(s,t

and INI,.*, = £/=o ||«(l)lloo- For u e L2[0, 1], we have

(Tu)"(s)= I %-Ms,i)u(f)dm{f), s €[0,1].
Jo 9*r

Hence

ll(7-w)(r)||oo<ll*IUIMl2. (4.1)

For any integer n, let

0 = to.< r, <••• <tn = 1 (4.2)
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be a partition and for / = 1 , . . . , n, set /i, = /, — f,_i, h = max, /:,. We assume
that h -> 0 as n -> oo. Choose r > 1. Let Xn = Sv

rn, the space of all piecewise
polynomials of order r (that is, of degree < r — 1) with breakpoints at ̂ , . . . , fn_i and
with v continuous derivatives, — 1 <v < r — 2. Here v = 0 corresponds to the case of
continuous piecewise polynomials. If v = —1, there are no continuity requirements
at the breakpoints, in which case we arbitrarily take un e Xn to be left continuous at
t\,... ,tn and right continuous at fo.

4.1. Orthogonal projection Let X = L2[0, 1]. Let (,) and || • ||2 denote the
usual inner product and the L2 norm on X. Let nn : X -> Xn denote the orthogonal
projection. When v = — 1 or 0 it is known that, without any restriction on the partition
(see Richter [12] and de Boor [4], respectively),

\\XAL-^L~ < C (4.3)

When v > 1, (4.3) remains true with the additional restriction that the partition is
quasiuniform (see Douglas etal. [7]). Then nnu —> u as n -> oo for each u e X. We
assume that the kernel k(-, •) e Cr([0, 1] x [0, 1]).

In what follows we crucially use the following estimate from Chatelin [3]. For
u e C'[0, 1],

ll(/-7rn)«ll0o<C1||M(r)||o0/«f. (4.4)

The basic idea for proving the following theorems comes from Propositions 4.1-4.4
ofKulkarni([8]).

THEOREM 4.1. Ifnn : L2[0, 1] —*• Xn is the orthogonal projection defined above
and T is an integral operator with kernel &(•, •) 6 Cr([0, 1] x [0, 1]), then

\\(I-nn)T\\ = O(hr), (4.5)

| |(/-7rn)r(/-7r,,) | | = O(/i2r), (4.6)

\\T(I - nn)T\\ = O(h2r), (4.7)

||(7 - nn)T(I - nn)T\\ = O(hir), (4.8)

|| 7(7 - nn) 7X7 - nn)\\ = O(h3r), (4.9)

||7(7 -nn)T(I -nn)T\\ = O(h4r). (4.10)

PROOF. Let« 6 L2[0,1]. Since k(-, •) e Cr([0, 1] x [0, 1]), Tu e C[0,1]. Then
by (4.1) IKr^wlU < IlifclU.oollulb. Hence by (4.4)

W-nn)Tuh < CIKT-M^IUA" < C,||ik||r.ooll«ll2Ar,
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which proves (4.5).
Next \\(I -nn)T(I-nn)u\\2 < C,||(r(7 - njuy^h'. We have

(7(7 - 7tn)uYr)(s) = [ ^k(s, f)((/ - nn)u)(t) dm{t).

For a fixed s e [0, 1] let /,(r) = dr(k(s, t))/8sr, t e [0, 1]. Then

\(T(I -7tn)u)ir\s)\ = | ( ( / -nH)(u), l)\

= \(u, (I-njlHzGWkW^Wuhh'.

Thus ||(7-(7 -ffB)«)wHoo < C.HiklU.oollMlb/i' and

- f f j a l b < (C,)2||Jfc||,.oolMl2A2r.

which proves (4.6).
Fix s e [0, 1] and let ks(t) = k(s, t), t e [0, 1]. Consider

T(I - JTn)Tu(s) = /" *
Jo

= ((I -nn)(Tu), (I -nn)ks).

Hence

||T(Z -7rn)7«| | 2 < (C,)2||(7'ii)w||0P||(*J)
w||0OA2r

< (C,)2(||ifc||r,oO)2||ii||2A2', (4.11)

which proves (4.7). Also,

(7(7 - nn)Tu)ir)(s) = I ^k(s, 0(7 - 7rn)(rii)(0dm(0.
Jo dsr

Hence

11(7(7 - n^Tu^lU < (C,)2(||*IU)2||«ll2&2r. (4.12)

Thus

||(7 - nn)T(I - nn)Tu\\2 < C,||(r(7 - nH)Tu)^Uhr

< (C,)3(||Jk||r.oo)2||ll||2A3r,

which proves (4.8). We have by (4.11) and (4.12)

|| 7(7 - 7TJ7X7 - 7rn)u||2 < (C,)2||(r(7 - >rB)M)wU|(*1)w||00A2r

< (C
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which proves (4.9).
Lastly, using (4.11) and (4.12) we obtain

||7(7 - nn)TU - nn)Tu\\2 < (C,)2||(7(7 - 7rn

<

This completes the proof of (4.10).

4.2. Interpolatory projection Let X = C[0, 1] with the supremum norm. Choose
r > 1 and we assume that ifc(-, •) 6 C2r([0, 1] x [0, 1]). Then the integral operator
defined by (4.1) is a compact linear operator on C[0, 1].

Here we choose Xn — Sjl, the space of all piecewise polynomials of order r with
breakpoints at t\,... , /n_i. We impose no continuity conditions at the breakpoints.

Let Br = (Ti,... , rr] denote the set of r Gauss points, that is, the zeros of the
(Legendre) polynomial J r ( ( 5 2 - l ) r ) / ^ r in the interval [ -1 , 1]. Define/, : [ -1 , 1] -•
[f,-_i, ti] as follows:

flit) = ̂ i f,_, + i y ^ t,, t 6 [ -1 , 1].

Let A = \J"i=ifi(Br) = i*ij = fi(*j) '• I < i < n, 1 < j < r], the set of nr Gauss
points. We define nn : C[0, 1] —• Xn by

nnu 6 Xn, (nnu)(tij) = u(Xij), 1 < i < n, 1 <j < r.

Then nnu -> u as n -> oo for each u e C[0, 1].
The following two estimates are crucially used in the proof of Theorem 4.2.
For u 6 Cr[0, 1] (see Chatelin [3]),

H(7-7r)1)ii||oo<C1||iiw||0OAr. (4.13)

Let / 6 Cr[0, 1] and g e C2r[0,1]. Then (see de Boor-Swartz [5])

f(t)(I-nn)g(t)dt (4.14)

Using the above two estimates the following theorem can be proved. As the proof
is along the same lines as the proof of Theorem 4.1, we just state the result.

THEOREM 4.2. Ifnn : C[0, 1] —> Xn is the interpolatory projection defined above
and T is an integral operator with kernel k(-, •) € C2r([0, 1] x [0, 1]), then

||(7 - nn)T\\ = O(hr), ||(7 - nn)T(I - nn)\\ = O(hr),

117(7-70711 = O(h2r), \\m - nn)T(I - nH)\\ = O(h2r),

||(7 -nn)7(7 - 7rn)7|| = O(h3r), \\T(l - nn)T(I - nn)T\\ = O(hAr).
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Note that in the interpolatory projection the estimates for | | ( / — 7rn)7'(/ — nn) || and
|| T(l — 7rn)T(I — nn)\\ are different than the corresponding estimates, (4.6) and (4.9),
in the orthogonal projection.

4.3. Convergence rates We give below the orders of convergence for the iterates
defined by the elementary iteration. We choose Tn to be the new approximating
operator

Tn
M = nnTnn + 7inT(I - nn) + (/ - nn)Tnn.

THEOREM 4.3. Let T be an integral operator with a kernel k(-, •) 6 (7([0, 1] x
[0, 1]) and let nn be the orthogonal projection defined in Section 4.1. Let A.* and
<p^ be the iterates in the elementary iteration using the new method. Then for
* = 0 , 1 , 2 , . . .

- X\ = O(h4r(h2r)\ (4.15)

(4.16)

PROOF. Let ||7rn|| < y. Note that by Theorem 4.1

IIT - Tn
M || = || (/ - nn) T{I - nn) \\ = O(h2r),

\\(T- Tn
M)T\\ = \\(I-nn)T(I-7in)T\\ = O(h3r),

\\Tn
M(T - Tn

M)\\ = \\nnT(I - nn)T(I - nn)\\

\Tn
M(T - Tn

M)T\\ = \\nnT{l - nn)T(I - nn)T\\

< y II T{1 - nn)T(I - nn)T\\ = O(h*r).

The proof now follows from Theorem 3.1.

Note that if we use Theorem 2.1, then we can only say that

THEOREM 4.4. Let T be an integral operator with a kernel k(-, •) € C2r([0, 1] x
[0, 1]) and let nn be the interpolatory projection defined in Section 4.2. Let A.***
and <p(

n
k) be the iterates in the elementary iteration using the new method. Then for

k = 0, 1, . . . , |A.<*> - A.| = O(hir(hrf) and ||</><*> - tf>(n)|| = 0{hir(hr)k).

PROOF. The proof follows from Theorems 3.1 and 4.2.
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We now consider the double iteration. The projection 7rn is chosen to be either
the orthogonal projection described in Section 4.1 or the interpolator projection
described in Section 4.2. The operator T is chosen to be an integral operator with the
kernel r times continuously differentiable in the case of the orthogonal projection or
2r times continuously differentiable in the case of the interpolatory projection. The
operator Tn is chosen to be

Tn
M = nnT(l - nn) + (/ - nn)Tnn.

THEOREM 4.5. Let fx^ and ir{^ be the iterates in the double iteration. Then for
k = 0, 1, . . . , 1/iW -k\ = O(hir(h*r)k) and \ \ ^ - 0((1)|| = O(h3r(hir)k).

PROOF. The proof follows by combining the results of Theorems 3.2, 4.1 and 4.2.

In a similar manner we can obtain orders of convergence for the iterates obtained
by using the Galerkin, projection and Sloan methods. We skip the proofs and just
list the orders of convergence for the eigenelement iterates in the elementary and the
double iteration using these three methods. It is to be noted that the eigenvalue iterates
in the projection method and the Sloan method are the same.

In Table 1 we give orders of convergence for the iterates in the double iteration.
The projection operator 7tn is either the orthogonal or the interpolatory projection. In
Tables 2 and 3 we list the orders of convergence for the elementary iteration with the
orthogonal and the interpolatory projections, respectively. Note that k denotes the
number of iterates and takes values 0, 1, 2 , . . . .

TABLE 1. Orders of convergence: double iteration, orthogonal or interpolatory projection.

Method

new

Galerkin

projection

Sloan

\^ - xi
h4r(hir)k

h2r(hr)k

hlr{h2r)k

hlr(Jh2rf

l l ^ - ^ w l l
hir(hir)K

hr(hr)k

hr(hr)k

h2r(h2r)k

TABLE 2. Orders of convergence: elementary iteration, orthogonal projection.

Method
new

Galerkin

projection
Sloan

|X« - X|

h4r(h2r)k

h2r

hr(hr?
h2r(hr)k

h2r(hr)k

h3r(h2r)k

hr : k = 0

hr(hr)k :k>l

hr(hr)k

h2r(hr)k
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TABLE 3. Orders of convergence: elementary iteration, interpolatory projection.

[14]

Method
new
Galerkin

projection
Sloan

hAr(hr)k

h2r

h"{hr)h'2

h2r(hr)k

h2r(hr)k

Il0^-0(n)ll
hir(hr)k

hr: k = 0
hr(hrf-l)/2 : k odd, k > 1
hr(hr)k'2 : k even, Jfc > 2
hr(hr)k

h2r(hr)k : k even
hlr(hr)k-x : k odd

REMARK. It may be seen from Table 1 that the eigenvalue as well as eigenvector
iterates in the double iteration using the new method have higher orders of convergence
than the Galerkin, projection or Sloan methods. The iterates in the Sloan method
converge faster than the iterates in the Galerkin method. The eigenvector iterates in
the Sloan method converge faster than the corresponding iterates in the projection
method. At each step of the iteration the improvement is of the order of/i3r in the new
method, of the order of h2r in the Sloan method, and of the order of hr in the Galerkin
method. In the projection method the improvement for eigenvector iterates is of the
order of hr.

From Table 2 we observe that even in the case of elementary iteration with the
orthogonal projection, the new method is superior to the Galerkin, projection and
Sloan methods. Here at each step of the iteration the improvement is of the order of
h2r in the new method and of the order of hr in the Galerkin, projection and Sloan
methods.

In the case of the elementary iteration with the interpolatory projection, we see
from Table 3 that the iterates in the new method are still more accurate than the corre-
sponding iterates in the Galerkin, projection and Sloan methods. But the improvement
at each step of the iteration is of the order of hr as in the case of the projection method.
In the Galerkin and Sloan methods the improvement will be respectively hr and h2r

after every two steps.
We also note that in the new method the double iteration is clearly superior to

the elementary iteration. In the case of the orthogonal projection the improvement,
per step of the iteration, is from h2r in the elementary iteration to h3r in the double
iteration. In the case of the interpolatory projection this improvement is from W to
h3r per step of the iteration.

Note that in both the elementary and the double iteration, using the new or the
projection method, the eigenvalue iterates have a higher order of convergence than the
corresponding eigenvector iterates.

In the new method and in the Galerkin method the elementary iteration with the
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orthogonal projection has a higher order of convergence than the elementary iteration
with the interpolatory projection.

In Section 6 we illustrate the above observations by numerical examples.
Note that the dimension of the range of nn is nr. Then the rank of Tf, Tn

p and
7n

5 is nr, while the rank of the new operator T" is 2nr. Thus in the new method we
need to solve an eigenvalue problem double the size of the eigenvalue problem in the
Galerkin, projection or Sloan methods. But as the order of convergence is improved,
as given in Tables 1-3, it is still economical to use the new method. Also, note that
for double iteration, in addition to the computations in the elementary iteration, we
need to compute A.« = (7>f- ' \ # ) and

5. Discrete methods

It is to be noted that, in practice, while computing the iterates in the refinement
schemes, we need to replace the integrals appearing in the integral operator T and
in the inner product by a numerical quadrature formula. In this section we show
that if we choose the numerical quadrature formula appropriately, then the orders of
convergence given in Tables 1-3 are still valid. We first consider the case of the
orthogonal projection.

Let X = L2[0, 1]. For r > 1, let T be an integral operator with kernel k(-, •) e
C2r([0, 1] x [0, 1]) and let Xn = Sr;n'. The dimension of Xn is N = nr. Let
nn : L2[0, 1] —> Xn be the orthogonal projection. If [eu e2,..., eN) is an orthogonal
basis for Xn, then

Consider a fine partition 0 = s0 < sj < • •• < sm = 1 of [0, 1] with norm
h = max{s, — 5,_! : i — 1 , . . . , m). We assume that the above partition is a refinement
of the partition (4.2) defined in Section 4 so that m > nand/i < /i. Letg, : [—1, 1] ->
[J,_I , 5,] be the affine map defined as

ftw = X~Y- Si-x + ^ sh t e [-1, i] .

{'Jy = ft(T/) : 1 < i < »i, 1 < j < r} = {|p : 1 < p < R = mr} be the set of
Gauss points. Consider the composite Gauss rule with r points given by

Let
mr
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If / 6 C2r[0, 1], then

R

C M r (2r) II /L\2r /c n

- ill/ HooW . P--U

where C\ is a constant independent of h.
We define

R

(TRu)(s) = J2 «>,*(*. £„)«(£„), s e [0, 1].
P=i

Using (5.1), it can be easily checked that \\(T - TR)T\\ = O(h2r). It is well known
that if A is a simple eigenvalue of T and XR is the eigenvalue of TR approximating X,
then

|A. -kR\ < C2UT-TR)T\\ = O(h2r). (5.2)

Similarly the error in the eigenvector approximation is of the order of h2r.
Following Atkinson and Bogomolny [2] we define the discrete inner product as

). f o r /> 8 ̂  C[0, 1].
P=\

The operator Qn : C[0, 1] -+ Xn is defined by

N

Qnf =

We quote the following results from [2]:

, f,geC[0,l],

II Qn\\ < 9. a constant independent of n and if/ 6 Cr[0,1], then

With the above notation, a discrete version of the new approximating operator is
defined as

T° = QnTRQn + QMI - Qn) + (/ - Qn)TRQn.

Thus the integral operator T is replaced by TR, the projection nn is replaced by Qn

and we approximate eigenelements of TR by Tf.
We state below a result which is similar to Theorem 4.1. All the operators in the

following theorem are defined on L°°[0, 1].
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THEOREM 5.1. IfTis an integral operator with kernel k(-, •) e C([0, 1] x [0, 1]),
then

IK/ - Qn)TR\\ = 0{hr), ||(/ - Qn)TR(I - Qn)\\ = O(h2r),

WMI - Qn)TR\\ = O(h2r), ||(7 - Qn)TR(I - Qn)TR\\ = O(h'r),

\\TR(I - Qn)TR{I - Qn)\\ = O(h3r), \\TR(I - Qn)TRU - Qn)TR\\ = O(hAr).

The following error estimates follow from the above result. Let <pR
n) be an appro-

priately normalised eigenvector of TR associated with the eigenvalue kR.

THEOREM 5.2. Let Xik) and 4>^k) be the iterates in the elementary iteration obtained
by using using T®. Then for k ~ 0, 1, 2, . . .

«)-kR\ = O(h'r(h2r)k), (5.3)

THEOREM 5.3. Let jl^ and rfr^ be the iterates in the double iteration obtained by
using Tn

D. Then fork = 0, 1, 2, . . .

!#» - A.*| = O(^(/i3')*) and ||Vrf - <)ll = 0 ( /W)*) .

Also, it can be proved that the orders of convergence given in Tables 1-3 are valid
for discrete versions of the Galerkin, projection and Sloan methods.

REMARK. From the estimates (5.2) and (5.3) we get

-k\ = 0(max{Pr, h4r(h2r)k)).

Thus the maximum order of convergence that could be attained by the iterates I *
is h2r.

In the case of uniform partitions, we have h = l/n and h = l/m. If m = np, then
h = hP and for it = (2p — 4)/2, the ifc-th iterate A.*,*' has the same order of convergence
as that of kR. If p = 2, that is, m = n2, then the zero-th iterate X<0) itself has the same
order of convergence as that of XR. Thus the choice of R is determined by the accuracy
which we need and the value of R determines the number of iterations. It is to be
noted that kR is obtained by solving an eigenvalue problem of size np r, whereas A*
is obtained by solving an eigenvalue problem of size 2nr and a system of equations of
size nr for each iterate. Similar considerations apply to eigenvector approximation,
double iteration and various methods.
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In the case of interpolatory projection, the discrete version of the new approximating
operator is defined as

Tn
D = nnTRnn + nnTR(l - nn) + (7 - nn)TRnn,

where 7rn is the interpolatory projection at nr Gauss points as defined in Section 4.2.
The following result can be proved easily.

THEOREM 5.4. If kernel *(•, •) € C2r([0, 1] x [0, 1]), then

| |(/ -nn)TR\\ = O(hr), • \\TR(I -nn)TR\\ = O(h2r),

||(7 -nn)TR(I -iin)TR\\ = O(h3r), \\TR(I - nn)TR(I - 7tn)TR\\ = O(h4r).

Using the above results it can be proved that the orders of convergence given in
Tables 1-3 are valid for discrete versions of various operators.

6. Numerical results

We consider the integral operator T given by

(Tx)(s) = [ k(s, t)x(t)dm(t), s € [0, 1],
Jo

where k(s, t) = exp(st) or the Green's kernel

\s(l-t) ifO<s<t<l,
k(s, t) = {

\t(l-s) if 0 < r < 5 < 1.

Orthogonal projection Let Xn be the space of piecewise constant functions (r = 1)
with respect to the equidistant partition

1 0 n
0< - < - < • • • < - = l (6.1)

n n n

and nn : L2[0, 1] -*• Xn be the orthogonal projection. Let n = 2 and m = R = 29.
We choose wp = 1/7?, £p = (2p — l)/R,p = 1 7?, which are obtained from the
composite midpoint quadrature rule.

Let kR denote the largest eigenvalue of TR and <pR = 0 ^ be the associated eigen-
vector, appropriately normalised. The results for the iterates in the elementary and the
double iteration for various methods are given in Tables 4-7. The * indicates that the
error is less than or equal to 10"16.
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TABLE 4. New method, orthogonal projection, k(s, t) = exp(sr).

221

it
0
1
2
3

IX"
1.7
1.2
8.9
6.4

TABLE

it
0
1
2
3

IX"
2.4
2.4
1.4
1.0

TABLE 6

k
0
1
2
3

k
0
1
2
3

|X"
2.4
1.4
5.3
2.0

-xfl
xlO"5

xlO"7

x 10-'°
xlO-'2

110"
3.0
2.1
1.5
1.1

-0^11
xlO-4

xlO"6

xlO"8

xlO-'°

IX"
1.7

7.2
2.6

-Mi* ' l
xlO"5

xlO"10

xlO-'4

*

5. Galerkin method, orthogonal projection, k(.

— A.(i ) 1
xlO"3

xlO-3

xlO"5

xlO"6

110"
4.3
9.3
1.9
4.1

-0*11
xlO-2

xlO"4

xlO"5

xlO-7

IX"
2.4
1.4
9.5
6.5

~Mi*'l
xlO"3

xlO"5

xlO"9

xlO"12

110"
3.0
1.2
5.0

• , / ) =

110"
4.3
1.9
1.2
8.7

. Projection method, orthogonal projection, k(s, t) =

-k™\
xlO-3

xlO"5

xlO"8

xlO"10

110"
4.3
1.6
6.2
2.4

TABLE 7. Sloan method

IX"
2.4
1.4
5.3
2.0

- x w |
xlO"3

xlO"5

xlO"8

xlO"10

110"
9.3
3.5
1.3

5.1

-S**ll
xlO"2

xlO"4

xlO"7

xlO"9

|X"
2.4
1.0
3.2
1.0

~Mi*'l
xlO"3

xlO-6

xlO"10

xlO"13

, orthogonal projection, k(s.

— 0(*'| |
xlO"4

xlO"6

xlO-8

xlO-"

|X"
2.4
1.0
3.1
9.0

"Mi*' l
xlO"3

xlO-6

xlO"10

xlO-'4

110"
4.3
2.1
6.4
1.9

-Oi
xlO-4

xlO-8

xlO"13

*

expCs/).

- V ^ ' l l
xlO"2

xlO-3

xlO-8

xlO"12

exp(*O-

- ^ 1 1
xlO"2

xlO"5

xlO"9

xlO"12

t) = exp(st).

110"
9.3
8.5
2.4
7.2

-^*'ll
xlO-4

xlO"7

xlO"10

xlO"14

Interpolatory projection. Collocation at Gauss 2 points We choose Xn to be
the space of piecewise linear functions (r = 2) with respect to the equidistant parti-
tion (6.1). The collocation points are Gauss 2 points

2k - 1 - 1/V3
In

2k - 1 + 1/V3
k = 1, . . . ,n.

The projection nn : C[0, 1] —> Xn is the interpolatory projection. As before we fix
n = 2andfl = 512.

https://doi.org/10.1017/S1446181100013791 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013791


222 Rekha P. Kulkarni and N. Gnaneshwar

TABLE 8. New method, collocation at Gauss 2 points, k(s, t) = ex.p(st).

it
0
1
2

\kR

2.3
1.0

xlO-8

xlO"12

*

110"
5.1
2.1
7.4

-
X

X

X

0fll
10"6

io-'
io-M

\k*
2.3

- / L t f |
xlO-8

*
*

110"
5.1
9.5

- V ^ l l
xlO-6

xlO-13

*

TABLE 9. Galerkin method, collocation at Gauss 2 points, k(s, t) = t\p(st).

k
0
1
2
3

\k*

4.2
4.2
2.2
6.2

xlO"'
xlO"'
xlO"8

xlO"10

110*
7.5
2.7
1.1
2.1

xlO"3

xlO-'
xlO"7

xlO"10

\k*

4.2
2.2
5.5

xlO"'
xlO"8

xlO"13

*

7.5
1.1

4.6

xlO"3

xlO"7

xlO-12

*

TABLE 10. Projection method, collocation at Gauss 2 points, k(s, t) = exp(st).

it

0
1
2
3

\kR

4.2
2.2
8.7
7.5

xlO- '
xlO"8

xlO"12

xlO"14

00"
5.5
2.0
4.9
1.0

-
X

X

X

X

0 f II
io-3

10"6

io-'
io-11

\kK

4.2
6.2

xlO-'
xlO"10

*
*

110*
5.5
7.4
8.4

- O i
xlO-3

xlO"8

xlO"13

*

TABLE 11. Sloan method, collocation at Gauss 2 points, k(s, t) = e\p(st).

k
0
1
2
3

\kR -A.f |
4.2 x 10-'
2.2 x 1O"8

8.7 xlO"12

7.6 xlO"14

110* " 0f II
2.7 x 10-'
1.1 xlO~8

2.0 x lO"10

1.1 xlO"13

|A — IA |

4.2 x 10-'
6.2 xlO"10

*
*

110* " V ^ II
2.7 x 10-'
3.1 xlO"10

3.1 xlO"14

*

[20]

We choose

<«> - 1 *<«>_ Hp ~l/>/3)/R' if p i s odd,
p R' p | ( p - 1 + \/*Jf)/R, if p is even.

Green's kernel Tables 12-13 illustrate that the new method is superior to the
Galerkin method even when the kernel is only continuous. Here we choose n = 8
and m = 256 so that R = 512. We approximate the 10th eigenvalue kR of TR and
a corresponding eigenvector. The corresponding exact eigenvalue A. of T is given by
1/1007T2. Note that since |A. — kR \ = 3.4 x 10"7, we can expect to achieve at the most
an accuracy of 10~7 by the iterative methods.
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TABLE 12. New method, collocation at Gauss 2 points, Green's kernel.

223

k
0
1
2
3
4
5

7.2
2.5
6.6
3.3
1.5
4.6

TABLE 13.

k
0
1
2
3
4
5

\k«
1.0
1.0
2.8
4.6
2.5
1.2

xlO"5

xlO-5

xlO"6

xlO-6

xlO"6

xlO-7

110*
1.8
5.0
4.2
1.5
3.7
1.6

Galerkin method

xlO"4

xlO"5

xlO"5

xlO-5

xlO-5

xlO"5

110*
3.5
9.8
5.6
2.8
3.2
1.7

-0<*>ll
xlO-4

xlO"5

xlO-5

xlO-5

xlO"6

xlO"6

\k*-n*>\
7.2 x 10"5

4.1 xlO-6

1.9 xlO~9

*
*
*

110*
1.8
1.6
5.2

-Ol
xlO-4

xlO-5

xlO-7

*
*
*

, collocation at Gauss 2 points, Green's kernel.

xlO-4

xlO"5

xlO"5

xlO-5

xlO"5

xlO-5

I^-Mfl
1.0 xlO"4

2.8 xlO-5

2.8 xlO-5

1.5xlO-5

1.6xlO-6

1.1 xlO-6

110"
3.4
5.6
8.3
1.7
3.8
2.7

xlO-4

xlO-5

xlO"5

xlO"5

xlO"6

xlO"6

REMARK. It may be seen from the above results that the iterates in the elemen-
tary as well as the double iteration using the new method converge faster than the
corresponding iterates obtained using the Galerkin, projection or Sloan methods.
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