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The Inequalities for Polynomials and
Integration over Fractal Arcs

B. A. Kats

Abstract. The paper is dealing with determination of the integral
∫
γ f dz along the fractal arc γ on

the complex plane by terms of polynomial approximations of the function f . We obtain inequalities
for polynomials and conditions of integrability for functions from the Hölder, Besov and Slobodetskii
spaces.

Let γ be directed Jordan arc on the complex plane C with beginning at the point a
and endpoint b. For any polynomial p(z) =

∑m
j=0 p jz j we put

Iγ p =
m∑

j=0

p j
b j+1 − a j+1

j + 1
.(1)

If the arc γ is rectifiable, then Iγ p =
∫
γ

p dz and |Iγ p| ≤ λ‖p‖C(γ), where ‖p‖C(γ) =

sup{|p(z)| : z ∈ γ} is the norm of polynomial p in the space C(γ) of continuous on γ
functions, and λ is length of γ. Vice versa, if |Iγ p| ≤ λ‖p‖X for some constant λ and
some functional space X containing polynomials, then the functional Iγ is extensible
from the set P of all polynomials onto closure of this set in the space X. The extended
functional can be considered as integral over γ even if the arc is not rectifiable. As a
result, we determine integral

∫
γ

f dz for non-rectifiable and fractal arcs γ. Another
way to determinate this integral is described in the papers [6], [4], [5], [3]; see also
bibliography in [7].

Thus, we are interested in inequalities of the form

|P(b)− P(a)| ≤ λ‖P ′‖X,(2)

where P is arbitrary polynomial, the constant λ does not depend on P, and X = X(γ)
is certain normed space of functions defined on γ such that P ⊂ X. The best possible
value of the constant λ = λX(γ) (i.e., norm of the functional Iγ) can be considered
as a generalization of the length for non-rectifiable arcs. We call it X-length. The
following two sections treat the Hölder space as the space X. In the last one we are
dealing with certain version of the Besov and Slobodetskii spaces.
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62 B. A. Kats

1 Inequalities in the Hölder Space

We begin from the Hölder spaces Hν(γ). This space consists of defined on γ functions
f (z) with finite Hölder coefficient

hν( f , γ) = sup

{
| f (t ′)− f (t ′ ′)|

|t ′ − t ′ ′|ν
: t ′, t ′ ′ ∈ γ, t ′ 	= t ′ ′

}
.

A norm in that space can be defined as the sum ‖ f ‖Hν = hν( f , γ) + ‖ f ‖C(γ), or
hν( f , γ) + | f (a)|, or hν( f , γ) + | f (b)|. All these norms are equivalent.

We shall describe integral properties of the arc γ in terms of its box dimension d
and growth of the function

kγ(z) =
1

2πi
log

z − b

z − a
(3)

at the points a and b. Let us call to our mind that the box dimension d (see, for
instance, [10], [2]) of the plane arc belongs to the interval [1, 2]. It is equal to 1
if the arc is rectifiable; for fractals this dimension is fractional. The function (3)
is a single-valued branch of the infinitely valued function 1

2πi log z−b
z−a separated in

C \ γ so that it vanishes at ∞. In general, its growth at the points a and b can be
arbitrarily fast. Obviously, it is related with metric properties of the arc γ. If the arc
is rectifiable, then (see [8]) the product (z−a)(z−b)kγ(z) vanishes at the points a, b.
If a rectifiable arc satisfies the chord-arc condition, then the growth of corresponding
function (3) at these points is logarithmic (see [12]). Obviously, this conclusion is
valid for smooth arcs. If γ is not rectifiable, but there exists smooth (or rectifiable
and satisfying chord-arc condition) arc γ ′ with the same beginning and end points
a, b and without another common point with γ, then kγ also has logarithmic growth
at a, b, because the difference |kγ(z) − kγ ′(z)| is characteristical function of domain
bounded by γ ∪ γ ′. We call these arcs attainable (cf. [4]).

In what follows we restrict the growth of kγ in terms of condition kγ ∈ Lq. It
means that kγ is integrable with degree q in usual plane measure at some neighbor-
hoods of the points a, b.

Theorem 1 If the arc γ has the null area and kγ ∈ L1, then the inequality (2) is valid
for X = H1(γ).

Theorem 2 If the box dimension of the arc γ is d < 2 and kγ ∈ Lq, q > 1, then the
inequality (2) is valid for X = Hν(γ) under the condition

1 > ν > 1− (1− q−1)(2− d).(4)

Corollary 1 If the box dimension of attainable arc γ is d < 2, then the inequality (2)
is valid for X = Hν(γ) under the condition

ν > d− 1.(5)
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Integration over Fractal Arcs 63

Proof First we obtain an integral representation for the functional Iγ .

Lemma 1 Let γ ⊂ D where D is a finite domain with rectifiable Jordan boundary ∂D.
Then for any p ∈ P

Iγ p = −

∫
∂D

p(z)kγ(z) dz.

As 2πikγ(z) = −
∑∞

j=1(b j − a j)/ jz j if |z| is sufficiently large, so this equality
follows immediately from the residue formula.

The obtained representation does not enable us to bound the functional Iγ as we
desire, because relations between the least upper bounds of the polynomial p on
∂D and on γ are rather weak. We need the Stokes formula for improvement of the
situation.

Lemma 2 The Stokes formula

∫
∂D

u(ζ) dζ = −

∫∫
D

∂u

∂ζ
dζ dζ(6)

remains valid if the domain D and function u(ζ) satisfy the following conditions:

• the domain D is finite and its boundary ∂D consists of finite number of rectifiable
Jordan curves;
• the function u(ζ) is continuous in D, has bounded and continuous partial derivatives

of first order in D \ γ and satisfies inequality

|u(ζ)− u(t)| ≤ C|ζ − t|, ζ ∈ D, t ∈ γ

for some C > 0;
• the arc γ ⊂ D has null area.

The proof of this proposition reduces to the standard covering of γ by a system of
squares with vanishing area.

Now we consider the Whitney extension operator E0 for the compact γ (see, for
instance, [13]). If f ∈ Hν(γ) then the extended function E0 f is defined on the
whole complex plane C, satisfies there the Hölder condition with the same exponent
ν, sup{|E0 f (z)| : z ∈ C} = sup{| f (z)| : z ∈ γ} and hν(E0 f ,C) = hν( f , γ). In
addition, the function E0 f (z) is differentiable in C \ γ, and its gradient does not

exceed the value hν( f , γ)
(

dist(z, γ)
) ν−1

. In particular, for ν = 1 it is bounded by
constant h1( f , γ).

Let us denote u(z) =
(

p(z) − E0 pγ(z)
)

kγ(z), where pγ means restriction of the
polynomial p on γ. Obviously, pγ ∈ H1(γ). Therefore the function u(z) satisfies

conditions of Lemma 2 in domain D ′ = D \
⋃2

j=1 D j , where γ ⊂ D, D is finite
domain with rectifiable Jordan boundary ∂D, and D1 and D2 are disks with centers a
and b and radia ε and δ respectively. Consequently,

(∫
∂D
−

∫
|ζ−a|=ε

−

∫
|ζ−b|=δ

)
u(ζ) dζ = −

∫∫
D ′

∂u

∂ζ
dζ dζ.
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If kγ ∈ L1, then the right side of the last equality has finite limits for ε → 0
and for δ → 0. Hence, there exist limits limε→0

∫
|ζ−a|=ε u(ζ) dζ = c1 and

limδ→0

∫
|ζ−b|=ε u(ζ) dζ = c2. The assumption c1,2 	= 0 yields a contradiction with

the condition kγ ∈ L1. Thus, the Stokes formula (6) is valid for our function u in
the domain D under the additional condition kγ ∈ L1. This conclusion together with
Lemma 1 implies:

Lemma 3 Let γ be of null area and kγ ∈ L1. Then

Iγ p = −

∫
∂D

(
E0 pγ(z)

)
kγ(z) dz −

∫∫
D

∂E0 pγ
∂z

kγ(z) dz dz(7)

for any p ∈ P and any finite Jordan domain D ⊃ γ with rectifiable boundary.

The representation (7) enables us to bound the functional Iγ in terms of the
Hölder norm. Indeed, it implies inequality

|Iγ p| ≤ ‖p‖C(γ)

∫
∂D
|kγ(z) dz| + h1(p, γ)

∫∫
D
|kγ(z) dz dz|,

which proves Theorem 1.
Furthermore, P ⊂ Hν(γ) for any ν ∈ (0, 1], and mentioned above properties of

the Whitney extension yield the following bound

|Iγ p| ≤ ‖p‖C(γ)

∫
∂D
|kγ(z) dz| + hν(p, γ)

∫∫
D

(
dist(z, γ)

) ν−1
|kγ(z) dz dz|.(8)

Easy calculation shows that the function dist−µ(z, γ) is integrable in finite domain
D ⊃ γ if µ < 2− d (see details in [9]). This fact together with the Hölder inequality
means that the last integral in (8) is finite under condition (4). Theorem 2 is proved.

Corollary 1 follows immediately from Theorem 2, because the function kγ for
attainable arc γ satisfies condition kγ ∈ Lq for arbitrarily large q.

2 The Hölder Length

The results of the preceding section enables us to bound the Hölder length in terms
of the function (3). Here we estimate it in another way.

We restrict ourself by the set P0 = {p ∈ P : p(a) = 0, p 	≡ 0} and define the
Hölder length by equality

λν(γ) = sup

{
|Iγ p|

hν(p, γ)
: p ∈ P0

}
.

Definition 1 An arc γ is called q-rectifiable if the value

σq(γ) = sup
Z

n∑
j=1

|z j − z j−1|
q

is finite; the least upper bound is taken over all finite sequences Z = {z j}n
j=1 ⊂ γ

enumerated in intrinsic order.
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Let us denote the class of all q-rectifiable arcs by Rq. Obviously, R1 consists of
usual rectifiable arcs; for s < t we have Rs ⊂ Rt and this inclusion is strict.

Lemma 4 The following propositions are valid:

i. the box dimension d of a q-rectifiable arc γ does not exceed q;
ii. an arc γ is q-rectifiable if and only if there exists a one-to-one mapping z(x) of

segment I = [0, 1] onto γ belonging to the Hölder space H1/q(I);

iii. the mapping z(x) can be chosen so that h1/q(z, I) = σ1/q
q (γ).

Proof In order to prove the first proposition of the theorem, we fix δ > 0 and divide
the complex plane into grid of squares with mesh δ. Let N(δ) be the number of
squares Q such that the intersection Q ∩ γ is not empty. Now we consider a special
sequence of points. We put z0 = a and define z1 as the first point on γ (let us call
to mind that the arc γ is directed from a to b) satisfying condition |z1 − z0| = δ;
if that point does not exist then we put z1 = b. Analogously, z2 is the next after
z1 point of the set {z ∈ γ : |z2 − z1| = δ}, and z2 = b if this set is empty, and
so on. As a result we obtain a sequence Z = {z j}m

j=1 such that |z j − z j−1| = δ for

j = 1, . . . ,m−1, and |zm−zm−1| ≤ δ. Hence, (m−1)δq <
∑m

j=1 |z j−z j−1|q ≤ σq(γ)

and m < 1 + σq(γ)δ−q. On the other hand, any subarc of γ with beginning z j−1 and
end z j , j = 1, . . . ,m, is contained in a disk of radius δ which intersects no more
than 12 squares. Thus, N(δ) ≤ 12m < c + cδ−q, where the constant c does not
depend on δ, and d = lim sup log N(δ)

− log δ ≤ q by definition of the box dimension. The
proposition (i) is proved.

If a function z(x) ∈ H1/q(I) is one-to-one mapping of the unit segment I onto γ,
then any point z j ∈ γ is image of point x j ∈ I, 0 = x0 < x1 < · · · < xn = 1, and,
consequently,

∑n
j=1 |z j − z j−1|q ≤

∑n
j=1 hq

1/q(z, I)|x j − x j−1| = hq
1/q(z, I). Thus,

γ ∈ Rq and σq(γ) ≤ hq
1/q(z, I).

Now let γ ∈ Rq. We consider the subarc γt of the arc γ with beginning a and
end t ∈ γ. The function σ(t) = σq(γt ) continuously increases if the point t runs
from a to b. This function maps γ on the segment [0, σ(b)] where σ(b) = σq(γ).
Then the function x = σ0(t) = σ(t)/σ(b) is a homeomorphism of γ onto I, and
its inverse function z0(x) maps I onto γ. According to Definition 1 we have
|σ(t ′) − σ(t)| ≥ |t ′ − t|q. Therefore the inverse function z0(x) : I �→ Γ satis-

fies the inequality |z0(x) − z0(x ′)| ≤
(
σ(b)|x − x ′|

) 1/q
, i.e., it belongs H1/q(I) and

h1/q(z0, I) ≤ σ1/q
q (γ). But we have proved above the inverse inequality for any Hölder

mapping z : I �→ γ. Hence, h1/q(z0, I) = σ1/q
q (γ), and the lemma is proved.

Theorem 3 If the arc γ is q-rectifiable, 1 < q < 2, then the inequality (2) is valid for
X = Hν(γ) under condition

ν > q− 1,(9)

and its Hölder length satisfies the following inequality

λν(γ) ≤

(
1 + ζ

( ν + 1

q

))
σ(ν+1)/q

q (γ),
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where ζ(x) is the Riemann ζ-function.

Proof If a function f is defined on the segment I then the value vq( f ) =
supχ

∑n
j=1 | f (x j−1) − f (x j)|q is its q-variation (the least upper bound is taken over

all finite sequences χ = {x j}n
j=0 such that 0 = x0 < x1 < · · · < xn = 1). The

class Vq(I) consists of all functions with finite q-variations. The Stieltjes integral∫ 1
0 f dg exists if g ∈ Vq(I), f ∈ Vr(I), q−1 + r−1 > 1, and the functions f , g

have no common singularities (L. C. Young [14]). If, in addition, f (0) = 0, then

|
∫ 1

0 f dg| ≤
(

1 + ζ(q−1 + r−1)
)

v1/r
r ( f ; I)v1/q

q (g; I). Obviously, any continuous one-
to-one mapping z(x) of the segment I onto q-rectifiable arc γ belongs to the class
Vq(I) and vq(z) = σq(γ). For any function F ∈ Hν(γ) we have

∑n
j=1

∣∣F( z(x j−1)
)
−

F
(

z(x j )
) ∣∣ q/ν

≤ hq/ν
ν (F, γ)

∑n
j=1 |z(x j−1)−z(x j )|q ≤ hq/ν

ν (F, γ)σq(γ), i.e., F
(

z(x)
)
∈

Vq/ν(I) and vq/ν(F ◦ z) ≤ hq/ν
ν (F, γ)σq(γ). Hence, the integral

∫ 1
0 F
(

z(x)
)

dz(x) ex-

ists under condition (9) and
∣∣∫ 1

0 F
(

z(x)
)

dz(x)
∣∣ ≤ 1 + ζ( 1+ν

q )hν(F, γ)σ(1+ν)/q
q (γ)

if F(a) = 0. Hence, the Stieltjes integral
∫ 1

0 p
(

z(x)
)

dz(x) exists for any p ∈ P

and
∣∣∫ 1

0 p
(

z(x)
)

dz(x)
∣∣ ≤ 1 + ζ( 1+ν

q )hν(p, γ)σ(1+ν)/q
q (γ) for any p ∈ P0 and any

ν > q − 1. It remains to show that
∫ 1

0 p
(

z(x)
)

dz(x) = Iγ p. Let us put z j =
z( j/n), j = 0, 1, . . . , n, and Sn(p) =

∑n
j=1 p(z j−1)(z j − z j−1). Obviously, Iγ p =∑n

j=1

∫
l( j) p(z) dz, where l( j) stands for the linear segment [z j−1, z j], and

|Iγ p − Sn(p)| ≤
∑n

j=1 |
∫

l( j) p(z) − p(z j−1)| ≤ h1(p,U )
∑n

j=1 |z j − z j−1|2 ≤

h1(p,U )δ2−q
n σq(γ), where U is closed convex hull of γ and δn is maximal of dif-

ferences |z j − z j−1|, j = 1, 2, . . . , n. Consequently, limn→∞ Sn(p) = Iγ p. But Sn(p)

is a integral sum for the Stieltjes integral
∫ 1

0 p
(

z(x)
)

dz(x). As this integral exists,

Iγ p =

∫ 1

0
p
(

z(x)
)

dz(x),(10)

and the theorem is proved.

Note 1 We can construct arcs of box dimension d < 2 which are q-rectifiable only
for q > 2 or for no one q at all. Hence, the q-rectifiability is a sufficient but not
necessary condition for finiteness of the Hölder length.

Note 2 L. C. Young [15] obtained an existence theorem for the Stieltjes integral
which generalized the result from [14] applied above. By means of this generaliza-
tion we are able to prove a version of Theorem 3 for the spaces of functions with
prescribed modulus of continuity.

The conditions of Theorems 1, 2 and 3 ensure extendability of the functional Iγ
onto closures of P in corresponding Hölder spaces. In other words, we have ob-
tained sufficient conditions for integrability of functions from these closures along
the arc γ. But the Hölder spaces are not separable ones. Consequently, the closures
of P in these spaces cannot coincide with the whole spaces, and these conditions are
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weaker than analogous integrability conditions in the papers [6], [4], [5], [3], [7].
But we have to note that unlike our theorems the results of these papers (excluding
[3] and [7]) concern only closed curves and attainable arcs. In addition, the repre-
sentation (7) can be considered as explicit formula for extension of Iγ onto the whole
Hölder space: we must only replace there p ∈ P by f ∈ Hν(γ). The Young-Stieltjes
integral representation (10) is applicable to this end, too.

3 Inequalities in the Besov Spaces

The Besov space Bαr,1 on the segment I consists of functions f ∈ Lr satisfying condi-
tion ∫ 1

0
s−α−1ωr( f ; s) ds = Nr,α( f ; I) <∞,

where

ωr( f ; s) =

(∫ 1−s

0
| f (x + s)− f (x)|r dx

) 1/r

, 0 < s ≤ 1.

The value Nr,α( f ; I) is seminorm of the space. An equivalent seminorm is defined by
equalities

ω̃r( f ; s) = sup{ωr( f ; t) : 0 < t ≤ s}, Ñr,α( f ; I) =

∫ 1

0
s−α−1ω̃r( f ; s) ds.

The sum Ñr,α( f ; I) + ‖ f ‖Lr is a norm in the space Bαr,1. The class Bα1,1 coincides with
the Slobodetskii space W α

1 on the segment I.
Let γ be q-rectifiable arc. We consider functions σ(t), σ0(t) and z0(x) which are

constructed for that arc in the proof of Lemma 4. The function σ(t) increases if
the point t runs along γ from a to b. Hence, it determines the measure dσ on γ.
Furthermore, the equality σ0(τst) = σ0(t) + s determines the translation τst along γ.
It is defined for t ∈ γ1−s, where subarc γ1−s ⊂ γ begins at the point a and ends at
z0(1− s).

Now we can define the Besov space Bαr,1(γ) as the set of all functions f ∈ Lr(dσ; γ)
with finite seminorm

Ñr,α( f ; γ) =

∫ 1

0
s−α−1ω̃r,γ( f ; s) ds,

where

ω̃r,γ( f ; s) = sup{ωr,γ( f ; t) : 0 < t ≤ s}, ωr,γ( f ; s) =

(∫
γ1−s

| f (τst)− f (t)|r dσt

) 1/r

.

The value ‖ f ‖Bαr,1(γ) = Ñr,α( f ; γ) + ‖ f ‖Lr(dσ) is a norm in the space Bαr,1(γ).

Obviously, f ∈ Bαr,1(γ) if and only if f
(

z0(x)
)
∈ Bαr,1(I). By virtue of Lemma 4

z0(x) ∈ H1/q(I). Therefore |τst − t| ≤
(

sσq(γ)
) 1/q

and, consequently, P ⊂ Bαr,1(γ)
for qα < 1.
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V. I. Matsaev and M. Z. Solomyak [11] proved that the integral
∫ 1

0 f dg exists for
f ∈ Bα1,1, g ∈ H1−α(I), 0 < α < 1 and for f ∈ Bα1/α,1, g ∈ V(1−α)−1 as a limit of sums

n∑
j=1

g(x j)− g(x j−1)

x j − x j−1

∫ x j

x j−1

f (x) dx

(a special case of so-called Hellinger integral). Thus, the integral
∫ 1

0 p
(

z0(x)
)

dz0(x)
exists in the Hellinger sense if 1 − α = q−1 and qα < 1. These conditions are
compatible for q < 2. If a function f is integrable on the segment I in the Riemann

sense and the Hellinger integral
∫ 1

0 f dg exists, then this integral exists in the Stieltjes
sense and its Hellinger and Stieltjes values are equal (see [1]). We have proved in the

previous section that the Stieltjes value of the integral
∫ 1

0 p
(

z0(x)
)

dz0(x) is equal to
Iγ p. Thus, the representation (10) is valid for q < 2 in the Hellinger sense and we
can apply here the bounds for the Hellinger integral from [11]. These bounds yield
the following result:

Theorem 4 If the arc γ is q-rectifiable, 1 < q < 2 and α = 1−q−1, then the inequal-
ity (2) is valid for X = Bα1,1(γ) and for X = Bα1/α,1(γ), and in both these cases the Besov

length of γ (i.e., the constant λ in the inequality (2)) does not exceed α
1−2−α σ

1/q
q (γ).

This proposition establishes existence of the integral
∫
γ

f dz along q-rectifiable arc

γ for f ∈ B1/q ′

1,1 (γ) and for f ∈ B1/q ′

q ′,1 (γ) (as usual, q ′ stands here for (1−q−1)−1). The
first case is of special interest because the space Bα1,1 contains discontinuous and un-
bounded functions, and in general the integral

∫
γ

f dz cannot exist in the Riemann-
Stieltjes sense. As shown above, its evaluation is possible by terms of a polynomial
approximation.

For example, if γ is an arc of the von Koch snowflake, then its box dimension d
is log3 4. One can easily verify that it is q-rectifiable for q = log3 4, too. Therefore
the integral

∫
γ

f dz exists for any function f ∈ Bα1,1(γ), α = log4
4
3 , as the limit of

integrals of polynomials approximating f in this space.
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