On Lebesgue-type decompositions for Banach algebras

Howard Anton

If the maximal ideal space of a commutative complex unitary Banach algebra, X, is equipped with a nonnegative, finite, regular Borel measure, m, then for each element, x, in X, a. complex regular Borel measure, m_{x}, can be obtained by integrating the Gelfand transform of x with respect to m over the Borel sets. This paper considers the possibility of direct sum decompositions of the form $X=A_{x} \oplus P_{x}$ where

$$
A_{x}=\left\{z \in X: m_{z} \ll m_{x}\right\} \text { and } P_{x}=\left\{z \in X: m_{z} \perp m_{x}\right\}
$$

1. Introduction

Let X be a commutative complex Banach algebra with identity and let M designate the maximal ideal space of X. Suppose also that M has the Gelfand topology, m is a nonnegative, finite, regular Borel measure on M, and $x \rightarrow \hat{x}$ is the Gelfand mapping from X into $C(M)$. Since \hat{x} is continuous, it follows from the compactness of M that $\hat{x} \in L^{1}(m)$. Let m_{x} denote the complex regular Borel measure defined by $m_{x}(E)=\int_{E} \hat{x}(M) d m$ where E varies over the Borel sets of M. By means of the mapping $x \rightarrow m_{x}$ we can associate a complex regular Borel measure with each element of X.

It will be shown that the sets $A_{x}=\left\{z \in X: m_{z} \ll m_{x}\right\}$ and
$P_{x}=\left\{z \in X: m_{z} \perp m_{x}\right\}$ form closed ideals in X. If a mild condition is imposed on m, then $A_{x} \cap P_{x}=\{0\}$. The results of this paper provide solutions to the following problems:
(a) find sufficient conditions for an element of X to lie in the subspace $A_{x} \oplus P_{x}$;
(b) find necessary and sufficient conditions for X to admit a Lebesgue-type decomposition $X=A_{x} \oplus P_{x}$ for some x in X, with A_{x} and P_{x} non-zero ideals;
(c) for a given x in X, find necessary and sufficient conditions for X to admit the decomposition $X=A_{x} \oplus P_{x}$ with A_{x} and P_{x} non-zero ideals.

We will adhere throughout to the following conventions and notation:
e denotes the identity of X and is assumed to have a norm of 1 ;
$\operatorname{rad}(x)$ denotes the spectral radius of x;
S denotes the sigma-algebra of Borel sets in M; and
$B(M)$ denotes the Banach space of complex regular Borel measures on M with the total variation norm.

Our measure theoretic terminology follows that used in [4].

2. Lebesgue-type decompositions

The map $\theta: X \rightarrow B(M)$ defined by $\theta(x)=m_{x}$ is a continuous linear transformation with normm(M). If θ is one-to-one, then the measure m is said to have property α. Since property α is equivalent to the assertion that $\hat{x}(M)=0$ a.e. (m) implies $x=0$, it is clear that in the Banach algebra $C(\Omega)$ where Ω is a compact Hausdorff space, every nonnegative Borel measure on Ω which assumes positive values on the non-empty open sets has property α. In particular, Lebesgue measure on $[a, b]$ has property α. Further, the Gelfand transform $x \rightarrow \hat{x}$ may be regarded as a continuous embedding of X into $L^{\infty}(M, m)$. If m has
property α, then it follows that X is semi-simple and the Gelfand transform is an isomorphism into $L^{\infty}(M, m)$.

LEMMA 1. If x and $y \in X$ then
(i) $m_{x y}(E)=\int_{E} \hat{y}(M) d m_{x}=\int_{E} \hat{x}(M) d m_{y}$,
(ii) $m_{x y} \ll m_{x}$ and $m_{x y} \ll m_{y}$.

Proof. Using Radon-Nikodym derivatives we can write $d_{m_{y}}=\hat{y}(M) d m$ and $d_{m_{x}}=\hat{x}(M) d m$. Since $m_{x y}(E)=\int_{E} \hat{x}(M) \hat{y}(M) d m$ for all E in S, (i) follows. ($i i$) is an inmediate consequence of (i).

LEMMA 2.
(i) $A_{x}=\left\{z \in X: m_{z} \ll m_{x}\right\}$ is a closed ideal containing x;
(ii) $P_{x}=\left\{z \in X: m_{z} \perp m_{x}\right\}$ is a closed ideat;
(iii) $A_{x} \cap P_{x}=\left\{z \in X: m_{z}=0\right\} ;$
(iv) if m has property $\alpha, A_{x} \cap P_{x}=\{0\}$.

Proof. (i) Let $y, z \in A_{x}$. If $\left|m_{x}\right|(E)=0$ then $m_{y}(E)=0$ and $m_{z}(E)=0$. By linearity of $\theta, m_{y+z}(E)=0$. It now follows that $y+z \in A_{x}$. Let $y \in A_{x}$ and $w \in X$. By part (ii) of Lemma 1 , $m_{y w} \ll m_{y} \ll m_{x}$ so that $y w \in X$. To see that A_{x} is closed, let $z_{j} \rightarrow z$ where $\left(z_{j}\right)$ is a sequence in A_{x}. It follows from the continuity of θ that $m_{z}(E) \rightarrow m_{z}(E)$ for all E in S. If $\left|m_{x}\right|(E)=0$, then $m_{z}(E)=0$ so that $z \in A_{x}$. It is clear that $x \in A_{x}$.
(ii) Let $y, z \in P_{x}$. We can find sets A and B in S such that $\left|m_{y}\right|(A)=\left|m_{x}\right|\left(A^{\mathcal{C}}\right)=0$ and $\left|m_{z}\right|(B)=\left|m_{x}\right|\left(B^{\mathcal{C}}\right)=0 . \quad$ Let $C=A \cap B$. $\left|m_{y+z}\right|(C) \leq\left|m_{y}\right|(C)+\left|m_{z}\right|(C) \leq\left|m_{y}\right|(A)+\left|m_{z}\right|(B)=0$. Also
$\left|m_{x}\right|\left(C^{c}\right)=\left|m_{x}\right|\left(A^{c} \cup B^{c}\right) \leq\left|m_{x}\right|\left(A^{c}\right)+\left|m_{x}\right|\left(B^{c}\right)=0$. It now follows that $m_{y+z} \perp m_{x}$ and $y+z \in P_{x}$. Let $y \in P_{x}$ as before and let $w \in X$. By part (ii) of Lemma $1, m_{w y} \ll m_{y}$ so that $\left|m_{w y}\right| \ll m_{y}$. Since $\left|m_{y}\right|(A)=0$ it follows that $\left|m_{w y}\right|(A)=0$. Since $\left|m_{x}\right|\left(A^{c}\right)=0$, $m_{w y} \perp m_{x}$ so that $w y \in P_{x}$. To see that P_{x} is closed, let $\left(z_{j}\right)$ be a sequence in P_{x} such that $z_{j} \rightarrow z$. There exist sets B_{j} in S such that $\left|m_{z_{j}}\right|\left(B_{j}\right)=0$ and $\left|m_{x}\right|\left(B_{j}^{C}\right)=0$. Let $B=\prod_{j=1}^{\infty} B_{j}$. Clearly $\left|m_{z_{j}}\right|(B)=0$ for $j=1,2, \ldots$. From the continuity of θ, $\left|m_{z_{j}}\right|(B) \rightarrow\left|m_{z}\right|(B)$ so that. $\left|m_{z}\right|(B)=0$. But
$\left|m_{x}\right|\left(B^{c}\right) \leq \sum_{j=1}^{\infty}\left|m_{x}\right|\left(B_{j}^{c}\right)=0$. It now follows that $z \in P_{x}$ so that P_{x} is closed.
(iii) By a standard measure theory result, $m_{z} \ll m_{x}$ and $m_{z} \perp m_{x}$ both hold if and only if $m_{z}=0$.
(iv) If m has property $\alpha, m_{z}=0$ implies $z=0$ so that this part is immediate from (iii).

The next few results describe the relationship between the absolute continuity statement $m_{x} \ll m_{y}$ and the behavior of m on M. In the ensuing discussion, $j(x)$ denotes the compact set $\hat{x}^{-1}\{0\}=\{M \in M: x \in M\}$ and $m_{x} \equiv m_{y}$ denotes that $m_{x} \ll m_{y}$ and $m_{y} \ll m_{x}$.

LEMMA 3. The following statements are equivalent:
(i) $\left|m_{x}\right|(E)=0$;
(ii) $m(E-j(x))=0$;
(iii) $m(E)=m(E \cap j(x))$.

Proof. The equivalence follows directly from the observation that
$\left|m_{x}\right|(E)=\int_{E}|\hat{x}(M)| d m$ so that $\left|m_{x}\right|(E)=0$ if and only if $\hat{x}(M)=0$ a.e. on E.

LEMMA 4. $m_{x} \ll m_{y}$ if and only if $m(j(y)-j(x))=0$.
Proof. Let $m(j(y)-j(x))=0$ and assume $\left|m_{y}\right|(E)=0$. From part (ii) of Lenma 3, $m(E-j(y))=0$. Since
$E-j(x) \subset(E-j(y)) \cup(j(y)-j(x))$, we obtain
$m(E-j(x)) \leq m(E-j(y)\}+m(j(y)-j(x))=0$ so that $m(E-j(x))=0$. From part (i) of Lemma 3, $\left|m_{x}\right|(E)=0$. It now follows that $m_{x} \ll m_{y}$. Conversely, assume $m_{x} \ll m_{y}$ or equivalently $\left|m_{x}\right| \ll m_{y}$. Since it is evident that $\left|m_{y}\right|(j(y))=0$, we have $\left|m_{x}\right|(j(y))=0$ and consequently $m(j(y)-j(x))=0$.

PROPOSITION 1. The following are equivalent:
(i) $m_{x} \equiv m_{y}$;
(ii) $A_{x}=A_{y}$;
(iii) $m(j(x) \Delta j(y))=0$, where Δ represents set symmetric difference.

Proof. By Lemma 4, $m_{x} \equiv m_{y}$ if and only if $m(j(x)-j(y))=0$ and $m(j(y)-j(x))=0$. This is clearly equivalent to (iii). The equivalence of (i) and (ii) is an immediate consequence of the fact that $x \in A_{x}$ and $y \in A_{y}$.

COROLLARY 1. If x is on invertible element of x, then (i) $m_{x} \equiv m$;
(ii) $A_{x}=X$;
(iii) if m has property α, then $P_{x}=\{0\}$.

Proof. If x is invertible, then $j(x)=\emptyset$. In particular $j(e)=\emptyset$, so that $m(j(x) \Delta j(e))=0$. By Proposition 1 and the fact
$m_{e}=m$, we obtain $m_{x} \equiv m$. Since $A_{e}=X$, (ii) also follows from Proposition 1. Part (iii) follows from the last part of Lemma 2.

If $y=x_{1}+x_{2}$ where $x_{1} \in A_{x}$ and $x_{2} \in P_{x}$ then we say that y is decomposable with respect to x. It should be noted that if m has property α, and if y is decomposable with respect to x, then part (iv) of Lemma 2 guarantees that the decomposition of y is unique.

PROPOSITION 2. If m has property α and if there exist elements w and z in X such that $m_{y}(E \cap j(x))=m_{z}(E)$ and $m_{y}\left(E \cap j(x)^{c}\right)=m_{w}(E)$ for alZ E in S, then y is decomposable with respect to x. Further, the decomposition is $y=\omega+z$ where $w A_{x}$ and $z \in P_{x}$.

Proof. Let $A=j(x)$ and suppose w and z are elements with the above stated properties. Since $m_{z}(E)=0$ for every measurable subset of A^{c}, we have $\left|m_{z}\right|\left(A^{c}\right)=0$. By Lemma $3, \quad\left|m_{x}\right|(A)=0$ so that $m_{z} \perp m_{x}$. If $\left|m_{x}\right|(E)=0$ then since $\int_{E}|\hat{x}(M)| d m=0$ and $|\hat{x}(M)|>0$ for M in $E \cap A^{c}$, we obtain $m\left(E \cap A^{c}\right)=0$. Since $m_{y} \ll m$, we have $m_{y}\left(E \cap A^{c}\right)=0$ so that $m_{\omega}(E) \doteq 0$ and consequently $m_{w} \ll m_{x}$. Clearly $m_{y}=m_{w}+m_{z}=m_{w+z}$. Since m has property α, we have the decomposition $y=w+z$.

The remaining theorems depend on the following two well-known results on direct-sum decompositions of Banach algebras. (See [3] pp. 95-96 or [5].)

Result 1. Let X be a commutative complex Banach algebra with identity. If I_{1} and I_{2} are non-zero ideais and $X=I_{1} \oplus I_{2}$, then M is disconnected. Further, if $e=e_{1}+e_{2}$ is the representation of e, then M is the disjoint union of the non-empty closed sets $M_{1}=\left\{M: \hat{e}_{1}(M)=1\right\}$ and $M_{2}=\left\{M: \hat{e}_{2}(M)=1\right\}$.

Result 2. Let X be a commutative complex Banach algebra with
identity. If $M=M_{1} \cup M_{2}$ is a partition of M into disjoint non-empty closed sets, there exist non-zero idempotents e_{1} and e_{2} such that $M_{1}=\left\{M: \hat{e}_{1}(M)=1\right\}, M_{2}=\left\{M: \hat{e}_{2}(M)=1\right\}$, and $e=e_{1}+e_{2}$. Further, X admits the decomposition $X=I_{1} \oplus I_{2}$ where I_{1} and I_{2} are the non-zero ideals $e_{1} X$ and $e_{2} X$ respectively.

For the duration of this paper, we assume that X is a commutative complex Banach algebra with identity and that m has property α. Also $X=A \oplus B$ will be called a non-trivial decomposition if A and B are non-zero ideals.

PROPOSITION 3. X admits a non-trivial decomposition $X=A_{x} \oplus P_{x}$ for some x in X if and only if M is disconnected.

Proof. If X has a non-trivial decomposition $X=A_{x} \oplus P_{x}$ for some x in X, then M is disconnected by Result 1 . Conversely, assume M is disconnected and that $M=M_{1} \cup M_{2}$ is a partition of M into disjoint non-empty closed sets. Let e_{1} and e_{2} be the idempotents described in Result 2 and let $X=I_{1} \oplus I_{2}$ be the direct sum decomposition described there. To complete the proof we will show $I_{1}=A_{e_{1}}$ and $I_{2}=P_{e_{1}}$.

If $z \in I_{1}$ then $z=e_{1} z$. By part (ii) of Lemma 1 , it follows that $m_{z} \ll m_{e_{1}}$ so that $I_{1} \subset A_{e_{1}}$. Let $z \in A_{e_{1}}$. We will show $m_{z}=m_{e_{1} z}$. By property α, it will follow that $z=e_{1} z$ and consequently that $A_{e_{1}} \subset I_{1}$. Since $z \in A_{e_{1}}$ and since $m_{e_{1}}$ vanishes on every measurable subset of M_{2}, we have $m_{z}\left(E \cap M_{2}\right)=0$ for all E in S. Consequently, if $F=E \cap M_{1}$ and $G=E \cap M_{2}$ then $m_{z}(E)=\int_{F} \hat{z}(M) d m+\int_{G} \hat{z}(M) d n=\int_{E} \hat{e}_{1}(M) \hat{z}(M) d m=m_{e_{1} z}(E)$ for all E in S, that is $m_{z}=m_{e_{1} z}$. We will now show $I_{2}=P_{e_{1}}$. If $z \in I_{2}$, then $z=e_{2} z$ so that $\left|m_{z}\right|\left(M_{1}\right)=\int_{M_{1}}\left|\hat{e}_{2}(M) \hat{z}(M)\right| d m=0$. Clearly
$\left|m_{e_{1}}\right|\left(M_{2}\right)=0$ so that $m_{z} \perp m_{e_{1}}$ and consequently $I_{2} \subset p_{e_{1}}$. Let $z \in P_{e_{1}}$. We will show $m_{z}=m_{e_{2} z}$. By property α, it will follow that $z=e_{2} z$ and consequently that $P_{e_{1}} \subset I_{2}$. Since $z \in P_{e_{1}}$,
$\left|m_{e_{1}}\right|(A)=\left|m_{z}\right|\left(A^{c}\right)=0$ for some $A \in S$. Now let $H=E \cap A^{c}$, $J=E \cap A \cap M_{1}$, and $K=E \cap A \cap M_{2}$. Straightforward calculations show that for all E in $S, m_{e_{2} z}(E)=\int_{H} \widehat{e_{2} z}(M) d m+\int_{K} \widehat{e_{2} z}(M) d m$ and
 and $\left|m_{e_{2} z}\right| \ll m_{z}$ it follows that $m_{e_{2} z}(E)=m_{z}(E)=\int_{K} \widehat{e_{2} z}(M) d m$, that is, $m_{e_{2} z}=m_{z}$.

PROPOSITION 4. For a given x in X, X admits a non-trivial decomposition $X=A_{x} \oplus P_{x}$ if and only if there exists an idempotent q other than 0 or e such that $m_{x} \equiv m_{q}$.

Proof. Assume $X=A_{x} \oplus P_{x}$ is a non-trivial decomposition and $e=e_{1}+e_{2}$ is the representation of e. Since $x \in A_{x}$, it follows that $e_{1} x=x$ so that $m_{x} \ll m_{e_{1}}$. The reverse relation is clear so that $m_{x} \equiv m_{e_{1}}$. e_{1} is thus the desired idempotent. Conversely, let $\dot{M}_{1}=\{M: \hat{q}(M)=1\}$ and $M_{2}=\{M: \widehat{e-q}(M)=1\} . M=M_{1} \cup M_{2}$ is a partition of M into non-empty disjoint closed sets. Proceeding as in the proof of Proposition 3 with q and $e-q$ in place of e_{1} and e_{2} respectively, it follows that $X=A_{q} \oplus P_{q}$ is a non-trivial decomposition. Since $m_{x} \equiv m_{q}$, we have $A_{x}=A_{q}$ and $P_{x}=P_{q}$ so that $X=A_{x} \oplus P_{x}$.

References

[1] Howard Anton, "Borel measures on the maximal ideals of a Banach algebra", Ph. D. dissertation, Polytechnic Institute of Brooklyn, 1968.
[2] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I: General theory (Interscience Publishers, New York, London, 1958).
[3] I. Gelfand, D. Raikov and G. Shilov, Commutative normed rings (Chelsea, New York, 1964).
[4] Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable (Springer-Verlag, Berlin, Göttingen, Heidelberg, New York, 1965).
[5] G.E. Silov, "On the decomposition of a commutative normed ring into a direct sum of ideals", Mat. Sb. 32 (74) (1953), 353-364, (Russian). Amer. Math. Soc. Trans Z. (2) 1 (1955), 37-48.

Drexel University,
Philadelphia, USA.

