Notes on Spherical Harmonics.

By John Dougall, M.A., D.Sc.

(Read 12th December 1913. Received 30th March 1914).

This paper contains
(a) an explicit solution of the problem of finding a function which is harmonic within a given sphere and takes at the surface the same value as a given rational integral homogeneous function of the rectangular coordinates of a point referred to the centre of the sphere as origin ;
(b) a concise symbolical expression for the integral, over the surface of the sphere, of the product of any three rational integral spherical harmonics.

I believe that the results are new. The expression, for two spherical harmonics, corresponding to that of (b) has been given by Cayley.*

1. Write as usual

$$
\begin{align*}
& r^{2} \equiv x^{2}+y^{2}+z^{2}, \ldots \ldots \ldots \tag{1}\\
& \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{2}
\end{align*}
$$

If u_{n} is a homogeneous function of x, y, z of degree n, it is easy to prove that

$$
\begin{equation*}
\nabla^{2}\left(r^{p} u_{n}\right)=p(p+2 n+1) r^{p-2} u_{n}+r^{p} \nabla^{2} u_{n} \tag{3}
\end{equation*}
$$

and thence that, if n is a positive integer, the function defined by the finite series

$$
\begin{equation*}
u_{n}-\frac{1}{2(2 n-1)} r^{2} \nabla^{2} u_{n}+\frac{1}{2.4(2 n-1)(2 n-3)} r^{4} \nabla^{4} u_{n}-\ldots \ldots . \tag{4}
\end{equation*}
$$

is a rational integral spherical harmonic of degree n, which we may denote by $\mathrm{H}\left(u_{n}\right)$. From (4) it is obvious that, if $\mathrm{H}\left(u_{n}\right)$ vanishes, u_{n} contains r^{2} as a factor.

[^0]Interesting examples of (4) are obtained by taking

$$
\left.\begin{array}{l}
u_{n}=z^{n} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
u_{n}=\left(x^{2}+y^{2}\right)^{\frac{n}{2}} n \text { even, } \\
u_{n}=\left(x^{2}+y^{2}\right)^{\frac{n-1}{2}} z, n \text { odd, } \tag{7}\\
u_{n}=(x+i y)^{m} z^{n-m} . \ldots \ldots \ldots \ldots .
\end{array}\right\} .
$$

With regard to (7) it is worth noting that the series (4) will terminate for any value of n, provided $n-m$ is a positive integer.
2. It is well known, and will be proved immediately, that u_{n} can be expanded in a finite series of the form

$$
\begin{equation*}
u_{n}=\mathbf{Y}_{n}+r^{2} \mathbf{Y}_{n-2}+r^{4} \mathbf{Y}_{n \rightarrow s}+. \tag{8}
\end{equation*}
$$

where $\mathbf{Y}_{n}, \mathbf{Y}_{n-9} \ldots$ are harmonic functions of the degrees indicated by the suffixes. The usual way of determining $\mathbf{Y}_{n}, \mathbf{Y}_{n-2}, \ldots$ is as follows. By successive applications of ∇°, we get from (8) with the help of (3)

$$
\begin{gather*}
\nabla^{i} u_{n}=2(2 n-1) \mathbf{Y}_{n-2}+4(2 n-3) r^{2} \mathbf{Y}_{n-4}+ \tag{9}\\
\nabla^{4} u_{n}=\quad 2.4(2 n-3)(2 n-5) \mathbf{Y}_{n \rightarrow+}+. \tag{10}
\end{gather*}
$$

and so on.
The last of such equations will give the lowest harmonic \mathbf{Y} explicitly; then the last equation but one will give the lowest harmonic Y but one; and so on. But it does not seem to have been noticed that a general formula for any of the harmonics Y can easily be found. For it is obvious that an identity exists of the form

$$
\begin{equation*}
u_{n}=\mathrm{H}\left(u_{n}\right)+\mathrm{C}_{2} r^{2} \mathrm{H}\left(\nabla^{2} u_{n}\right)+\mathrm{C}_{2} r^{4} \mathrm{H}\left(\nabla^{4} u_{n}^{\prime}\right)+\ldots \ldots, \tag{11}
\end{equation*}
$$

where $\mathrm{C}_{2}, \mathrm{C}_{4}, \ldots$ are constants.
This is easily seen if we write down a few terms in full, say

$$
\left.\begin{array}{r}
u_{n}=u_{4}-\frac{1}{2(2 n-1)} r^{2} \nabla^{2} u_{n}+\frac{1}{2.4(2 n-1)(2 n-3)} r^{4} \nabla^{4} u_{n}-\ldots \\
 \tag{12}\\
+\frac{r^{2}}{2(2 n-1)}\left\{\nabla^{2} u_{n}-\frac{1}{2(2 n-5)} r^{2} \nabla^{4} u_{n}+\ldots\right\} \\
\\
+\frac{r^{4}}{2.4(2 n-3)(2 n-5)}\left\{\nabla^{4} u_{n}-\ldots\right\}
\end{array}\right\}
$$

Here the coefficient of r^{2} in the second line is taken so that the term in $r^{2} \nabla^{2} u_{n}$ may disappear ; then the coefficient of r^{4} in the third line so that the term in $r^{4} \nabla^{4} u_{n}$ may disappear : and so on.

But, once the expansion (11) is seen to be possible, the coefficients $\mathrm{C}_{2}, \mathrm{C}_{4}, \ldots$ are easily obtained thus. Operate on both sides of (11) by $\nabla^{2}, \nabla^{4}, \ldots$ Then, as at (9), (10)
$\nabla^{2} u_{n}=\mathrm{C}_{2} .2(2 n-1) \mathrm{H}\left(\nabla^{2} u_{n}\right)+\mathrm{C}_{4} .4(2 n-3) r^{2} \mathrm{H}\left(\nabla^{4} u_{n}\right)+\ldots .$. ,
$\nabla^{4} u_{n}=\quad C_{4} \cdot 2 \cdot 4(2 n-3)(2 n-5) H\left(\nabla^{4} u_{n}\right)+\ldots$,
and so on.
Now the process described at (9), (10) shows that only one expansion of the form (8) is possible. And (11) then shows that the highest harmonic in the expansion of $\nabla^{0} u_{u}$ in the form (8) is $\mathrm{H}\left(\nabla^{2} u_{n}\right)$. Thus from (13)

$$
\begin{equation*}
\mathrm{C}_{2} \cdot 2(2 n-1)=1 \tag{15}
\end{equation*}
$$

Similarly, $\quad C_{4} .2 .4(2 n-3)(2 n-5)=1$,
and, generally,
$\mathrm{C}_{2 p} \cdot(2.4 \ldots 2 p)(2 n-2 p+1)(2 n-2 p-1) \ldots(2 n-4 p+3)=1 \ldots$
The values of u_{n} in (5), (6), (7) give useful examples of (11). The solution of the problem stated in (a) follows easily, for it is seen at once from (11) that the function which is harmonic within the sphere $r=a$, and takes the same value as u_{n} at the surface, is

$$
\begin{equation*}
\mathrm{H}\left(u_{n}\right)+\mathrm{C}_{2} a^{2} \mathrm{H}\left(\nabla^{2} u_{n}\right)+\mathrm{C}_{4} a^{4} \mathrm{H}\left(\nabla^{4} u_{n}\right)+. . \tag{18}
\end{equation*}
$$

3. Since the surface integral of any rational integral harmonic of degree greater than zero vanishes when taken over the surface of a sphere with centre at the origin, it follows that the surface integral of the function u_{n} depends only on the constant term, or harmonic of degree zero, in the expansion (11).

If n is odd, this harmonic does not occur, and the surface integral vanishes.

If n is even, the last term of (ll) is

$$
\frac{1}{(n+1)!} r^{n} \nabla^{n} u_{n}
$$

and in this case, if $n=2 p$, and the radius of the sphere is a,

$$
\begin{equation*}
\iint u_{2 p} d \mathrm{~S}_{a}=\frac{4 \pi}{(2 p+1)!} a^{2 p+2} \nabla^{2 p} u_{2 p} \tag{19}
\end{equation*}
$$

4. For an application of (19) take

$$
u_{2 p}=\left(a_{1} x+b_{1} y+c_{1} z\right)^{l}\left(a_{2} x+b_{2} y+c_{2} z\right)^{m}
$$

where

$$
\left.\begin{array}{l}
a_{1}{ }^{2}+b_{1}^{2}+c_{1}^{2}=0 \tag{20}\\
a_{2}{ }^{2}+b_{2}^{2}+c_{2}^{2}=0
\end{array}\right\}
$$

As a consequence of (18) the functions $\left(a_{1} x+b_{1} y+c_{1} z\right)^{2}$ and $\left(a_{2} x+b_{2} y+c_{2} z\right)^{m}$ are both harmonic.

Hence

$$
\nabla^{2} u_{2 p}=2 l m\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)\left(a_{1} x+b_{1} y+c_{1} z\right)^{l-1}\left(a_{2} x+b_{2} y+c_{2} z\right)^{m-1}
$$

and, continuing the process of taking ∇^{2}, we see that $\nabla^{\imath p} u_{2 p}$ will vanish unless $l=m$, but that

$$
\begin{array}{r}
\nabla^{: p}\left\{\left(a_{1} x+b_{1} y+c_{1} z\right)^{p}\left(a_{2} x+b_{2} y+c_{2} z\right)^{p}\right\} \\
=2^{p}(p!)^{2}\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)^{p} . \tag{21}
\end{array}
$$

Hence, if l, m are different,

$$
\begin{equation*}
\iint\left(a_{1} x+b_{1} y+c_{1} z\right)^{2}\left(a_{2} x+b_{2} y+c_{2} z\right)^{m} d \mathrm{~S}_{a}=0 ; \tag{22}
\end{equation*}
$$

but

$$
\begin{align*}
& \iint\left(a_{1} x+b_{1} y+c_{1} z\right)^{p}\left(a_{2} x+b_{2} y+c_{2} z\right)^{p} d \mathrm{~S}_{a} \\
& \quad=4 \pi a^{2 p+2} \frac{2^{p}(p!)^{2}}{(2 p+1)!}\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)^{p} . \tag{23}
\end{align*}
$$

5. These results may be generalised so as to give expressions for the surface integral of any two spherical harmonics. For if u_{l} is a harmonic of degree l, we may write symbolically

$$
\begin{equation*}
u_{l}(x, y, z)=\frac{1}{l!}\left(x \frac{\partial}{\partial a_{1}}+y \frac{\partial}{\partial b_{1}}+z \frac{\partial}{\partial c_{1}}\right)^{2} \cdot u_{l}\left(a_{1}, b_{1}, c_{1}\right) \ldots \ldots \tag{24}
\end{equation*}
$$

where $\left\{\left(\frac{\partial}{\partial a_{1}}\right)^{2}+\left(\frac{\partial}{\partial b_{1}}\right)^{2}+\left(\frac{\partial}{\partial c_{1}}\right)^{2}\right\} \cdot u_{l}\left(a_{1}, b_{1}, c_{1}\right)=0$.
Applying the processes of Art. 4 to any harmonics u_{v}, u_{m}, u_{p}, in their symbolical forms, we find

$$
\begin{equation*}
\iint u_{l} u_{m} d \mathrm{~S}_{a}=0, \text { if } l \neq m, \tag{26}
\end{equation*}
$$

but

$$
\begin{align*}
& \iint u_{p} v_{p} d \mathrm{~S}_{a} \\
& =4 \pi a^{2 p+2} \frac{2^{p}}{(2 p+1) l}\left(\frac{\partial}{\partial a_{1}} \frac{\partial}{\partial a_{2}}+\frac{\partial}{\partial b_{1}} \frac{\partial}{\partial b_{2}}+\frac{\partial}{\partial c_{1}} \frac{\partial}{\partial c_{2}}\right)^{p} . \\
& \tag{27}\\
& u_{p}\left(a_{1}, b_{1}, c_{1}\right) v_{p}\left(a_{2}, b_{2}, c_{2}\right) .
\end{align*}
$$

6. Results analogous to those of the last two articles may be obtained for the integral of the product of three harmonics.

Let

$$
\left.\begin{array}{l}
u_{l}=\left(a_{1} x+b_{1} y+c_{1} z\right)^{l}, \\
u_{m}=\left(a_{2} x+b_{2} y+c_{2} z\right)^{m}, \tag{28}\\
u_{n}=\left(a_{3} x+b_{3} y+c_{3} z\right)^{n}
\end{array}\right\}
$$

If $l+m+n$ is odd, the integral of the product of the three harmonics obviously vanishes.

Suppose then that $l+m+n$ is even and equal to $2 p$.
In order to find $\nabla^{2 p}\left(u_{l} u_{m} u_{n}\right)$ consider

$$
\begin{aligned}
u & =\left\{\lambda\left(a_{1} x+b_{1} y+c_{1} z\right)+\mu\left(a_{2} x+b_{2} y+c_{2} z\right)+\nu\left(a_{3} x+b_{3} y+c_{3} z\right)\right\}^{2 p} \\
& =\left\{\left(\lambda a_{1}+\mu a_{2}+\nu a_{3}\right) x+\left(\lambda b_{1}+\mu b_{2}+\nu b_{3}\right) y+\left(\lambda c_{1}+\mu c_{2}+\nu c_{3}\right) z\right\}^{2 p} .
\end{aligned}
$$

We have

$$
\begin{align*}
\nabla^{2 p} u= & (2 p)!\left\{\left(\lambda a_{1}+\mu a_{2}+\nu a_{3}\right)^{2}+\left(\lambda b_{1}+\mu b_{2}+\nu b_{3}\right)^{2}+\left(\lambda c_{1}+\mu c_{2}+\nu c_{3}\right)^{2}\right\}^{p} \\
=(2 p)!2^{p}\left\{\mu \nu\left(a_{2} a_{3}+b_{2} b_{3}+c_{2} c_{3}\right)\right. & +\nu \lambda\left(a_{3} a_{1}+b_{3} b_{1}+c_{3} c_{1}\right) \\
& \left.+\lambda \mu\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)\right\}^{p}, \ldots(30) \tag{30}
\end{align*}
$$

on account of (29).
Now equate the coefficients of $\lambda^{l} \mu^{m} \nu^{n}$ on the two sides of (30). On the right side the coefficient will come from a single term involving, say, $(\mu \nu)^{\alpha}(\nu \lambda)^{\beta}(\ell \mu)^{\gamma}$,
where

$$
\beta+\gamma=l, \quad \gamma+\alpha=m, \quad \alpha+\beta=n
$$

so that

$$
\alpha=\frac{m+n-l}{2}, \quad \beta=\frac{n+l-m}{2}, \quad \lambda=\frac{l+m-n}{2} .
$$

Hence if any one of l, m, n is greater than the sum of the other two, then

$$
\begin{equation*}
\nabla^{2 p}\left(u_{\imath} u_{m} u_{n}\right)=0, . \tag{31}
\end{equation*}
$$

but if any two of l, m, n are together not less than the third, then

$$
\begin{align*}
& \frac{(2 p)!}{l!m!n!} \nabla^{2 p}\left(u_{l} u_{m} u_{n}\right)=(2 p)!2^{p} \frac{p!}{\alpha!\beta!\gamma!} . \\
& \quad\left(a_{2} a_{3}+b_{2} b_{3}+c_{2} c_{3}\right)^{\alpha}\left(a_{3} a_{1}+b_{3} b_{1}+c_{3} c_{1}\right)^{\beta}\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)^{\gamma} . \tag{32}
\end{align*}
$$

Thus, by (19)

$$
\begin{equation*}
\iint u_{\imath} u_{m} u_{n} d \mathrm{~S}_{a}=0 \tag{33}
\end{equation*}
$$

if any one of l, m, n is greater than the sum of the other two; otherwise

$$
\begin{gather*}
\iint u_{l} u_{m} \imath_{n} d \mathrm{~S}_{a} \\
=4 \pi a^{2+m+n+2} \frac{2^{\frac{l+m+n}{2}}\left(\frac{l+m+n}{2}\right)!l!m!n!}{(l+m+n+l)!\left(\frac{m+n-l}{2}\right)!\left(\frac{n+l-m}{2}\right)!\left(\frac{l+m-n}{2}\right)!} \\
\left(a_{2} a_{3}+b_{2} b_{3}+c_{2} c_{3}\right)^{\frac{m+n-l}{2}}\left(a_{3} a_{1}+b_{3} b_{1}+c_{3} c_{1}\right)^{\frac{n+l-m}{2}}\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)^{\frac{l+m-n}{2}} \tag{34}
\end{gather*}
$$

Verify that this reduces to (23) when $l=p, m=p, n=0$.
The generalised results for any three spherical harmonics may now be written down at once as at (26), (27).

[^0]: * $C f$. a paper "On a certain expression for a spherical harmonic, with some extensions," Proc. Edin. Math. Soc., Vol. VIII.

