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Abstract

The resolution of the Poisson equation is usually one of the most computationally intensive steps for incompressible
fluid solvers. Lately, DeepLearning, and especially convolutional neural networks (CNNs), has been introduced to
solve this equation, leading to significant inference time reduction at the cost of a lack of guarantee on the accuracy of
the solution.This drawback might lead to inaccuracies, potentially unstable simulations and prevent performing fair
assessments of the CNN speedup for different network architectures. To circumvent this issue, a hybrid strategy is
developed, which couples a CNNwith a traditional iterative solver to ensure a user-defined accuracy level. The CNN
hybrid method is tested on two flow cases: (a) the flow around a 2D cylinder and (b) the variable-density plumes with
and without obstacles (both 2D and 3D), demonstrating remarkable generalization capabilities, ensuring both the
accuracy and stability of the simulations. The error distribution of the predictions using several network architectures
is further investigated in the plume test case. The introduced hybrid strategy allows a systematic evaluation of the
CNN performance at the same accuracy level for various network architectures. In particular, the importance of
incorporating multiple scales in the network architecture is demonstrated, since improving both the accuracy and the
inference performance compared with feedforward CNN architectures. Thus, in addition to the pure networks’
performance evaluation, this study has also led to numerous guidelines and results on how to build neural networks
and computational strategies to predict unsteady flows with both accuracy and stability requirements.

Impact Statement

Recently, conventional neural networks (CNNs) have been used as efficient surrogate models of partial differential
equations, substituting computationally expensive traditional iterative solvers. However, the networks do not
guarantee any accuracy level, strongly limiting the spread of artificial intelligence (AI)-accelerated solvers in
engineering applications. To tackle this issue, we introduce a hybrid strategy that combines the network predictions
with traditional solvers, while still providing a significant speedup on the computational time. This hybrid strategy
(a) ensures a user-defined accuracy level and (b) enables to generalize the network predictions to previously unseen
conditions. Moreover, different CNN architectures are tested, where architectures with multiple scales consistently
outperform simpler straightforward architectures, both in accuracy and inference time.
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1. Introduction

A wide variety of problems encountered in physics, engineering, and medicine, among others, can be
described with partial differential equations (PDEs). These equations correspond to the mathematical
translation of physical laws established from observable data. Among many examples, fluid flows can be
described with the Navier–Stokes equations, electric and magnetic fields are modeled with the unified
Maxwell’s equations, and the variation of concentration of chemicals can be modeled using the reaction–
diffusion systems. Except for simplified configurations, PDEs cannot be solved analytically, and require
numerical tools to approximate their solutions, which may result in computationally expensive calcula-
tions. Focusing on fluid mechanics, the Navier–Stokes equations are a nonlinear coupled PDE system
which represents flowswith a wide range of spatial and temporal scales, governed by forces depending on
dimensionless numbers such as the Reynolds, Froude, Mach, and Richardson numbers, among others.
The main difficulty arises from the nonlinear term of the momentum equation, which involves spatial
gradients.Whereas this term generates multiple complex behaviors of the flow field (vorticity generation,
transition to turbulence, etc.), it is by definition highly sensitive to the numerical setup: a small error on the
gradient estimation may lead to very large differences in the solution. As a result, the computational fluid
dynamics (CFD) community has produced an extreme effort over the last decades to improve numerical
schemes, such as Deng et al. (2012), toward high-order discretization with high accuracy, most often at a
price of a very highCPU cost. Such simulations have beenmade possible bymassively parallel computing
(high-performance computing [HPC]) combined with a constant amelioration of the computational
hardware. More recently, the development and improvement of graphical processing units (GPUs) has
also enabled to accelerate calculation codes, and has opened the path tomachine learning (ML) techniques
that were not yet developed in the CFD community.

The theoretical foundations of ML models were developed in the mid-twentieth century. In 1958,
Rosenblatt (1958) developed an Artificial Neural Network (Perceptron), whereas the backpropagation
was introduced in 1960 by Kelley (1960) for control applications (although the first successfully
application was obtained by Rumelhart et al. (1986)). Convolutional neural networks (CNNs) appeared
slightly later, when LeCun et al. (1998) created a network that extracted spatial features from 2D
images. The performance of CNNs on image classification problems, as shown by Krizhevsky et al.
(2012), and the development of more efficient GPUs then skyrocketed the use of ML in various
domains. Mostly driven by the computer vision community, open-source frameworks were developed,
which led to an even further spread of neural networks (NNs). This recent data-driven wave finally
touched the CFD community, which made substantial efforts in the past 5 years to apply ML to flow
problems.

ML techniques are optimization algorithms that extract patterns and structures from data,
“generalizing” the valuable information found on its training data. When applied to Fluid dynamics, this
usually translates into the creation of reduced-order models (ROMs), a simple representation of the
information contained in the dataset. These simpler representations can be used in two different ways in
CFD, as reviewed by Brunton et al. (2019): either discovering unknown models, or improving existing
models. Discovering unknown models from data has been a long-standing problem in the scientific
community. Throughout the history of humanity, people built models to describe the behavior of observed
phenomena, in order to make future predictions. Nowadays, with the advance of technology, a time has
reached where a lot of data of different processes are available, yet being still underexploited. This has
promoted ML, with the aim to benefit from these data, by extracting features to develop reduced models.
For instance, Brunton et al. (2016), followed by Rudy et al. (2017), established governing equations for
the chaotic Lorenz system or for the vortex shedding behind a cylinder using a sparse dynamicsmodel and
a sparse regressionmodel. Another example is the use ofML for problems where the governing equations
are well known, but too expensive to resolve, as in turbulent flows, for example, Zhang and Duraisamy
(2015) used NNs to predict subgrid-scale correction factors on turbulent flows. Fukami et al. (2019)
applied CNNs to reconstruct turbulent flows that respect the energy spectrum, whereas other works, such
as Xie et al. (2018), Kim et al. (2019), and Subramaniam et al. (2020), used generative adversarial
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networks (GANs) to reconstruct turbulent fields. Similarly, CNNs have also been used in turbulent
combustion to predict the subgrid flame wrinkling, as shown by Lapeyre et al. (2019).

When the resolution of PDEs is computationally expensive, ML techniques can be used to develop
surrogate models that capture the essence of the studied phenomena with a reduced computational cost.
Classical ROMs, as found in the works of Cizmas et al. (2008), Rowley and Dawson (2017), and Taira
et al. (2017), include proper orthogonal decomposition or dynamic mode decomposition (DMD). These
methods can be combined withML techniques, such as autoencoders, as done byOtto and Rowley (2019)
or long short-term memory (LSTM) NNs, by Pawar et al. (2019), in order to get satisfactory results on
problems like the 2DNavier–Stokes equations. The first studies introducingML to solve PDEs date back
to the 1990s, with the work of Lee and Kang (1990) followed by Dissanayake and Phan-Thien (1994).
Dissanayake’s team proposed a multilayer feedforward network to solve a linear Poisson equation and a
thermal conduction problem on a nonlinear heat generation test case. Hornik et al. (1989) showed that
NNs can be described as “universal approximator” functions, which enable to easily differentiate their
inputs with respect to their output. That way, they constituted a novel approach where the classical finite-
element or finite-difference discretization problem was substituted by an unconstrained optimization
problem. Following the reduced-order-modeling philosophy, their objective was to obtain an easy-to-
implement solver that could rapidly give accurate results. Lagaris et al. (1998) further exploited the idea,
adding both Neumann andDirichlet boundary conditions (BCs). Gonzalez-Garcia et al. (1998) developed
a different approach, where they modeled the right-hand side of a PDE with an NN, in order to turn the
problem into a more simple Ordinary Differential Equation. They showed that the network enables to
generalize from experimental data which might be incomplete, or noisy, testing on the Kuramoto–
Sivashinsky equation. All these works profit from the differentiable nature of NNs. However, these
networks were rapidly limited by the available computational capability and were restricted to a single
particular PDE, with not much margin for generalization.

With the increase of computational resources, larger and more complex networks started to be
introduced, such as multilayer perceptrons (MLPs) used by Shirvany et al. (2009) or radial basis
functions, by Mai-Duy (2005). Recently, Raissi et al. (2017a) introduced physics-informed neural
networks (PINNs), where a priori physical knowledge is introduced into the training process of NNs.
By using the residual of the physical equation to optimize the network’s trainable parameters, the network
ensures physical laws and may even lead on to training processes which do not need a database, as shown
by Sun et al. (2020). Such approach was tested on different PDEs, including the incompressible Navier–
Stokes equations in the works of Raissi et al. (2017b) and Raissi and Karniadakis (2018), which have also
been tackled by several works which employ networks to predict the future state of fluid flows, that is, as
end-to-end solvers. Some recent works by Wiewel et al. (2019) include recurrent network architectures,
where an LSTM (Hochreiter and Schmidhuber, 1997) network was used to encode fluid structures into a
latent space, or more classical CNN by Wandel et al. (2020), where an unsupervised network training is
evaluated to test the performance gain of CNNs. However, the majority of previously described works,
that focused both on the Navier–Stokes or more general PDEs, handle the resolution of PDEs independ-
ently to traditional fluid solvers. Even if physical laws are embedded during the training procedure, the
interaction between the NNs and the traditional fluid solvers still offers a wide variety of options for
further studies. One of the study fields on which a large effort is devoted to further study the coupling
networks with fluid solvers corresponds to the resolution of the Poisson equation in incompressible
solvers. The problem was first tackled by Yang et al. (2016), who used an MLP, and Xiao et al. (2018)
continued with the idea of using CNN in larger domains. Moreover, continuing the use of CNN for the
resolution of the Poisson equation, the work of Özbay et al. (2021) focused on the resolution of both the
homogeneous and the BC problems for the Taylor–Green Vortex test case. Along the same line, the work
of Tompson et al. (2017) should be highlighted, where a CNN is coupled to an incompressible fluid solver.
They introduced a physical loss similar to the one of PINN, based on the continuity equation. Similarly to
the work of Tompson et al. (2017), Dong et al. (2019) used NNs to perform the pressure projection on
Eulerian fluid simulations. Moreover, they trained an MLP to choose between multiple networks that
better match the user’s defined constraints. Finally, recent work by Um et al. (2021) coupled a
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differentiable fluid solver with a CNN in order to further encode flow dynamics during the network
training.

Some works have also tackled different strategies to accelerate fluid simulations using NNs. For
example, the work of Kochkov et al. (2021) accelerates direct numerical simulation (DNS) solvers by
improving the convection step of a DNS solver. They use a learned interpolation, where an NN is used to
predict the interpolation coefficients which vary depending on the flow topology, enabling to capture
information lost on coarser domains. Thus, the same simulation is performed at higher precision.

This work further extends a previous work by Ajuria Illarramendi et al. (2020), which introduced a
hybrid CNN-Jacobi method to solve incompressible flows, that guarantees a user-defined divergence
level. The numerical setup and test cases are described in Section 2.2, and the CNN approach to solve the
Poisson equation is described in Section 3. Different NNs are compared for the flow around a cylinder and
plume test case. Particularly focusing on buoyant plumes, the network behavior and error distribution are
compared and analyzed in Section 5. The methodology is then extended to 3D buoyant plumes in
Section 6. Finally, Section 7 presents a performance assessment of the hybrid CNN approach with various
network architectures. Results show that for the same error level, networks with multiple scales allow to
perform accurate predictions faster than classical solvers. Thus, while a significant speedup is found, the
present study has also produced multiple results on how to build efficient, accurate, and reliable AI-based
solvers, guidelines that could be transferable to other problems tackled by AI-based surrogate models.

2. Configuration and Methodology

2.1. Flow around a 2D cylinder

As a first approach to evaluate the interaction between CNN and incompressible fluid solvers, the viscous
flow around a 2D cylinder will be studied. The problem is governed by only one dimensionless number,
the Reynolds number, that will be used to investigate the generalization capabilities of theAI-based solver
(training will be performed on Euler simulations, i.e., Re !∞). When the Reynolds number is higher
than a critical value (Re c � 47), an instability develops in the cylinder wake resulting in a periodic vortex
shedding. This canonical problem is related to a wide variety of engineering challenges, as it relates to any
vibration problems caused on the wake of any bluff body (Zdravkovich (1981)). Although experimental
studies on the subject date back to the beginning of the twentieth century, this test case is still widely used
as benchmark in the CFD and Deep Learning community (Lee and You, 2019; Murata et al., 2020). The
configuration studied in this work is found in Figure 1. To avoid problems related to the interaction
between the BCs and the cylinder wake, the walls are located 20 diameters away on the cylinder upstream,
as well as from the top and bottomwalls. Due to the coupling of NNswith aDL-friendly framework based
on Mantaflow (Thuerey and Pfaff, 2016) developed for GPUs, a uniform structured Cartesian mesh is

Figure 1. Von Karman test case configuration.

e2-4 Ekhi Ajuria Illarramendi et al.

https://doi.org/10.1017/dce.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.2


needed. This grid does not count with immersed boundary methods, and no mesh refinement around the
cylinder is possible. Therefore, to ensure a good resolution around the cylinder, the size of the entire mesh
increases dramatically. This same discretization is used for all of the following test cases. Note that while
the present framework is limited by this Cartesian grid, the developed hybrid AI–CFD strategy and
associated results could be transferable to more advanced network architectures, such as graph NNs.

Different Reynolds numbers will be analyzed, to study the network behavior in different flow regimes.
LowReynolds numbers will be kept to ensure the validity of the 2D simulations. As the training was done
with no viscosity, this test case ensures network generalization to flows not seen during training.

2.2. Plume Case

Buoyancy forces are induced by density variations in the presence of gravity. The study of buoyancy-
driven flows has been a long-standing problem for the fluidmechanics community, as shown by Turner
(1979), as they correspond to a wide variety of remarkable geophysical flows, from volcanic eruptions
to avalanches. The Earth’s climate and ocean’s behavior are strongly dependent of buoyancy, as the
ocean’s currents and tides depend on the creation and distribution of water density variations. Buoyant
coastal currents, for example, are responsible for redistributing the fresh water coming from rivers and
other sources into the ocean, carrying as well sediments or pollutants which can strongly impact
natural ecosystems. A thorough analysis of buoyancy-driven flows, especially focused on oceanic
flows, can be found in the work of Chassignet et al. (2012). The civil engineering community also
studies flows driven by buoyancy forces, which control the ventilation of buildings, as seen in the work
of Allocca et al. (2003) or even entire cities, with direct effect on the propagation of pollutant particles,
shown by Luo and Li (2011). The propagation of fires in buildings has also led to extended work with
theoretical, numerical, and experimental models for smoke propagation, as shown by Ahn et al.
(2019).

Usually, the term “buoyancy-driven flow” refers to the situation where a lighter moving fluid is
surrounded by a heavier fluid, whereas a heavier moving fluid surrounded by a lighter fluid is called a
density-driven flow. This work focuses on plumes, which result from injecting a light fluid into a heavier
quiescent environment. Plumes can be found in a wide variety of physical phenomena, such as the flow
escaping the chimney of a locomotive steam engine or even the smoke elevating from a cigarette. These
types of flows have been studied for over 80 years, after the work of Zeldovich (1937), on similarity
analysis, and Schmidt (1941), who obtained analytical expressions for the mean velocity and temperature
profile in turbulent plumes. Despite the presence of a wide variety of experimental works by George Jr
et al. (1977) and Shabbir and George (1994), and theoretical studies byMorton (1959) in this domain, the
phenomenology underlying plume physics is still not completely mastered. Numerous works have used
CFD to understand this type of flows, based either on the Reynolds-averaged Navier–Stokes equations,
such as the works of Van Maele and Merci (2006) and Lou et al. (2019) or large eddy simulations (LES),
by Zhou et al. (2001). Even for simplified incompressible and inviscid plumes, the interaction between the
gravity source term and the momentum-driven forces results in an interesting and complex behavior. The
misalignment of the density and pressure gradients causes the generation of vorticity and the development
of instabilities, as introduced by Turner (1979). Thus, even with a simplified setup, a variety of
phenomena with different spatial scales can be found. For further information, the reader can refer to
the reviews of Turner (1969) and Hunt and Van den Bremer (2011).

The plume case has also been widely treated in the computer vision community, due to the difficulty of
calculating realistic smokes in real time, which requires efficient computational solvers, and explains why
ML was first introduced in this context. One can cite the works of Chu and Thuerey (2017) with a CNN,
Kim et al. (2019) using GAN with a novel stream function-based loss, and Tompson et al. (2017), who
introduced the idea of a CNN coupled to an incompressible fluid solver.

The two configurations studied in this work are displayed in Figure 2. The flow is assumed inviscid
(infinite Reynolds number) and adiabatic. Thus, the plume behavior is driven by only one dimensionless
number, called the Richardson number (Equation (1)), which compares the buoyancy and inertia forces:
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Ri =
Δρ
ρ0
gL

U2 , (1)

where Δρ=ρ0 is the density contrast between the light and heavy fluid, g is the gravity, L is a characteristic
length, andU is the velocity of the injected lighter fluid. High Richardson numbers imply that the flow is
piloted by the buoyant forces, whereas low Richardson numbers indicate that the flow is driven by
momentum (also known as jets). In both cases, the domain is a square box of length LX , with an inflow
centered in the bottom face of the domain, of radiusDin = 0:29LX . In the second configuration, a cylinder
of diameter Dc = 0:312LX is added, aligned with the horizontal axis, and centered at 0:625LX on the
vertical axis (Figure 2). The objective is to evaluate the behavior of the proposed learning-based approach
when the flow impinges objects and walls.

2.3. Numerical setup

For the CFD study, a fluid solver based on the open-source solver Mantaflow developed by Thuerey and
Pfaff (2016) is used to solve the incompressible Navier–Stokes equations. A variable-density incom-
pressible formulation is employed with external forces due to gravity. To model buoyancy-driven flows
under the incompressibility assumption, the Boussinesq approximation as described byGray andGiorgini
(1976) is applied, which holds for small density variations compared to the mean density, that is,
Δρ=ρ0≪1. Note that the continuity equationwith theBoussinesq approximation and the incompressibility
constraint leads to the advection of the density variationΔρ as a passive scalar, that is, being constant along
a streamline.

The incompressible Navier–Stokes equations are solved in two steps: (a) the advection step and (b) the
pressure projection step. The computational domain is discretized on a uniform Cartesian grid with a
finite-difference scheme on a marker-and-cell staggered grid, more extensively explained by Harlow and
Welch (1965). First, the density is convected along streamlines, using an unconditionally stable, second-
order accurate Maccormack semi-Lagrangian method, as described by Selle et al. (2008). Once the
density field is advected, the momentum equation is solved through a splitting method, where the velocity
field is first advected similarly to the density field, and thenmodified by the external forces with a forward
Euler scheme, resulting in the velocity field u∗. The viscous effect is added as source term, the same way
as gravity forces. The domain is discretized using a first-order finite-difference scheme. Note that the
advection accuracy is a limitation of the fluid solver, and not from the developed deep learning (DL)
approach proposed here. More sophisticated CFD frameworks capable of embedding DL solvers are

Figure 2. Plume configuration with and without cylinder.
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under development, but out of the scope of the present study. Since the pressure term in the momentum
equation and themass conservation equations have not yet been used, the velocity field u∗ does not satisfy
the incompressible kinematic constraint∇ �u∗ = 0. To do so, this pressure term is used as a correction term
to ensure a divergence-free velocity field, so that the corrected velocity reads:

u≃u∗�Δt
1
ρ0
∇p: (2)

Taking the divergence of both sides of Equation (2) and imposing the continuity equation∇ �u= 0 yields
the well-known Poisson equation:

Δt
ρ0

∇2p=∇ �u∗: (3)

This equation is solved to obtain the pressure correction, ensuring that the velocity field at the next time
step satisfies both the momentum and the mass conservation equations. This correction is applied using
Equation (2).

The Poisson equation is a second-order elliptical PDE, which is well known to be computationally
expensive, taking up to 80% of the computational time of the incompressible solver, as shown by Ajuria
Illarramendi et al. (2020). For this reason, this work only focuses on the resolution of this particular
equation. This equation may be solved using direct methods, described in the works of Buzbee et al.
(1970) and Quarteroni et al. (2010), such as the lower-upper (LU) factorization, which can be interpreted
as a Gaussian elimination method (GEM). The idea behind these methods is to recast the A matrix of the
linear system Ax= b into an upper triangular and a lower triangular matrix LUx= b, which enables to
decompose the problem into two successive GEMs, Ly= b and Ux= y, respectively. These methods can
provide solutions at the machine precision; however, they tend to be computationally expensive,
especially for large computational domains since the cost of solving a single GEM is proportional to
2n3=3 operations, where n is the number of points in the mesh. Further acceleration toward fast Poisson
solvers can be produced by dedicated methods, such as using Fast Fourier Transforms (McKenney et al.,
1995), reducing the complexity to n logn. However, these methods are usually restricted to specific
applications (e.g., fully uniform Cartesian grids). Consequently, the CFD community traditionally uses
iterative methods which can be easily parallelized in multiple CPU. Note that while the present AI-based
hybrid method is validated on a fully uniform Cartesian grid and linear PDEs with constant coefficients
because of the chosen fluid solver, the whole methodology can be extended to unstructured data and other
linear or nonlinear PDEs. For such methods, a trade-off has to be chosen between accuracy and
computational cost. Despite the need of multiple iterations to achieve convergence, those methods are
usually more efficient than direct approaches since their computational cost is proportional to n2 per
iteration. Among the iterative methods, the Jacobi method, which was first developed by the German
mathematician Carl Gustav (Jacobi, 1845), decomposes the matrix A into a diagonal matrix D and the
upper and lower diagonal matrices L and U. The linear system can be expressed as DX = b� LþUð ÞX,
which is equivalent to X =D�1 b� LþUð ÞXð Þ. An iterative process is obtained by solving the previous
equation in the form Xtþ1 =D�1 b� LþUð ÞXtð . As any iterative method, the number of iterations
required toward convergence strongly depends on the initial guess X0: an additional result of the present
work compared with previous studies is to use the NN prediction as initial guess to speed up the Jacobi
method. More advanced methods, such as the ones described by Saad (2003) and Hosseinverdi and Fasel
(2018), exist for the Poisson equation, yet this work will focus only on the Jacobi method for the sake of
stability, its easy implementation on GPUs, as well as its straightforward hybridization with NNs. Even if
the Jacobi solver is not the fastest available method, other works have compared similar architectures with
state-of-the-art linear solvers optimized for CPU parallelization (Cheng et al., 2021), which show that
NNs can be competitive compared to traditional linear solvers, such as the conjugate gradient
(CG) method with the HYPRE BoomerAMG preconditioner. Moreover, authors show how with little
modifications CNNs can be applied to cylindrical coordinates, which are slightly more challenging for
fast Fourier solvers (Moon et al., 2019).
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3. A Deep-Learning Approach to Solve the Poisson Equation

To overcome the difficulties of iterative methods, the present study focuses on solving the Poisson
equation with a CNN. Particular attention is put on its ability to tackle new cases, not seen during the
training phase. To further ensure both a fast and reliable prediction of the corrected velocity field, this
CNN method will be hybridized with the Jacobi method, using the CNN prediction as initial guess to
significantly speed up the Jacobi approach.

CNNs performmultiple linear transformations, typically y=wixþbi, followed by nonlinear activation
functions to output the desired field. The training of the NN consists in the optimization of the weightswi

and biases bi to minimize a user-defined objective functionL. CNNs differ from traditional MLP as they
do not apply the weights and biases to the entire input fields. Indeed, CNNs apply the transformation
locally through a kernel of limited size, typically 3�3, which is then “slid” through the entire input field.
This type of network is widely used for image recognition tasks, as the kernels can be interpreted as filters
that extract patterns and structures from the input images. CNNs are therefore particularly adapted to fluid
mechanics, since the underlying physics are mostly driven by flow structures (jets, vortices, stagnation
points, etc.). In addition, compared with MLP, CNNs usually require a smaller number of tunable
parameters (wi and bi), and are theoretically independent of the size of the input field: the same trained
network can be reused on cases with different resolutions or meshes. However, a current limitation of
CNNs is the need of perfectly uniform Cartesian grids, whereas most of today’s CFD simulations are
performed on nonuniform, possibly unstructured, meshes. While interpolation from nonuniform meshes
onto a uniform Cartesian grid is possible, recent works have efficiently adapted convolution operations to
unstructured meshes, as shown by Baque et al. (2018) and Fukami et al. (2021). Further work by Pfaff
et al. (2020) has extended the use of graph NNs for unstructured meshes. However, these methods are still
complex and not yet mature, so classical CNNs are still widely used for deep learning on a CFD context.
For the sake of simplicity, this study considers a perfectly uniform Cartesian grid. The spatial resolution
will, however, be varied to validate the convergence properties of the method, as well as to evaluate its
computational performance on different grid sizes. Thus, this study focuses on the development of a
hybrid approach mixing CFD and CNNs, where results are expected to be transferable to the more
advanced DL techniques for unstructured meshes, such as graph CNNs.

3.1. Network architectures

The choice of the NN architecture is usually driven by the user’s experience, and further improved by a
trial-and-error approach. Since the network architecture is critical, tools for automatic architecture search
have been also developed by Elsken et al. (2018).While discovering efficient network architectures, these
automated data-driven search strategies require an extremely high computational time since multiple
trainings have to be performed, as shown by Zoph et al. (2018), who used in parallel 500 Nvidia p100
GPUs during 4 days to find an optimal network for scalable image classification. Architectures are even
more critical in physics, and especially fluidmechanics, since the studied problems usually involve a large
range of different scaleswhich need to be captured accurately by the network. Toward this objective, Geng
andWang (2020) have employed such amethod to discover optimal NNs dedicated to multiscale analysis
of seismic waves. However, despite those automatic strategies, the choice of the network architecture and
its effect on accuracy and inference time is often ignored. In particular, guidelines still need to be
established for physics-related tasks. As a first attempt to generate such guidelines,Morimoto et al. (2021)
analyzed the influence of several network choices when using CNN for fluid dynamic-related problems.
In particular, they studied the influence of the choice of several hyperparameters for CNNs for both CNN-
based metamodeling and CNN autoencoders, such as the influence of the entry-point location of scalar
inputs or the type of padding usedwithin the convolutions. The present work further investigates different
types of network architectures, in order to analyze their effect on the resolution of the Poisson equation.
Note that the objective of this work is not to find the optimum architecture for the resolution of the Poisson
equation, but rather to provide general trends and understanding of the architecture effect on the network
accuracy and performance. For all architectures tested here, the pressure field is computed using a CNN
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for which the inputs are the uncorrected velocity divergence ∇ �u∗ and a Boolean field describing the
object geometry.

First, a simple “feed-forward” convolutional network is considered, denoted hereafter MonoScale.
This network (Figure 3) contains 395,601 tunable parameters distributed in nine layers, following a
straightforward architecture. For convolution operations, a replication padding is used to ensure that all
the feature maps keep the size of the original fields. This padding type outperforms networks trained with
the zero-padding strategy, as the padding type better matches the flowBCs. This findingmatches thework
of Alguacil et al. (2021), which highlights the importance of the padding choice for spatiotemporal
evolving problems. The replication padding creates ghost cells on the image boundaries with a value
copied from the closest image pixel. This network is the most simple strategy to tackle the Poisson
problem, as the input is just passed through a series of convolutional layers, without any further
modification or postprocessing.

The second architecture is the MultiScale (Figure 4), introduced by Mathieu et al. (2016) for video
image prediction, and introduced to solve the Poisson equation by Ajuria Illarramendi et al. (2020). It has
also been employed in other studies on fluid mechanics, such as in Fukami et al. (2020) focusing on the
super-resolution of turbulent flows, or applied to the propagation of acoustic waves by Alguacil et al.

Figure 3.MonoScale network containing 395,601 parameters, where ∘ corresponds to convolution with
kernels of size 5 � 5, ∗ to kernels of size 3 � 3, and □ to kernels of size 1 � 1. R corresponds to the
ReLU activation function. Each box indicates the number of feature maps, or channels (C) present at each

layer.

Figure 4.MultiScale network, with 418,640 parameters, where ∘ corresponds to convolution with kernels
of size 5 � 5, ∗ to kernels of size 3 � 3, and □ to kernels of size 1 � 1. R corresponds to the ReLU
activation function, ↘ indicates a bilinear downsampling operation, whereas ↗ corresponds to the

bilinear interpolation. Each box indicates the number of feature maps, or channels (C) present at each
layer.
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(2020). The idea behind this architecture is to feed the NNwith several representations of the same inputs,
focusing on different scales. To do so, the original input is interpolated on coarser meshes: while the
largest resolution retains all scales, smaller resolutions focus only on the large scales. The network then
encodes information linked to the different spatial scales at each level, which helps the network on the
generalization task, and avoids spurious high-frequency oscillations on the large features of the image, as
described by Mathieu et al. (2016). Here, the MultiScale architecture (Figure 4) has three scales, of sizes
n21=4, n

2
1=2, and n

2, respectively. The first scale interpolates the original images on a quarter-cell size mesh.
The resulting image is then interpolated on a half-cell size mesh to twice its size (n21=2). The middle scale
takes as an input both the interpolation of the original entries on a half-cell size mesh, and the output of the
previous scale. Finally, the resulting image is interpolated to the original size n2, and is concatenated to the
input fields. It is then fed to the final scale branch. This network architecture aims to progressively encode
information from the coarsest scale to the finest; thus, the input features are first downsampled to the
lowest resolution n21=4 and the information is encoded to a feature map containing the information
extracted from this coarsest scale. This process is repeated for each intermediate scale, downsampling
the input fields to the corresponding scale and concatenating the information encoded from the previous
coarser scale. The first scale contains five layers, whereas both the intermediate and final scales contain
seven layers. Nonlinear Rectified Linear Unit (ReLu) activation functions are placed after each convo-
lution layer, except on the last two ones, to enable the network to compute positive and negative outputs.

The MonoScale and MultiScale networks are then compared with the well-known Unet architecture
(Figure 5), which was first developed by Ronneberger et al. (2015) for the segmentation of biomedical
images. Apart from the initial biology-related applications, this network has also been used in many other
fields, including for regression tasks in fluid mechanics. For instance, Lapeyre et al. (2019) employed this
architecture on turbulent subgrid scale modeling for reacting flows. The structure of the Unet is similar to
the MultiScale, as it also combines information extracted at different spatial scales. However, the Unet
differs from MultiScale on the scale treatment: while several scales are managed in parallel in the
MultiScale network and the input image is fed directly to each branch, the Unet acts as a simple

Figure 5.Unet with 443,521 parameters, where ∗ corresponds to kernels of size 3� 3 and□ to kernels of
size 1 � 1. R corresponds to the ReLU activation function, ↘ M indicates a MaxP Pooling operation,
whereas ↗ corresponds to the bilinear interpolation. At each scale, the MaxPooling step reduces the
image to half of its original size, whereas the interpolation upsamples the image to the double of its size.

Each box indicates the number of feature maps, or channels (C) present at each layer.
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feed-forward network with a decreasing–increasing resolution to encode information in a low-dimen-
sional manifold (at the smaller scale). The image input is fed to the network only at the initial resolution. In
addition, skip connections are imposed at each scale, allowing information to bypass the lower-resolution
treatments and to avoid the vanishing gradient issue inherent to deep network architectures.

Note that those architectures are similar to multigrid and multifidelity approaches developed in CFD.
Indeed, the MultiScale network corresponds to multifidelity approaches, as described by McCormick
(1989), where the original problem is solved on a coarse grid, then the solution is used as an initial guess to
a more refined grid, as done by Southwell (1956). The Unet, on the other hand, is similar to multigrid
solvers, further detailed in the work of Wesseling (1995), where the initial problem is solved with a
computationally nonexpensive solver, and the result is corrected with approximations computed on
coarser grids.

In comparison with classical deep NNs employed for classification tasks which may contain 106

(e.g., ResNets, first developed by He et al. (2016)) to 108 (e.g., VGG-16, developed by Simonyan and
Zisserman (2015)) tunable weights, the proposed architectures are relatively small, containing all about
4�105 parameters. Since the main goal of the present approach is to accelerate the classical iterative
Poisson solvers, a limited number of parameters have been chosen. Note, however, that this cannot
constitute a guideline since the performance of the networks will be evaluated at iso-level of accuracy: the
number of parameters is, therefore, a nontrivial trade-off between accuracy and inference time, for which
no rule exists in the literature. To investigate this accuracy-performance link, a smaller MultiScale
containing 1:3�105 parameters is introduced in complement to the three previous networks. The
structure is the same as the MultiScale, but only the number of filters per layer is changed, resulting in
a network with around three times fewer parameters. This network will be denoted SmallScale in the
following.

Consequently, four deep NNswill be analyzed on the two test cases introduced in Section 2.2. For each
architecture, both their error levels and distributions, as well as their performances on inference time, will
be assessed.

3.2. Training and loss function

The networks introduced in Section 3.1 are trained using a procedure similar to Tompson et al. (2017) and
Ajuria Illarramendi et al. (2020). Comparedwithmost studies onMLusing a known output as target in the
loss function L for a supervised training, extensively described by LeCun et al. (1998), here a
semisupervised learning strategy is used, where no “ground truth” field is needed. To do so, the residual
of the continuity equation is used as a loss function, where the divergence of the velocity field is computed
using a first-order forward finite-difference scheme. Thus, training the network is equivalent to minim-
izing this residual, that is, to enforce the mass conservation equation, which is the goal of solving the
Poisson equation in an incompressible solver. Note that this approach can be considered as a physics-
driven neural network (PDNN), demonstrating how a target physical equation can be introduced into the
learning strategy. It differs from PINNs (developed by Raissi et al. (2017a)), which combines a
semisupervised physics-driven approach with a standard supervised learning method in which a “ground
truth” target is required. The main benefit of PDNN over PINN is the possibility of adding long-term loss
effects during the training by constraining the network to produce consistent predictions in time.

To train the network, the widely used mean-squared-error (MSE) metric, as used by Hunt (1973), is
introduced, which computes the L2 distance between two fields. As the loss function of the PDNN is the
residual of the continuity equation, the MSE metric is applied directly to the divergence of the corrected
velocity, which can be interpreted as the L2 distance to zero. Since the solution of the Poisson equation is
the pressure correction term, the network output has to be coupled with the fluid solver to produce the
desired corrected velocity and compute its divergence and L2 norm. Note that the gradient of this
correction (Equation (2)) is known, so that a classical backpropagation can still be employed. However,
if the network is only trained by evaluating the divergence level after a single time step, no information is
given to the network on how its error can be amplified by the nonlinear advection at the next time step.
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To circumvent this issue, a new term is introduced into the PDNN loss. This new term, known as long-
term loss, corresponds to the divergence field of the uncorrected velocity field obtained several time steps
after the initial prediction (Figure 6). To do so, the network is trained inside the CFD solver: the prediction
of the CNN at time t is fed through the advection and the CNN-based Poisson solver to compute the next n
time steps. The resulting divergence is computed (long-term loss in Figure 6), and added to the initial
divergence (short-term loss). The network weights are then updated using a gradient descent algorithm.
Note that in the backpropagation algorithm, the chain rule described by Hecht-Nielsen (1992) is used, yet
here the advection part is not differentiated, and therefore does not appear explicitly in the gradients. The
number n of time steps to compute the long-term divergence term varies at each minibatch between 4 and
16. At each minibatch, a random number x is extracted from an uniform distribution U 0,1ð Þ, 16 n time
steps are performed when x> 0:9, whereas 4 iterations are performed if x< 0:9. This work fixed the
number of iterations to 4 and 16 as a result of a trial-and-error process, although in other works the authors
Ajuria-Illaramendi et al. (2021b) have looked at the influence of the number of long-term iterations. As a
summary, the total loss function is:

L=
α
N

XN
∇ �utþ1j jþ β

N

XN
∇ �utþnj j, (4)

where α and β are two hyperparameters controlling the relative importance of the short-term and long-
term losses and N is the number of mesh points in the domain.

As a semisupervised training procedure is considered, a complete training dataset is not necessary to train
the network since no “ground truth” target is needed. However, physical initial conditions are still possible,
in particular, to enforce the spatial coherence and structures relevant from a physical point of view, and to
avoid overfitting. Thus, even for this PDNN, a training dataset was computed with the open-source code
Mantaflow developed by Thuerey and Pfaff (2016). This dataset consists of closed boundary domains, with
randomly initialized velocity fields and no density variations (i.e., the Richardson number is Ri = 0 for all
training examples). Random geometries are placed in arbitrary locations, and velocity divergence sources
are introduced in the domain to initialize the flow motion. (Further details about the training dataset can be
found in Online Appendix D.) As a result, the dataset consists of 320 simulations on a 128�128 uniform
Cartesian grid. Each simulation is run for 64 time steps. During training, a validation dataset consisting of
320 simulations with geometries that differ from the training dataset is used to ensure that overfitting is
avoided. However, this validation dataset is still generated using the Euler equations (Re !∞) with
constant density (Ri = 0), so that Sections 4 and 5 will assess the generalization capabilities on new flow
regimes at finite Reynolds numbers (Section 4) and nonnull Richardson numbers (Section 5).

4. Flow Past a Cylinder

The four networks described in Section 3.1 will be compared on the Von Karman vortex street
configuration. Training was performedwith simulations with no viscosity (Euler equations), and domains

Figure 6. Physics-driven neural network learning strategy by combining a short-term loss and a long-
term loss. The tiled box for the convolutional neural network indicates that the network parameters are

frozen (i.e., they are the same as the one used in the network at time t).
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with 1282 mesh points. Therefore, the flow around a cylinder represents an adequate test case to check the
network generalization. Three flow regimes will be studied to characterize the network behavior
(Re = 100, 300, and 1,000). The domain size is set to a 1,000 � 2,000 cell mesh, the input velocity U0

is set to 1.0 m=s, and the kinematic viscosity (ν) is used to obtain the desired Reynolds numbers. Vorticity
fields of the four studied networks, as well as for a reference Jacobi solver, are found in Figure 7 for
Re = 100 (top), 300 (middle), and 1,000 (bottom).

A first qualitative analysis of the results shows that networks with multiple scales are capable of
generating accurate simulations, whereas the MonoScale network is not capable of correctly capturing
the vortex shedding, as it dissipates the near-wake of the cylinder. Moreover, the SmallScale network also
slightly differs from the other networks, particularly at low Reynolds numbers, as it underestimates the
vortex magnitude. To quantify the network errors, this work will focus on the vortex shedding frequency.
This frequency is usually expressed as a dimensionless frequency, noted as the Strouhal number:

St=
fD

U0
: (5)

The Strouhal number for the three studied Reynolds numbers is calculated with the fluid solver using
the four studied networks and the Jacobi solver with 400 iterations. Results are displayed in Table 1.

These quantitative results confirm the conclusion drawn from the qualitative analysis of Figure 7. The
multiple scale networks considerably outperform the MonoScale network, which struggles to correctly
represent the vortex shedding. TheMultiScale and Unet networks yield better results than the SmallScale
for the studied flow regimes. This highlights the importance of choosing a sufficient amount of training

Figure 7. Iso-contours of vorticity in the z axis, for the Von Karman test case at Reynolds 100, 300, and
1,000, for the four studied networks and the reference Jacobi 400 solver. Dashed lines correspond to

negative iso-contours, and the continuous lines correspond to the positive iso-contours.

Table 1. Strouhal values and relative error compared to the experimental values.

Reynolds MonoScale MultiScale SmallScale Unet Jacobi

100 0.116 0.146 0.135 0.142 0.141
300 0.132 0.168 0.161 0.167 0.167
1,000 0.119 0.177 0.171 0.177 0.175
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parameters, as both MultiScale and Unet networks have almost three times more parameters. Results for
the Unet and MultiScale networks are almost identical concerning the Strouhal number, with a small
deviation on the Reynolds 100 test case. The predicted Strouhal number is similar to the reference value
taken from the Jacobi solver, with a maximum difference of 3%.

Following previous work by Ajuria-Illaramendi et al. (2021a), a DMD, first introduced by Schmid
(2010), is performed on the snapshots of theVonKarman vortex street.When analyzing the spatial modes,
particular attention is paid to the fundamental mode, whose frequency corresponds to the vortex shedding
Strouhal numbers displayed in Table 1. Figure 8 shows the amplitude of this first mode for the four studied
networks, as well as the reference Jacobi solver. These modal structures confirm that the MonoScale
network is not capable of capturing the vortex shedding, as no fluctuation occurs in the wake near the
cylinder. Differences are more subtle between the rest of the networks, especially for the Reynolds
300 and 1,000 cases. However, the Unet network better matches the Jacobi 400 solver for the Reynolds
100 test case, showing a very similar spatial distribution in the near wake of the cylinder. As expected,
differences between network architectures aremore pronounced for lower Reynolds numbers (Re = 100),
since it corresponds to cases further away from the training dataset at finite Reynolds number. Overall, the
CNN approach provides accurate predictions in time, even for flow simulations far from the training
dataset, where no viscous effects and unsteady wake were present. Yet, small discrepancies still exist,
which calls for a new method ensuring a user-defined accuracy level of the CNN-based solver: this
method is developed in Section 5.2, and is the core of the present study.

5. Buoyant Plumes

The analysis of the flow around a cylinder test case showed that networks can successfully interact with
incompressible fluid solvers, yielding accurate results. However, to further assess the generalization
capabilities of the approach, and to better understand the behavior of the different studied network
architectures, this work will now investigate the buoyant plume configuration introduced in Section 2.2.
As observed in a previous work (Ajuria Illarramendi et al. (2020)), buoyant plumes at high Richardson
numbers can be tricky to solve with NNs, as small errors can lead to noncoherent fluid flows. Tomake the

Figure 8. Iso-contours of the amplitude of the fundamental mode, for the Von Karman test case at
Reynolds 100, 300, and 1,000, for the four studied networks and the reference Jacobi 400 solver.

e2-14 Ekhi Ajuria Illarramendi et al.

https://doi.org/10.1017/dce.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.2


configuration governed by only one dimensionless parameter (to be used as a generalization metric), no
viscous effects are considered here (Euler equations), and only the density variations are considered
through the Richardson number.

Thus, in this section, there will be no viscosity in the simulation, thus solving the Euler equations.
Moreover, in order to compare the performance of the studied architectures, a detailed analysis of the
network errors is required. Indeed, evaluating and comparing the time of inference of a method, in
particular with NNs, is relevant only if performed at a fixed error level. Thus, this section intends to
characterize the accuracy of each architecture, so that a fair comparison of performances can be achieved
in Section 7.

5.1. Preliminary results without hybrid approach

First, the four networks described in Section 3.1 are tested on a 2D plume test case with a Richardson
number Ri = 14:8, in order to evaluate the network accuracy and its generalization capabilities (since the
training dataset was obtained forRi = 0). Following the previous work of Ajuria Illarramendi et al. (2020),
flows at highRichardson numbers can become numerically unstable and yield nonsymmetric simulations.
Thus, Ri = 14:8 is chosen, corresponding to such sensible regime, where the network prediction can
become critical for a stable and reliable flow simulation. As the Boussinesq approximation is used, the
density variation should remain small and is set here to Δρ=ρ0 = 0:01. The lighter fluid is injected at the
inlet boundary with the velocityUin = 0:01m=s. The CFD domain size is LX =L= 512m, discretized on a
uniform Cartesian grid of 512�512 cells. The gravity is set to g= 0:002m=s2, and the inlet radius is
R= 7,425m, taken as the characteristic length to define the Richardson number. The divergence is
normalized with the inlet velocity and the characteristic length, and time is normalized as well by the
characteristic time needed for the plume to reach the top boundary at Ri =∞, that is, in the pure jet
configuration with no buoyancy. These normalized quantities are therefore defined as

eu=Ru=Uin andet= tUin=L (6)

The plume head position is defined as the highest point of the plume at a time t (Figure 9). On the
vertical axis, this position is noted ehy = hy=L. In the case of the plume impinging the cylindrical obstacle,
the plume head position along the horizontal axis is also measured, denoted by ehx = hx=L (Figure 9). The
vertical positionehy allows the identification and comparison of the plume velocity when rising due to both

Figure 9. Sketch of the plume-cylinder configuration. ehx and ehy are the coordinates of the plume head
location.
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the advection by the jet and the buoyancy forces. The horizontal position ehx measures the flow deviation
induced by the cylinder. Thismeasurement is performed in both the left and right sides of the CFDdomain
in order to quantify the asymmetry of the flow field.

Analyzing the plume head’s position for the several networks on the two test cases presented in
Figure 2 reveals that deep NNs are able to solve the Poisson equation in an Euler incompressible solver
with good precision, even in cases not seen during training (Figure 10; tested at Ri = 14:8). However,
slightly different plume developments are obtained depending on the network architecture. As introduced
in the previous work of Ajuria Illarramendi et al. (2020), the Jacobi solver is taken as the reference for the
two studied test cases. The accuracy of the Jacobi solver solution increases with the number of iterations,
but as the convergence rate does not follow a linear behavior, a trade-off between the number of iterations
and the desired accuracy is usually necessary. The gray zones in Figure 10 represent the solution range
obtained with between 200 and 10,000 iterations. Note that the plume development is slower with higher
number of iterations. While the solution deviation of the test case without obstacle remains narrow, the
cylinder test case shows a larger dispersion. Due to computational cost, it was, however, not possible to
perform more than 10,000 iterations of the Jacobi solver.

For the no-cylinder case, the MonoScale network results in a faster head propagation, which falls
outside the confidence interval of the Jacobi solvers, whereas all other network architectures produce an
overall good physical behavior of the plume. The same trend is observed in the casewith the obstacle, with
a faster propagation and an early flow deviation for the MonoScale. Note that the symmetry is preserved
by all networks since no difference is observed between left and right horizontal positions ehx. The final
horizontal length of MonoScale does not match the ones of the other networks. This is due to a wrong
prediction of the flow structure and roll-up of the plume by theMonoScale network. This is highlighted in
Figure 11, showing the density iso-contours (white lines) and the percentiles of the divergence error (gray
background field) atet= 0:29 (no-cylinder case) andet= 0:41 (case with obstacle). These percentiles show
the spatial distribution of the error, without indicating the absolute value. The percentiles correspond to
the divergence level of each snapshot individually, where the plotted value represents the relative value of
each spatial point normalized by the maximum value in the domain. A significant difference in the plume
shape is observed between the MonoScale and the other networks. The MonoScale network predicts
larger vortices, probably due to an inaccurate pressure field prediction which negatively affects the
baroclinic torque. However, if the divergence error is analyzed, the MonoScale network follows the most
regular distribution, whereas the rest of the networks seem to struggle in the surroundings of the cylinder.
Moreover, the Unet network shows a quite irregular divergence distribution, with problems at boundaries.

Figure 10. Plume head coordinates ehx (������) andehy (- - -) for the case without (a) and with (b) obstacle at
Ri = 14:8 obtained by several networks: ▼MonoScale, ■ MultiScale, • Unet, and � SmallScale. The
gray zones show the range of the plume head position obtained with the Jacobi solver, using between

200 and 10,000 iterations.
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The complete evolution of the plume for both cases are provided in Online Appendix A (Figures 23 and
24 in the Online Appendix).

5.2. Hybrid methodology

The main difficulty when building an ML-based CFD solver is to guarantee its precision and robustness,
in particular for cases far from the learning database. To do so, Ajuria Illarramendi et al. (2020) introduced
a hybrid strategy, where the network error is tracked over time. Depending on this error level, the network
prediction is used as an initial guess for the Jacobimethod to further improve its quality. Note that a similar
procedure was also proposed by Hsieh et al. (2019), where an iterative solver is coupled to a deep linear
network to guarantee the accuracy level of the network prediction. An overview of the hybrid method is
shown in Figure 12: after the advection step, the pressure correction term is predicted by the deep NN
architectures proposed in Section 3.1. At this point, no guarantee is given on the precision of the method,
possibly leading to large errors or even numerical instabilities, as shown by Ajuria Illarramendi et al.
(2020). The hybrid strategy is then applied, based on an error associatedwith the divergence velocity field,
denoted E∞. Ajuria Illarramendi et al. (2020) proposed to use the maximum of the divergence velocity
field, that is,E∞ = max ∣∇ �u∣, showing a significant improvement of the solver accuracy and robustness.
Note, however, that no physical evidence of this choice is given. In particular, there is no formal proof that
reducing themaximumof the velocity divergence leads to amore physical behavior of the simulation. One
objective of this paper is to propose a proper choice of E that guarantees a physical behavior of the
simulation, toward a fast, reliable, and robust CNN-based incompressible solver.

Previously, the head location has been employed for measuring the error, yet it is case-dependent and
requires a reference simulation, which prevents this type of error to be used in new unknown simulations.

t̃ = 0.41

Figure 11. Divergence error percentiles and density iso-contours (in white) of the four studied networks
and a reference Jacobi solver with 400 iterations, at timeet= 0:29 for the case with no cylinder (top row)

and timeet= 0:41 for the cylinder case (bottom row).

Figure 12. Sketch of the hybrid method, which is activated depending on the errorE compared with the
threshold value Et .
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The percentiles of the divergence error displayed in Figure 11 highlight the locations in the flow field
where theNNs have difficulties, but it cannot be used as an absolute error level as well. Thus, the objective
is to define an absolute unsupervised error E, which can be evaluated for any plume case without
reference, and is consistent with the physical-based error given by the head position. Here, two measures
are considered: (a) the maximum of the divergence velocity fieldE∞ = max j∇ �ujð Þ, and (b) the mean of
this divergence field, E1 =mean j∇ �ujð Þ. This type of error control is typically used in iterative
algorithms, such as the Jacobi method or the CG method, further described in the work of Hestenes
et al. (1952). This assumes a uniform error distribution, which implies that the maximum or mean error
value is representative of the overall flow behavior. However, this hypothesis does not necessarily hold for
NNs, since their error distribution is usually nonuniform: NNs may lead to a very high localized error, as
displayed in Figure 11, near a BC for example.

Figure 13 shows these two errors E1 andE∞ for both test cases without (a) and with (b) obstacle, for
the various network architectures. Interestingly, the “best” network is different for the two types of errors.
With the error based onE∞, the MultiScale network outperforms the other architectures, in particular for
the case with cylinder, whereas the SmallScale leads to the highest error. RegardingE1, the Unet network
gives a low error in both cases, similar to theMultiScale network. However, based on this error, this is the
MonoScale network, which is the worst network in both situations, with the highest mean divergence.
These test cases reveal how critical is the choice of the absolute error E when comparing and then
choosing network architectures.

5.3. Controlling the error level using the hybrid approach

Before assessing the performance of eachNN in Section 7, it is essential to ensure that the hybrid approach
is able to control the physical targets ehx and ehy. To do so, this section intends to determine ifE1 orE∞ is
able to control the physical behavior of the simulation. In other words, a proper definition of the error E
should guarantee that all networks hybridized with the same threshold E<Et lead to the exact same
evolution of ehx and ehy in time.

First, a test is carried out in order to choose between E1 and E∞ as a proper indicator of the flow
behavior, characterized by ehx and ehy. The lowest values obtained in Figure 13 are chosen as threshold
values. With these thresholds, the four different networks are evaluated and compared with the Jacobi
method using a number of iterations also driven by the same threshold. Results on the divergence errors
and head’s position are displayed in Figures 14 and 15 for the two test cases. First, it can be noticed that the
specified thresholds are correctly followed by the networks and the Jacobi methods, since for the
maximum error (Figures 14a and 15a) and mean error (Figures 14b and 15b), the divergence curves

Figure 13. E∞ (- - -) and E1 (������) for the case without (a) and with (b) cylinder obtained by several
architectures: ▼MonoScale, ■ MultiScale, • Unet, and � SmallScale.
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are superimposed. This demonstrates how the hybrid approach is able to guarantee a level of accuracy for
the NN predictions, which are otherwise unreliable. The resulting head positionsehx andehy, representative
of the physical behavior of the simulations, are also provided (Figs. 14c,d and 15c,d). Interestingly, it is
found that imposing the same mean error to all methods yields exactly the same time evolution of the
physical targets, for both cases with and without obstacles. However, imposing the maximum error as a
threshold leads to different, yet close, simulation behaviors. Typically, the same trend as in Figure 10 is
observed, with a too rapid rise of the plume when predicted by the Jacobi method (⋆) and the MonoScale
network (▼). This faster convection speed is highlighted in the second case, where the plume is impinging
the cylinder obstacle at shorter times for these two methods, resulting in an early flow deviation
characterized by a nonnull ehx position (Figure 15c). Note, however, that prescribing a lower maximum
error, typicallyEt = 0:18, yields also a similar plume evolution for all networks (Online Appendix B). The
choice of the optimum threshold value Et is not known a priori, although a small iterative process can
rapidly show a value where the error is low enough to stop seeing any variations on the flow structures.
Note that the question of choosing Et, or similarly choosing the number of iterations, is not restricted to
AI-based solvers, but to all iterative solvers such as Jacobi or CG methods.

5.4. Analysis of the error distribution

To further understand how the error definition (E1 or E∞) is driving the overall behavior of the
simulations, the time evolution of the spatial distribution of the error is studied. To do so, at a given

Figure 14. E∞ (- - -) and E1 (������), and plume head position ehy (bottom), where (a,c) correspond to
Et = min E∞ð Þ and (b,d)Et = min E1ð Þ evaluated on the no cylinder test case, at anRi = 14:8 obtained by
several networks:▼MonoScale,■MultiScale,� SmallScale, and • Unet, as well as the ⋆ Jacobi solver.
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normalized time et, the distribution of the divergence error is computed by a kernel density estimation
(KDE; as described in the work of John and Langley (1995)). The evolution of the KDE for the plume case
without obstacle is displayed in Figure 16. The same analysis on the second test case corresponding to the
plume impinging the cylinder is performed in Online Appendix C. Results are displayed at four time steps:
et= 0:1, 0:2, 0:29, and 0:39. BothE∞ (top) andE1 (bottom) have been tested. The corresponding threshold
valuesEt have been set to the lowest values of the error obtained by all networks without hybrid approach
(Section 5.1). When following the maximum divergence threshold (top), it can be noticed that the error
distributions differ depending on themethod employed.A significant difference is observed atet= 0:1 for the
Jacobi iterative method, for which the error distribution is spreading over a wide range, from 0 to 0:3. In
comparison, all NNs at this normalized time produce an error close to 0:05, resulting in a sharp unimodal
density function. Note that such behavior is ideal since the error is well controlled in space, yet the threshold
value (Et = 1:5 atet= 0:1; Figure 14a) is not directly linked to the most probable error (E≈ 0:05 atet= 0:1).
At the same timeet= 0:1, usingE1 (bottom part of Figure 16) generates exactly the same error distribution
for all approaches, including the Jacobi iterativemethod. This result generalizes the conclusions established
fromFigures 14 and 15:when specifying the error as the spatially averagedE1 error on theCFDdomain, the
hybrid approach yields exactly the same error distribution (whatever the method used or the network
architecture), and consequently produces the same evolution of the plume head position eh, that is, the same
physical behavior of the simulation. Interestingly, the error distribution is similar to the case followingE∞:
the probability density function of the divergence error is unimodal, with a peak located at ∣∇ �eu∣ ≈ 0:05.
However, compared with the use of the maximum error, here the threshold value (Et ≈ 0:05 at et= 0:1;
Figure 14b) directly corresponds to the most probable error.

Figure 15.E∞ (- - -) andE1 (������), and plume head position (ehy, ehx) (bottom), where (a,c) correspond to
Et = min E∞ð Þ and (b,d) Et = min E1ð Þ evaluated on the cylinder test case, at an Ri = 14:8 obtained by
several networks:▼MonoScale,■MultiScale,� SmallScale, and•Unet, as well as the ⋆ Jacobi solver.
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As the simulation is running, a clear advantage of usingE1 can be observed atet= 0:2. Not only it yields
the same distribution error for all methods, but this distribution is close to the one obtained at previous
times (e.g.,et= 0:1), revealing that the hybrid approach is consistent in time. On the contrary, the use ofE∞
leads to very different error distributions. It is worth noting that the Jacobi method (⋆) and the MonoScale
(▼) exhibit a distribution shift toward higher error values, thus explaining their higher mean values
(Figure 14a). This result is consistent with the unphysical behavior of these two simulations (too fast rising
of the plume), since the evolutions of eh are strongly correlated with the mean value error (Figure 14b,d).

At larger time steps (et= 0:29 and 0:39), the error distribution is spreading for all cases toward higher
error levels (from 0 to 0:3 for most cases). Again, defining the error and threshold values usingE∞ (top) is
not able to control the whole error distribution. The Unet (•) produces the most unimodal distribution with
a peak at a low error of 0:05, whereas the Jacobi method (⋆) and the MonoScale network (▼) generate a
flat error distribution with larger errors up to 0:6. However, following E1 (bottom) is still producing
consistent error distributions, with low discrepancies between the various methods, including the
MonoScale and Jacobi methods. A slight shift of the error distribution can be observed, with a most
probable error close to 0:1 (instead of 0:05 for early times). This is due to the fact that the present test case
is performed with a varying threshold valueEt etð Þ: this value is chosen as the lowest error value obtained
without the hybrid approach, which is therefore not fixed in time. Figure 14b reveals that the threshold
value of the mean error is actually increasing in time, from 0:05 to early time steps toward 0:1 at the end of
the simulation (et= 0:6).

Overall, the description of the errorE and threshold valueEt using the spatially averaged error over the
CFD domain has shown a remarkable ability to control the whole distribution error in time and space,
whatever the method used. For all times, the distribution is unimodal, with a most probable error in the
range 0:05�0:1, in good agreement with the threshold value of the mean error employed for the hybrid
approach. This is not surprising since the error distribution is a unimodal symmetric probability function,
for which the most probable and mean values are equal. In other words, controlling the mean error is
constraining the whole error distribution, whereas following the maximum value E∞ only constrain the
distribution tail. This reduced constrain over the error distribution, seems insufficient to control the
physics of the system, in particular here the rising speed of the plume head. Note that similar trends and
conclusions are observed with the plume impinging the cylindrical obstacle (Figure 30 in Online
Appendix C), even if the error distributions are no more unimodal: the hybrid approach based on the

E ∞

Figure 16. Kernel density estimation at four times (et = 0.10, 0.20, 0.29, and 0.39) of the cases where
E=E∞ (top) and E=E1 (bottom) of the no cylinder test case, at an Ri = 14:8 obtained by several
networks: ▼MonoScale, ■ MultiScale, � SmallScale, and • Unet, as well as the ⋆ Jacobi solver.
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mean error is still able to control the whole distribution error whatever the network architecture. For
completeness, the whole spatial distributions of the error are displayed for the two cases (with andwithout
obstacle) and both error definitions (E1 and E∞) in Online Appendix A.

Finally, this study reveals that the NNs hybridized with a Jacobi method are able to guarantee the
accuracy level of the whole simulation in time, in particular when choosing an error defined as the
spatially averaged divergence error in the CFD domain. Consequently, in the following, the hybrid
approach based onE1 is chosen to ensure that all networks have a similar accuracy with the same plume
head evolution in time, a pre-requisite to perform a fair comparison of the network performances.

6. 3D Plume Test Case

The samemethodology is now applied to 3D cases. In this section, the plume test casewithout a cylinder at
the Richardson number 14.8 is shown in Figure 17. The domain consists of 1283 mesh points, with a
similar layout as the 2D case.

For this configuration, a new network based on the Unet architecture with 3D convolutions (resulting
in 1:34�106 trainable parameters) has been trained on a similar dataset as for the 2D case, but with the
domain sizes of 643 mesh points. Looking at the plume evolution in the middle part of Figure 17, the Unet
network simulations qualitatively match the reference Jacobi solver (with 400 iterations; top part of
Figure 17). However, some asymmetries at the plume head can be appreciated, especially at et= 0:39
(displayed by the black arrow). To correct these numerical instabilities, the hybrid strategy is usedwith the
threshold Et =E1, where E1 corresponds to the mean divergence of the reference Jacobi solver with
400 iterations at each simulation time step.

When applying the hybrid strategy, Jacobi iterations are just needed in the first iterations, which
correspond to the most difficult time steps for the network, whereas for the rest of the simulation, none or

Figure 17. Comparison between the Unet network and a reference Jacobi 400 solver for a 3D plume
without obstacle at Richardson 14.8.
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one Jacobi iteration is needed. Thus, the asymmetries found on the plume surface disappear, matching the
reference Jacobi simulations. Note that this hybrid strategy, while guaranteeing the accuracy and stability
of the simulation, has an extra cost of only 14% compared with the Unet network for this case, yielding an
overall simulation around 10 times faster than the Jacobi method. This exemplifies that the present hybrid
strategy has significant benefits in many different configurations (2D, 3D, flows unseen during training,
etc.) by providing both fast and reliable simulations. To better understand this performance, a detailed
analysis of the acceleration produced by the four previously studied network architectures on various
mesh sizes is provided in Section 7.

7. Performance Assessment

In this section, the performance of NNs is assessed for the time of inference, that is, the time needed to
produce the pressure correction. The analysis is innovative in two ways: (a) a fair performance
comparison is performed using the hybrid approach, allowing the assessment of the time of inference
at a fixed error level whatever the method (Jacobi or NN architecture), and (b) these performances are
evaluated for several network architectures and grid sizes. Note that even if CNNs are theoretically
capable of dealing with CFD domains of arbitrary size and resolution, they have in practice difficulties
which such cases, probably because of boundary effects, as hinted by Kayhan and van Gemert (2020):
here again, the hybrid approach is useful to guarantee the error level of the solutionwhen changing the grid
size. To do so, as suggested in Section 5.3, themean divergence error is used to define the thresholdEt. All
simulations were performed on the same GPU card, namely here an NVIDIATesla V100 with 32 GB of
memory. Note that the performance evaluation on multiple GPUs is out of the scope of the present study.

To measure the fluid solver performance, the following times are defined:
• tinf : Inference time taken by an NN or the Jacobi solver to output one pressure field when the

divergence field is inputted, that is, not taking into account the time to correct the velocity field or the time
spent on the extra Jacobi iterations of the hybrid solver.

• tp: Time taken to perform the entire pressure projection step. This includes the time to perform the first
pressure inference, the extra Jacobi iterations in the hybrid process, aswell as the correction of the velocity
field.

• tit: Time taken to perform an entire iteration of the fluid solver, that is, the advection and pressure
projection steps.

7.1. Network comparison

Using the hybrid strategy, a nontrivial trade-off has to be made between accuracy (usually implying more
complex and deeper architectures) and fast inference time (requiring small networks). In practice, a less
accurate network with a fast inference time will require more Jacobi iterations to reach the desired
accuracy level, thus limiting drastically its performance. Comparing the performance of the several
network architectures used in this work will provide a first insight on this trade-off, in order to establish
guidelines for future developments of AI-based solvers.

Consequently, the performance assessment of the NNs is split into two steps: (a) assess the inference
time tinf of each CNN to produce the output, and (b) evaluate the number of Jacobi iterations needed by
each network, using the CNN prediction as initial guess, to reach the target accuracy. Table 2 shows the
inference time of each network, and reveals that tinf is not directly associated with the number of
parameters of the network. Indeed, whereas MonoScale, MultiScale, and Unet networks have the same
number of parameters, they also have very different inference times. Similarly, the SmallScale network
contains three times fewer parameters compared with the Unet network, but still requires more time to
output its prediction. This is due to the specific architectures of the Unet and MultiScale networks which
involve several scales: filters and their associated parameters at low resolution (capturing the large scales
of the flow field) are applied on reduced inputs, therefore limiting the number of operations to perform,
and thus reducing tinf (Figure 18b). Thus, the more parameters at lower scale, the faster the network
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is. This is confirmed by the associated number of floating-point operations (FLOP) for each network
architecture, displayed in Figure 18 for each network and several grid sizes, from 1,024 to 4:2�106 cells.
It reveals that the FLOP number depends linearly on the grid resolution and is directly correlated with the
inference times of Table 2: the five scales of the Unet network result in a low FLOP number, and therefore
a reduced tinf , comparable to the SmallScale network with three times fewer parameters. The MultiScale
network also contains three scales, but most parameters are concentrated at the larger resolution, which is
therefore dominating the FLOP number and inference time. Only a small gain is observed for this
architecture compared with a standard MonoScale network.

Since the several studied networks have different error levels, the number of Jacobi iterations to reach
the desired accuracy level is decisive in the overall performance of theAI-based code. Figure 19 shows the
number of Jacobi iterations needed to reach the thresholdEt, for both 2Dplume caseswithout (Figure 19a)
and with (Figure 19b) obstacle. As expected, the classical Jacobi solver (⋆) and the MonoScale network
(▼) need numerous iterations, typically between 300 and 400. Using a multiscale architecture (either
MultiScale or SmallScale) improves significantly this situation, since only 100 to 200 iterations are
needed for the same accuracy level. Note that for the case with obstacle, the MultiScale network needs
almost no Jacobi iteration after the plume has impinged the cylindrical obstacle (et> 0:3). In contrast, the
Unet outperforms all networks, with almost no Jacobi iteration for all cases. However, it requires 50�100
iterations after the plume has impinged the cylinder (et> 0:3), which is consistent with the previous finding
that the Unet has difficulties close to walls (Figure 11). As a general conclusion, all networks outperform
the classical Jacobi solver, proving that using NNs as an initial guess to the iterative solver is relevant.

Table 2. Inference time of each network to produce a 2D (5122 grid) and 3D (1283 grid) pressure field
without Jacobi iterations, as well as the inference time of a Jacobi solver.

Time MonoScale MultiScale Unet SmallScale
Jacobi

(One iteration)

2D tinf (ms) 14.6 11.3 5.25 5.35 2.31
tinf /tit (%) 29.1 24.1 12.9 13.1 6.10

3D tinf (ms) 107.8 6.9
tinf /tit (%) 59.8 8.7

Figure 18. Evolution of the number of floating-point operations (in giga units) with the 2D domain size
(varying from 1,024 to 4.2� 106 cells) needed in a single network inference for the four studied networks
(a): ■ MultiScale, � SmallScale, ▼MonoScale, and • Unet, and for the scales composing the Unet

network (b): • Unet, ▼n2, ▼n21=2, � n21=2, ⋆ n21=4, þ n21=8, and ▲ n21=16.
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However, this AI-based computational strategy is efficient only if the time needed to produce the initial
guess by the CNN leads to a total time lower than using the Jacobi solver alone.

To verify this, the time to solve the Poisson equation (tp) is now compared for all methods in
Figure 20a. As a comparison, the computational time to solve the advection equation is tad = 35:5ms.
The bar plot (Figure 20b) highlights the acceleration factor η= tjacobip =tnetworkp for each network architec-
ture, where tjacobip and tnetworkp are the computational times tp of the Jacobi method and the hybridized
network, respectively. First, it can be noticed that all AI-based approaches are faster than the Jacobi solver
alone, which proves the efficiency of the proposed computational strategy using CNN to predict the
solution of the Poisson equation. As expected, theMonoScale only provides a small gain, about 1:2�1:3,
since (a) it needs numerous iterations of the Jacobi solver to achieve the desired accuracy level, and (b) it
has the largest inference time (Table 2). Note that the latter is evaluated at 14:6ms, which indicates that
even for this network with a large inference time, it is still negligible compared to the computational time
of Jacobi iterations. Interestingly, the large (MultiScale) and small (SmallScale) multiscale networks
achieve a comparable acceleration factor, respectively, η≈ 3:7 and 2:4 without obstacle, but differ when
the plume impinges the cylinder, with η≈ 7:5 and η≈ 3:1. Indeed, the larger network achieves a better
accuracy, thus limiting the number of Jacobi iterations. However, the accuracy-inference time trade-off is

Figure 19. Number of Jacobi iterations needed to ensure Et = min E1ð Þ on the noncylinder (a) and the
cylinder (b) 2D test cases with various networks: ▼MonoScale, ■ MultiScale, � SmallScale, and •

Unet, as well as the ⋆ Jacobi solver.

Figure 20. Time tp (a) and acceleration factor η (b) for the noncylinder (- - -) and cylinder 2D test case
(������), for the four studied networks: ▼MonoScale, ■ MultiScale, � SmallScale, and • Unet, as well

as the ⋆ Jacobi solver.
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not trivial when dealing with deep NNs embedded in a CFD solver, as in test cases where few Jacobi
iterations are needed, the SmallScale network could outperform the larger MultiScale network, thanks to
the smaller network inference time. Finally, the Unet architecture outperforms all other methods in the
case without obstacle with an acceleration factor η= 26:1. As the Unet has difficulties handling
boundaries, its performance drops in the case with obstacle, yet still accelerating the CFD solver by a
factor η= 6:6, slightly below the MultiScale network performance. Note, however, that for longer
simulations, theMultiScale networkwould further outperform theUnet since requiring no Jacobi iteration
for times larger thanet= 0:3.

Similar conclusions can be drawn from the 3D performance test, where the advection time is
tad = 72:1ms. Looking at the results shown in Table 2, the network inference time is higher compared to
a single Jacobi iteration, due to the addition of further trainable parameters. Note that for the 3D network, no
particular optimization of the Unet architecture has been performed, so that a reduction of the network
inference time is still possible. Nevertheless, when using the hybrid strategy following the reference Jacobi
solver, the network only needs to perform iterations in the initial simulation time steps (needing up to 1,000
Jacobi iterations in the first two time steps), whereas none or one Jacobi iteration is needed for the rest of the
simulation. This results in an acceleration factor η= 12:9 comparing the hybrid strategy with the reference
Jacobi solver with 400 iterations. Again, this is a demonstration that a hybrid strategy coupling AI and CFD
can provide significant speedup, even for 3D cases which require larger NNs.

7.2. Evaluation and analysis of the performance on various grid sizes

The previous performance assessment was made at a fixed resolution of 2:6�105 cells. Recent work by
Kayhan and van Gemert (2020) revealed that networks can encode spatial location and resolution on the
training dataset, which can lead to poor performancewhen applied to a different resolution than the one used
during the training phase (2:6�105 cells in this work). This drawback is here tackled by the hybrid
approach, which ensures the desired accuracy level whatever the grid size. It is also found in this work that
the present CNNarchitectures are capable of generalizing to different grid sizes, even if no clear explanation
can be given for this specificity. As a reminder, Figure 18 showed that the number of operations per network
evolves linearly with the grid size. However, Figure 21a shows a different behavior when looking at tinf ,
with two distinct regimes: (a) the network performances follow the same behavior as in Figure 18 when the
domain size is large enough, with a linear increase with grid size, and (b) tinf remains constant for small
grids. This phenomenon is related to the CPU overhead, as the time taken by the GPU kernels is inferior to
the command transmission between the CPU and theGPU,which depends only on the network architecture
but not the grid size. Therefore, networks with a simpler architecture result in a lower CPU overhead, and so

Figure 21. Time taken to perform the network prediction tinf (a) for the four studied networks: ▼
MonoScale,■MultiScale,� SmallScale, and •Unet, on a 2D grid size varying from 1,024 to 4.2� 106

and (b) for the 3D Unet network (•) on a 3D grid size varying from 163 to 1923.
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a faster inference. It should be noted how, for example, the MultiScale and SmallScale networks show a
similar inference time when the GPU kernels are saturated, as the architecture and layer sizes are the same.
This saturation should be taken into account for small resolution test cases, for instance, by designing
dedicated simple architectures. A similar behavior is found on the 3D network (Figure 21b) with the distinct
linear and saturated behaviors.However, due to the 3Dconvolutions, the overhead regime saturates at higher
inference times. Interestingly, the transition between these two regimes appears for the Unet network at
approximately the same number of cells: 65�103 cells in 2D, corresponding to 2562 and 33�103 cells,
corresponding to 323. Note that because of memory capability of the V100 GPU card, no 3D meshes with
more than 7�106 cells (1923) can be tested. In addition, the inference onmultiple GPUs is out of the scope
of the present study, but would be a crucial step to demonstrate the potential of this AI–CFD hybrid method
in an HPC context.

In order to better understand the link between the network architecture and its performances, the time
taken for different scales is displayed in Figure 22, for both theMultiScale (a) andUnet (b) networkswhen
the spatial resolution is varying. This figure shows the evolution of the three main scales of theMultiScale
network, depending on the spatial resolution. As expected, the largest scale takes the major part of the
inference time for both networks, performing most of the operations due to the larger size of the domain.
Moreover, it is shown that the smaller scales are more prone to the command overhead, which makes the
saturated regime occur on a larger resolution range, for instance, the scale n/4 of the MultiScale is
saturated until the resolution 512�512, and the scale n/16 of the Unet until 1,024�1,024. Exploiting
smaller scales with more parameters could open the path to new computational strategies with large
computational domains divided into multiple smaller subdomains of the appropriate size, for example,
adapted to each scale of the network.

8. Conclusions

This work focuses on the resolution of the Poisson equation with CNNs applied to incompressible fluid
flows. First, the well-known MultiScale and Unet architectures are trained on Euler constant-density
flows, and then analyzed, and compared to a simpler architecture as well as with a traditional Jacobi
solver. These networks are tested on the viscous flow around a cylinder, where themultiple scale networks
(Unet and MultiScale) are found capable of correctly simulating the vortex shedding at various Reynolds
numbers, thus revealing generalization capabilities to unseen flow physics. To further study the network-
solver interactions, a plume test case, with and without obstacle, is studied for various Richardson
numbers. For this case, asymmetries and numerical instabilities may appear when applying the trained
network at Ri = 0 to nonnull Richardson flows. In order to ensure a user-defined accuracy level and to

Figure 22. Time taken by each scale (• n2,▼n21=2,� n21=2, ⋆ n
2
1=4,þ n21=8, and▲ n21=16) for theMultiScale

(a) andUnet (b) networks, to perform a single inference on a 2D grid size varying from 1,024 to 4.2� 106

cells.
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avoid numerical instabilities, a hybrid strategy is used where the NNs are coupled with a Jacobi solver
when a threshold error criterion is not satisfied. This work shows that a threshold based on the mean
divergence of the flow field ensures consistent physical behavior of the fluid flow, which guarantees both
accuracy and reliability of the AI-based solver. Moreover, a 3D plume is computed as well, showing how
the introduced methodology can be extrapolated to more realistic test cases: again, the hybrid approach
allows fast and reliable 3D simulations, whereas the network alone yields numerical asymmetries in the
flow. The various networks are compared in both accuracy and inference time when using the hybrid
strategy. It is found that the network behavior varies with the studied case.When there is no obstacle in the
domain, the Unet network outperforms the other networks both in accuracy and performance. However,
when an obstacle is introduced, its accuracy decreases because of difficulties close to walls, resulting in a
simulation time superior to the MultiScale network. For both cases, the MultiScale and Unet networks
provide speedups of order 5–7 in 2D and 10 in 3D, demonstrating the potential of such a method.
Moreover, it is shown that the multiple scales of the Unet and MultiScale networks result in a faster
inference time, as long as the resolution is larger than 256�256. For lower resolutions, the CPU overhead
controls the inference time, enabling the simpler MonoScale network to obtain the fastest inference time.
In conclusion, this work has revealed the potential of coupling CNNwith multiple scales to a CFD solver
to produce fast and reliable flow predictions, as well as providing useful insights on the performances of
NNs depending on their architecture, to be used as guidelines for future works coupling CFD and AI.
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